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Abstract

The advent of 4-dimensional (4D) light-sheet fluorescence microscopy (LSFM) has provided an 

entry point for rapid image acquisition to uncover real-time cardiovascular structure and function 

with high axial resolution and minimal photo-bleaching/-toxicity. We hereby review the 

fundamental principles of our LSFM system to investigate cardiovascular morphogenesis and 

regeneration after injury. LSFM enables us to reveal the micro-circulation of blood cells in the 

zebrafish embryo and assess cardiac ventricular remodeling in response to chemotherapy-induced 

injury using an automated segmentation approach. Next, we review two distinct mechanisms 

underlying zebrafish vascular regeneration following tail amputation. We elucidate the role of 
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endothelial Notch signaling to restore vascular regeneration after exposure to the redox active 

ultrafine particles (UFP) in air pollutants. By manipulating the blood viscosity and subsequently, 

endothelial wall shear stress, we demonstrate the mechanism whereby hemodynamic shear forces 

impart both mechanical and metabolic effects to modulate vascular regeneration. Overall, the 

implementation of 4D LSFM allows for the elucidation of mechanisms governing cardiovascular 

injury and regeneration with high spatiotemporal resolution.
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Introduction

Zebrafish (Danio rerio) share conserved cardiovascular developmental signaling pathways 

with mammals, providing a genetically tractable model in developmental research, drug 

screening, and heart failure studies (Li et al., 2014; Packard et al., 2017; Power and Huisken, 

2017; Tzahor and Poss, 2017; Vermot et al., 2009). Zebrafish embryos are optically 

transparent, allowing for real-time visualization of structural and functional phenotypes (Li 

et al., 2014; Opitz et al., 2012). Their small size and short developmental stages facilitate 

high-throughput genetic, epigenetic, and pharmaceutical analyses (Herzog et al., 2009; Sun 

et al., 2009). Although mammalian models including mice exhibit the capacity of tissue 

regeneration during the early stage of development, zebrafish demonstrate structural 

recovery in response to anatomical amputation, chemotherapy, or redox active ultrafine 

particles (UFP, diameter < 0.2 μm) in air pollutants (Li et al., 2014). In this review, we 

introduce our novel imaging technique using our custom-built light-sheet fluorescence 

microscopy (LSFM) to elucidate zebrafish models of cardiovascular injury and regeneration. 

We highlight the pathological effects of ambient UFP exposure underlying impaired Notch 

transcriptional activation complex to promote vascular regeneration (Baek et al., 2018b). 

Furthermore, we introduce a novel flow-responsive mechano-metabolic pathway implicated 

in vascular regeneration (Baek et al., 2018a).

1. Light-sheet imaging to study cardiovascular regeneration

Live imaging has transformed biomedical sciences by permitting visualization and analysis 

of dynamic cellular processes as they occur in their native contexts (Amos, 2000; 

Ntziachristos et al., 2005; Yuste, 2005). Conventional methods continue to be useful, but the 

pursuit of new biological insights often requires higher spatiotemporal resolution in ever-

larger, intact samples and, crucially, a gentle touch, such that biological processes continue 

unhindered. Although confocal microscopy improves spatial resolution and image contrast, 

using the same path for both illumination and fluorescence detection leads to intensive 

photo-bleaching and photo-toxicity with limited penetration depth (100–150 μm) (Huisken 

et al., 2004; Keller and Stelzer, 2008). Multi-photon microscopy utilizes an infrared mode-

locked laser as the illumination source and reaches up to 1 mm penetration depth (Horton et 

al., 2013; Kobat et al., 2011), but requires a high numerical aperture (NA > 0.7) and a short 

laser pulse with a long wavelength. On account of these limitations, LSFM splits the paths 

so that the illumination plane is perpendicular to the detection angle. Therefore, fluorescence 
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is emitted from the selective focal plane, and only a few fluorescent molecules are excited in 

the micrometer thickness of the light-sheet.

In comparison to conventional microscopy, LSFM integrates several distinct advantages 

(Chhetri et al., 2015; Mickoleit et al., 2014). (1) LSFM exposes the specimens to at least 

three orders of magnitude less light energy than confocal and multi-photon fluorescence 

microscopes over conventional excitation, thus greatly reducing photo-bleaching and photo-

toxicity by two to five orders of magnitude (De Vos et al., 2014; Huisken and Stainier, 2009; 

Santi, 2011). In the absence of a pinhole, the loss of energy efficiency of the illumination 

beam is not more than 5% after transmission through the lenses and mirrors to scan a plane 

of sample. (2) LSFM allows for illuminating the desired sample area, significantly 

increasing signal efficiency and axial resolution. The thickness of the light-sheet generated 

by the illumination lens is the major determinant of the axial resolution whereas the axial 

resolution of other optical microscopes is predominately determined by the NA of the 

detection lens. (3) LSFM enables rapid imaging at 100 frames/sec (~400 megapixels/sec) 

after applying a sCMOS or CCD camera with a large dynamic range, far more than the 10 

megapixels/sec of confocal or multi-photon microscopy. (4) LSFM also provides higher 

signal-to-noise ratio which is over 100:1, while that of confocal microscopy is 60:1 and 

multi-photon microscopy is only 10:1. LSFM for the present experimental data set was 

carried out on previously developed systems (Fig. 1A) (Ding et al., 2017a; Ding et al., 

2017b; Fei et al., 2016; Lee et al., 2016; Packard et al., 2017; Sideris et al., 2016; Sung et al., 

2016). The detection path, including an objective lens (10x/0.25, Nikon), a tube lens (ITL 

200, Thorlabs), and switchable optical filters (Semrock, NewYork, USA), was placed 

orthogonal to the illumination plane for collecting fluorescence signals (Fig. 1B1–2). Digital 

images were recorded with a high frame rate by using two scientific CMOS cameras 

(ORCA-Flash4.0 V2, Hamamatsu, Japan) for dual-channel detection (Fig. 1B3). A diode-

pumped solid-state laser containing four wavelengths of 405 nm, 473 nm, 532 nm, and 589 

nm (Laserglow Technologies, Toronto, Canada) was used as the illumination source (Fig. 

1B4). Three common light-sheet configurations were generated to illuminate the embryonic 

zebrafish heart (150–250 μm), adult zebrafish heart (500–1500 μm), and neonatal mouse 

heart (3000–5000 μm) (Fig.1C1). The confocal region of the light-sheet was used as a 

uniform planar illumination and was finely stretched to cover the sample’s transverse 

dimension (Fig.1C2). The extent of axial projection was directly imaged at the waist of the 

light-sheet by the profiler, and the confocal range was further reconstructed by stacking the 

projections (Fig. 1C2). The thickness of the light-sheet, defined as the axial full width at half 

maximum (FWHM) value of the beam waist, was measured at ~5 μm for the embryonic 

zebrafish heart (i), ~9 μm for the adult zebrafish heart (ii), and ~18 μm for the neonatal 

mouse heart (iii) (Fig. 1C1–2). The lateral confocal regions with respect to these three axial 

extents were profiled (Fig. 1C2 i–iii). The detection objectives were 10x/0.3 (Plan Fluor, 

Nikon, Japan) for the embryonic zebrafish heart, 4x/0.13 (Plan Fluor, Nikon, Japan) for the 

adult zebrafish heart, and 1x/0.25 (MVX10, Olympus, Japan) for the neonatal mouse heart 

to capture the full region-of-interest (ROI). Once the thickness of the light-sheet for 

excitation and the objective lens for detection were determined, the lateral and axial 

resolution for each configuration could be obtained by measuring the point spread function 

(PSF). The fluorescent point source (polystyrene beads) was imaged by applying the 
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aforementioned three light-sheet configurations and demonstrated the lateral and axial 

resolution by measuring the FWHMs from x-y, x-z, and y-z plane images (Fig. 1C3).

LSFM has the capacity to localize the 4D cellular phenomena with multi-fluorescence 

channels to study cardiovascular development and regeneration. Unlike commercial systems, 

including the ASI iSPIM, Zeiss Z.1, Leica SP8 and LaVision Ultramicroscope. Our multi-

scale LSFM strategy is capable of rapid imaging acquisition to elucidate mechanisms of 

vascular regeneration after injury in the zebrafish cardiovascular system. In comparison with 

the ASI iSPIM, Zeiss Z.1 and Leica SP8 (Keller et al., 2008; Kumar et al., 2014; Wu et al., 

2011; Wu et al., 2013), we applied dry objective lenses with long-working distances to 

provide a large field-of-view. We further implemented a cylindrical lens to reshape the 

Gaussian beam to achieve high spatiotemporal resolution without the need for laser scanning 

the contracting heart (Lee et al., 2016; Power and Huisken, 2017). In addition, our system 

minimizes photo-bleaching and photo-toxicity due to the planar illumination (Power and 

Huisken, 2017). In contrast to the LaVision Ultramicrope optimized for mouse brain (Dodt 

et al., 2007), our LSFM system enables live imaging of zebrafish embryos. Furthermore, our 

custom-built system adapts a retrospective synchronization algorithm to reconstruct 

contracting embryonic hearts in 4D (Lee et al., 2016). We have also demonstrated a 

resolution-enhancement method for using the objective lenses with low NA objectives, 

allowing for multi-scale imaging with a large field-of-view (Fei et al., 2018). For these 

reasons, our custom-built LSFM has the capacity to perform the image-guided study for 

cardiovascular regeneration.

However, the main limitation of LSFM reside in photon scattering or absorption in the 

setting of imaging acquisition of large specimens (such as the rodent heart) or interfacing 

with mismatching refractive indices (from inadequate tissue clearing). Other limitations 

include the effect of out-of-focus light to reduce the signal-to-noise ratio. As a result of 

absorption, refraction, and scattering of coherent light within the tissue, these limitations 

generate stripe or shadow artifacts to attenuate the image. The lateral resolution of LSFM is 

lower than that of confocal imaging by the factor of 2 when the same objectives are used 

(Cannell et al., 2006). The advantages and disadvantages among the different optical 

modalities are summarized in Table 1.

1.1. Light-sheet imaging with automated segmentation method to analyze 
doxorubicin-induced cardiac injury and regeneration—In adult zebrafish, 

regenerating myocardium electrically couples with uninjured myocardium (Lee et al., 2014), 

providing a conserved cardiomyopathy model (Ding et al., 2011). Precise assessment of 

cardiac ventricular architecture remains an imaging challenge due to the small size of the 

heart. The advent of the chemical clearing method enabled multi-scale imaging of hearts 

from zebrafish embryos (hundreds of μm in diameter) to adult fish (1–2 mm in diameter) 

(Fei et al., 2016; Sung et al., 2016). In the setting of a simplified tissue clearing method 

using benzyl alcohol-benzyl benzoate (BABB) to improve laser penetration and to achieve 

optical transparency, we visualized volumetric changes of cardiac morphology in adult 

zebrafish in response to doxorubicin-induced cardiac toxicity by combining light-sheet 

illumination with a customized automated segmentation method based on histogram analysis 

(Fig. 2A). Doxorubicin is an anthracycline agent that is commonly used in chemotherapy 
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regimens for patients with a variety of cancers, and it is well known to cause cardiac injury, 

often limiting its use clinically (Volkova and Russell, 2011). The transgenic Tg(cmlc2:GFP) 
zebrafish line was used to visualize ventricular remodeling after doxorubicin chemotherapy. 

The detection objective is imaged through the liquid-air interface where it is introduced to a 

spherical aberration-based PSF extension (Tomer et al., 2015). The section thickness (1–5 

μm) of mechanical scanning was determined based on the Nyquist-Shannon sampling 

theorem, while image acquisition was done with an exposure time of between 10–50 ms. 

Thus, the spatial resolution of the LSFM in cross-section varied from 1 μm to 10 μm, while 

the waist ω0 ranged from 2 to 9 μm. Reconstructed image stacks underwent alpine 

interpolation and iterative 3D deconvolution to compensate under-sampling of the camera 

and to prevent blurred images. A 4-step automated image segmentation process was then 

applied to the input images for precise assessment of the structural reorganization of the 

adult zebrafish heart, as previously described (Packard et al., 2017). Cardiac volumes 

assessed with automated segmentation were quantitatively compared following 3, 30, and 60 

days of doxorubicin treatment (Fig. 2B). Our present data revealed 3 days of doxorubicin 

treatment led to global cardiac injury and resulted in the reduction of both endocardial and 

myocardial volumes, followed by ventricular remodeling at day 30, and complete 

regeneration and restoration of normal architecture at day 60. Furthermore, the automated 

segmentation method established a well-defined structure of the atrium, ventricle, and 

bulbus arteriosus, revealing ventricular trabeculae and ultrastructure (Fig. 3A–B, D). The 

computation of the angle between the atrio-ventricular (AV) valves and ventricular-bulbar 

(VB) valves permitted precise assessment, including the ventricular inflow (dotted yellow 

line) and outflow path (solid yellow line) (Fig. 3C). Our results accentuate the suitability of 

light-sheet imaging combined with automated segmentation as a high-throughput method to 

monitor 3D cardiac ultrastructural changes in adult zebrafish, with translational implications 

to drug discovery and modifiers of chemotherapy-induced cardiomyopathy.

1.2. LSFM to study mechano-transduction and vascular dynamics—With the use 

of the transgenic Tg(flk1:GFP; Gata1:Ds-red) zebrafish line which drives of the expressions 

of VEGFR2 as well as erythrocytes, we simultaneously detected circulating erythrocytes and 

demonstrated flow-mediated vascular regeneration. Our previous study established a 

zebrafish tail amputation model to seek mechanisms underlying vascular regeneration after 

injury (Baek et al., 2018a). The posterior tail segments of the embryos were amputated with 

a sterilized surgical scalpel under a stereomicroscope and immobilized with low melting 

agarose in a fluorinated ethylene propylene tube to achieve a uniform refractive index for 

fluorescence detection. Imaging cellular dynamics across large specimens requires high 

spatiotemporal resolution, uniform light-sheet thickness and low photo-bleaching/-toxicity. 

LSFM enables image acquisition of dynamic biophysical and biochemical activities such as 

blood flow or a beating heart at > 100 frames/sec. The precise alignment of dual-channel 

detection of LSFM further allows us to concurrently acquire the structure of the vasculature 

and circulating erythrocytes to perform 2D particle imaging velocimetry (PIV) in the dorsal 

aorta (DA) (Fig. 4A–E). The tail amputation model with LSFM offers a flexible platform to 

study hemodynamic regulation on endothelial vascular regeneration (Fig. 4F–G), providing 

an entry point to study mechano-transduction in a low Reynolds number system (Re: 100 ~ 

1000). Besides, LSFM imaging has also been implemented in various developmental 
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studies, such as 4D reconstruction of contracting zebrafish hearts (Lee et al., 2016; Mickoleit 

et al., 2014), time-lapse imaging of neural activity and cell lineages in Drosophila (Ahrens et 

al., 2013; Keller et al., 2010; Tomer et al., 2012; Truong et al., 2011; Vladimirov et al., 

2014), C. elegans (Wu et al., 2011), zebrafish (Bassi et al., 2015; Chhetri et al., 2015; 

Forouhar et al., 2006; Lenard et al., 2015; Schmid et al., 2013; Weber et al., 2017; Wu et al., 

2013) and mice (Bouchard et al., 2015). Unique characteristics of LSFM permit long-term 

imaging of cardiovascular regeneration and development. In comparison to the 

aforementioned studies, visualization of the periodic contractions of the embryonic heart 

requires either a 4D synchronization algorithm (Ding et al., 2017a; Liebling et al., 2005; 

Mickoleit et al., 2014) or a volumetric imaging method, while capturing dynamic blood flow 

in 4D is still underway.

2. Zebrafish tail amputation model to study vascular regeneration after injury 2.1. 
Exposure to ambient UFP reveals importance of Notch signaling for vascular regeneration

Ambient particulate matter (PM2.5) in air pollutants is an emerging epigenetic factor in 

promoting endothelial dysfunction (Karimi Galougahi et al., 2016; Minicucci et al., 2009). 

Recent epidemiological studies have consistently supported that PM2.5 exposure results in 

elevated risk of cancer, respiratory diseases, and cardiovascular defects during development 

(Brook et al., 2010; Brunekreef and Holgate, 2002; Dadvand et al., 2011; Gorham et al., 

1989; Hwang et al., 2015; Ritz et al., 2002). UFP are a major sub-fraction of PM2.5 and 

comprise a mixture of highly reactive organic chemicals (Sardar et al., 2005) and transition 

metals (Brook et al., 2010; Lough et al., 2005; Nel et al., 2006; Zhang et al., 2008). 

Exposure to UFP promotes Jun amino-terminal kinase (JNK) expression to produce a 

reactive oxygen species (ROS), thereby increasing vascular oxidative stress, and is also 

implicated in NF-κB-mediated inflammatory responses that induce atherosclerosis and 

vascular calcification (Araujo et al., 2008; Brook et al., 2010; Li et al., 2013; Li et al., 2009; 

Nel et al., 2006; Pope et al., 2004; Zhang et al., 2008).

The Notch signaling pathway is an evolutionarily conserved intracellular signaling pathway 

intimately involved in cell-fate determination (Bray, 2016; MacKenzie et al., 2004; Quillard 

et al., 2008; Rostama et al., 2014; Walshe et al., 2011) and regulates initial sprout formation 

during angiogenesis (Baonza and Garcia-Bellido, 2000; Fre et al., 2005; Hellstrom et al., 

2007; Jensen et al., 2000; Krebs et al., 2000; Lobov et al., 2007; Pellegrinet et al., 2011; 

Stanger et al., 2005). Upon ligand binding, Notch receptors undergo proteolytic cleavages to 

release the Notch Intracellular Cytoplasmic Domain (NICD) under regulation of a 

disintegrin and metalloproteinases (ADAM) family. Following translocation to the nucleus, 

NICD forms a transcriptional activation complex to induce downstream Notch target genes, 

including Hairy and enhancer of split-1 (Hes1) and gridlock (Bray, 2016). Ablation of 

Notch1 is associated with developmental retardation resulting in embryonic lethality, 

whereas dysregulated Notch1 activity in endothelial cells induces aberrant proliferation, 

resulting in a hyperplastic vascular network (Artavanis-Tsakonas et al., 1999). Missense 

mutation of the Notch3 gene underlies the development of the degenerative vascular disease 

known as Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and 

Leukoencephalopathy (CADASIL) (Joutel et al., 1996).
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To investigate whether UFP mitigate Notch-mediated vascular regeneration, we crossbred 

the Notch reporter transgenic fish Tg(tp1:GFP) with the Tg(flk1:mCherry) line to image 

Notch activity-mediated vascular regeneration. The Epstein-Barr Virus terminal protein 1 

(tp1) reporter contains two Notch-responsive elements on the Rbp-Jκ binding sites for 

NICD, thereby reporting regional Notch1b activation (Lee et al., 2016). The control group 

developed vascular regeneration and formed a loop between the DA and the dorsal 

longitudinal anastomotic vessel (DLAV) with prominent endothelial Notch activity (as 

visualized in yellow) on the site of injury at 3 days post amputation (dpa). On the other 

hand, UFP exposure resulted in significant reduction of vascular endothelial Notch activity 

followed by disrupted vascular network formation on the injured site. The ADAM10 

inhibitor, GI254023X, which inhibits proteolytic activation of the Notch receptor, 

recapitulated Notch-mediated impaired vascular regeneration. To further investigate whether 

the reduction of Notch signaling is associated with vascular impairment after the injury, we 

constructed dominant-negative Notch1b (DN-Notch1b) mRNA that attenuated Notch 

signaling by 96%. Approximately 75% of Notch-knockdown embryos underwent aberrant 

vascular regeneration and network formation, exhibiting embryonic lethality at 5 dpa. NICD 
mRNA micro-injection as a means to up-regulate Notch signaling restored UFP-, ADAM10 

inhibitor-, and DN-Notch1b mRNA- attenuated Notch activity and consequent vascular 

regeneration. By using our well-established zebrafish tail amputation model, we provide a 

molecular basis to assess the effects of UFP on endothelial function for vascular 

regeneration (Fig. 5).

Epidemiological studies consistently support a link between maternal exposure to air 

pollutants and increased risk of congenital cardiovascular diseases (Dadvand et al., 2011). 

UFP in air pollutants are the products of incomplete combustion from urban environmental 

sources, including diesel trucks and gasoline vehicles, and are enriched by elemental and 

polycyclic aromatic hydrocarbons (Chhetri et al., 2015). Their large surface-to-volume ratio 

increases potential absorption to the pulmonary and cardiovascular systems (Frampton, 

2001; Nemmar et al., 2002; Schulz et al., 2005). UFP exposure via inhalation facilitates 

plasma lipid metabolite production and increases high-density lipoprotein oxidant capacity 

to accelerate atherosclerosis in LDLR-null mice (Li et al., 2013). UFP exposure further 

regulates atherogenic lipid metabolites and promotes macrophage infiltration in the intestine 

(Chhetri et al., 2015), where the composition of the micro-biota is altered to elevate 

atherogenic lipid metabolite levels. The emerging role of redox-sensitive micro-RNAs 

(miRs) have been implicated in cellular proliferation (Wu et al., 2012; Yu et al., 2012). 

PM2.5 have been reported to modulate the levels of a number of miRNAs, including 

miR-223 and miR-375 (Bleck et al., 2013; Rodosthenous et al., 2016; Yang et al., 2017). 

Therefore, UFP could regulate the level of miRs for Notch inhibition (Li et al., 2017).

Nevertheless, the mechanism underlying endothelial proliferation and vascular regeneration 

remains elusive due to the demand of high spatial and temporal resolution of real-time 3-D 

imaging. Scanning methods such as confocal or multi-photon microscopy are able to provide 

sufficient lateral resolution to reveal the biophysical dynamics at the cellular level, but are 

confined to sequential raster scanning over the specimen. For instance, confocal microscopy 

allows for capturing angiogenic sprouts at a particular time but is limited in time-lapse 

imaging due to rapid photo-bleaching (Gerhardt et al., 2003; Hogan et al., 2009; Nguyen et 
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al., 2013). However, selective-plane illumination and concurrent detection in a 2D plane 

enable to implement time-lapse visualization of regenerating endothelial vasculature with 

the minimal photo-bleaching and photo-toxicity. The signal-to-noise ratio and axial 

resolution of LSFM are also improved due to planar illumination; otherwise, the focus of 

detection gradually degrades in the deep tissue. Therefore, the shorter exposure time, the 

deeper penetration depth, and the higher spatiotemporal resolution allow for time-lapse 

imaging of vascular regeneration and cellular dynamics in live zebrafish embryos, and 

LSFM provides the basis for revealing the mechanisms underlying cardiovascular 

regeneration and development.

2.2. Shear stress modulation of vascular dynamics and regeneration—
Hemodynamic blood flow exerts shear stress, cyclic stretch, and hydrostatic pressure on the 

endothelium (Ando and Yamamoto, 2011; Li et al., 2005). While cyclic stretch plays an 

important role in maintaining endothelial function, it is well recognized that hemodynamic 

shear forces mechanically and metabolically modulate vascular endothelial function (Cheng 

et al., 2007; Lee et al., 2015; Li et al., 2015). A complex flow profile develops at the arterial 

bifurcations, where flow separation and migrating stagnation points create disturbed flow 

(DF), mediating the focal and eccentric nature of atherosclerotic lesions (Chiu et al., 1998; 

Dewey Jr et al., 1981; Ding et al., 2013; Frangos et al., 1996; Hwang et al., 2003a; Hwang et 

al., 2003b; Surapisitchat et al., 2001). A recent study examined the role of laminar shear 

stress in driving expression of vascular endothelial growth factor (VEGF) and endothelial 

nitric oxide synthase (eNOS)-mediated Protein Kinase C isoform epsilon (PKCε) to 

modulate endothelial cell (EC) proliferation and lumen formation (Koh et al., 2009; Rask-

Madsen and King, 2008). Unidirectional pulsatile (PSS) and oscillatory shear stress (OSS) 

differentially modulate the canonical Wnt/β-catenin pathway to modulate vascular 

development and regeneration (Dejana, 2010; Li et al., 2014), while also being implicated in 

the differentiation of vascular progenitors during angiogenesis (Boselli et al., 2015; Roman 

and Pekkan, 2012).

Endothelial glycolysis is mechano-responsive (Suarez and Rubio, 1991), and ECs are highly 

glycolytic (De Bock et al., 2013a). ECs further increase the level of glycolytic flux when 

switching from quiescence to a proliferative state, while the glycolytic enzyme, 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), localizes in lamellipodia 

(De Bock et al., 2013b). As a critical regulator of glycolysis, PFKFB3 further involves 

lamellipodia/filopodia extension during vessel formation (De Bock et al., 2013a; De Bock et 

al., 2013b). Laminar shear stress modulates the expression of Krüppel-like factor 2 (KLF2) 

to suppress PFKFB3-mediated endothelial glycolysis and vessel sprouting (Doddaballapur et 

al., 2015), whereas disturbed flow mitigates mitochondrial respiration and increases basal 

glycolysis and glycolytic capacity (Wu et al., 2017).

Our recent study with zebrafish supports the notion that PSS and OSS differentially 

modulate VEGFR-PKCε signaling to induce PFKFB3-mediated glycolytic metabolites for 

vascular repair (Baek et al., 2018a). Use of embryonic zebrafish allowed for genetic 

manipulation of blood viscosity to alter the level of endothelial wall shear stress (Galloway 

et al., 2005) to modulate the PKCε-PFKFB3 pathway in vivo (Fig. 6A). Gata1a morpholino 

oligonucleotide (MO) micro-injection prevented erythrocyte production, thereby reducing 
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the level of viscosity-mediated shear stress compared to control (Fig. 6Ai–ii). (Kulkeaw and 

Sugiyama, 2012; Vermot et al., 2009). On the other hand, EPO mRNA micro-injection 

resulted in elevated erythrocytosis as a means of augmenting viscosity-mediated wall shear 

stress (Fig. 6Aiii) (Chu et al., 2007). In the transgenic Tg(flk1:GFP) zebrafish model of tail 

regeneration, control p53 MO injection demonstrated vascular regeneration, as visualized by 

a closed loop between the DA and the DLAV at 3 dpa. In contrast, suppressing the level of 

PKCε with MO injection developed aberrant vascular regeneration. Furthermore, micro-

injection of Gata1a MO delayed vascular regeneration from 3 dpa to 5 dpa. The micro-

injection of cardiac troponin T2 (Tnnt2) MO to arrest myocardial contraction and 

subsequent blood flow further attenuated vascular regeneration at 3 dpa, while embryos 

failed to thrive at 5 dpa. On the other hand, erythropoietin (EPO) mRNA micro-injection 

promoted tail regeneration. As a corollary, PKCε mRNA restored vascular regeneration in 

Gata1a MO injected embryos at 3 and 5 dpa (Fig. 6B).

In reference to our metabolomic analysis via gas chromatography time-of-flight mass 

spectrometry (GC-TOF), we elucidated that shear stress regulates glycolytic metabolites, 

including glucose (C6H12O6), fructose (C6H12O6), and dihydroxyacetone (C3H6O3, DHA) 

via PFKFB3. In the zebrafish tail amputation model, exposure to DHA increased the 

proportion of zebrafish embryos with complete regeneration in the control group, whereas it 

rescued vascular repair in the absence of PKCε (Fig. 7). Our findings support that flow-

responsive PKCε modulates endothelial glycolytic metabolites that are implicated in 

vascular regeneration. The advent of high-throughput “omics” approaches, including 

epigenomics, transcriptomics, miRnomics, proteomics, and metabolomics (Simmons et al., 

2016), has provided new mechanotransduction strategies to discover biomarkers with 

therapeutic targets.

Current scanning methods are limited by their sequential point-scanning strategy in 2D 

planes, being insufficient to elucidate hemodynamic shear forces during cardiac 

morphogenesis. Unlike conventional bright-field microscopy, LSFM applies orthogonal 

illumination and detection, enabling investigators to selectively localize mechano-

transduction to the endocardial endothelial lining within an ultra-thin plane of the sample. 

Due to the rapid multi-channel detection at the single cellular level, LSFM allows for the 

simultaneous imaging of the blood flow at the injured site and 3D structure of the vessels, 

elucidating hemodynamics with underlying the initiation of endocardial trabeculation during 

cardiac development (Lee et al., 2016). In conclusion, LSFM allows for rapid tracking of 

fluorescently labeled targets in multiple channels, thereby providing a computational basis to 

quantify blood flow and hemodynamic shear forces.

Conclusion and Outlook

Zebrafish have been utilized as an emerging developmental model due to a conserved 

physiology and anatomy with mammals. Its optical transparency at the embryonic stage 

facilitates direct observation of organogenesis including cardiovascular morphogenesis. 

While zebrafish comprise a well-established genetic system for studying cardiovascular 

development and disease, zebrafish demonstrate unique regenerative capacity in response to 

anatomical or chemotherapy-induced injury. Both high spatiotemporal resolution and deep 
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tissue penetration are required to tracking cardiovascular dynamics, such as the regenerating 

ventricular ultrastructure. Therefore, LSFM is suitable to monitor spatiotemporal variations 

of the regenerating cardiovascular system with minimal photo-bleaching /-toxicity, and is 

also a promising approach to track single blood cells as well as estimating the parabolic 

velocity distribution of blood flow in the embryonic zebrafish model. In addition, parallel 

advances in deep learning and virtual reality may lead us to more precisely elucidating 

cardiovascular architecture and function in future studies. Developing a novel convolutional 

or recurrent neural network for automatic segmentation will benefit image post-processing 

procedures that are otherwise limited in accuracy and efficiency by manual segmentation in 

the setting of large data sets (Lawrence et al., 1997; Shelhamer et al., 2017; Zheng et al., 

2015). The study of interactive virtual reality establishes an efficient and robust framework 

for creating a user-directed microenvironment in which we are able to unravel 

developmental cardiac mechanics and physiology with high spatiotemporal resolution (Ding 

et al., 2017a; Eliceiri et al., 2012; Peng et al., 2010; Peng et al., 2014). In this review, we 

address our zebrafish model of injury with a mechanistic approach to understand 

cardiovascular regeneration. Furthermore, our findings with zebrafish combined with multi-

scale light-sheet imaging demonstrate the advantages of light-sheet imaging, highlighting its 

role as a novel imaging strategy that can illuminate the mechanisms of cardiovascular injury 

and repair and further advance the field.
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Figure 1. Schematic diagram and performance of the fluorescent light-sheet microscope
(A) Four collimated laser sources were focused through a cylindrical lens and transmitted by 

illumination lens (IL) to generate a light-sheet sectioning the sample. The objective lens 

(DL) was positioned orthogonally to the illumination path for fluorescence detection. In 

addition, the dual-channel detection was achieved using a dichroic mirror and filter sets at 

the detection arm. The focus of detection needs to be exactly conjugated to the illuminated 

plane. (B1) The formation of the light-sheet from the illumination objectives and detected by 

detection objectives. (B2) Top view of the light-sheet demonstrated orthogonal relation 

between IL and DL. (B3) Four laser wavelengths offer flexibility for different fluorophores. 

M: mirror; DC: dichroic mirror; BE: beam expander; CL: cylindrical lens; SL: scan lens; 

TL: tube lens; FW: filter wheel; IL: illumination lens; DL: detection lens. (B4) The two 

orthogonal cameras allowed for the capability of simultaneous dual-channel detection. (C1) 
The axial confinement of the light-sheet was used for sectioning the (i) embryonic zebrafish, 

(ii) adult zebrafish, and (iii) neonatal mouse hearts. LS: light-sheet. (C2) The changes in 

confocal region corresponded to the area available for light-sheet sectioning. The double-

headed arrow line indicates the confocal region, in which the light-sheet is considered to be 

uniform. The scale bars are 100 μm in length for the sub-images in (i), (ii) and (iii). (C3) 
Imaging a 400 nm fluorescent bead (sub-resolution point source) was compared with the (i) 

5 μm LS detected by the 20x/0.5 DL, (ii) 9 μm LS by 10x/0.3 DL, (iii) 18 μm LS by 4x/0.13 

DL and (iv) 18 μm LS by 4x/0.13 DL, with resolution enhancement applied.
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Figure 2. Light-sheet imaging to analyze doxorubicin-induced cardiac injury and regeneration
Adult zebrafish hearts were isolated at days 3, 30, 60 following intraperitoneal treatment 

with doxorubicin or control vehicle. (A) Control zebrafish hearts exhibited a preserved 

architecture during the study period. Treatment of doxorubicin induced a dramatic cardiac 

remodeling leading to an acute reduction in size at day 3, followed by a gradual increase at 

day 30, and normalization at day 60. (B) Total heart, myocardial, and endocardial volumes 

were quantitatively compared to control values demonstrating the regeneration process 

following doxorubicin-induced injury (** P < 0.01 vs control). Doxo: doxorubicin. Scale 

bar: 200 μm.
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Figure 3. 3D rendering of the adult zebrafish heart
(A) 3-D rendering combined with automated segmentation method provided anatomic 

structures of the intact atrium, ventricle, and bulbous arteriosus in adult zebrafish heart. (B) 
Precise assessment of zebrafish heart with automated segmentation established a cross-

section through the atrium, ventricle, and bulbous arteriosus and demonstrated 2 leaflets of 

the AV valve (red) and of the VB valve (orange). (C) Ventricular inflow (dotted yellow line) 

and outflow path (solid yellow line) were estimated with computation of the angle between 

the atrioventricular (AV) valves and ventricular-bulbar (VB) valves. Scale bar: 100 μm.
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Figure 4. Light-sheet imaging of vascular regeneration and circulating erythrocytes in response 
to tail amputation
(A) An inverted fluorescence image demonstrated the vasculature (green) and amputation 

region (dashed line) of a transgenic Tg(flk1:GFP; Gata1:Ds-Red) zebrafish embryo at 3 dpf. 

ISV: intersegmental vessel; DLAV: dorsal longitudinal anastomotic vessel; SIV: subintestinal 

vessel; PCV: posterior cardinal vein; DA: dorsal aorta. (B) LSFM imaging of the 

erythrocytes (red) adjacent to the site of amputation and regeneration. The dashed white box 

indicated locations of higher power images in the subsequent panels (C–E). An individual 

erythrocyte (red) in relation to the vascular endothelial layer (green) was tracked under 

LSFM at 100 fps. The travel distance and net velocity of each erythrocyte could be 

measured from the corresponding location difference among images (C), (D) and (E). The 

complete (F) and incomplete (G) vascular regeneration between DLAV and DA were 

revealed in separate zebrafish embryos at 3 days after tail amputation. Scale bars: 25 μm.
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Figure 5. Ambient UFP exposure impaired Notch-mediated vascular regeneration
Transgenic Tg(tp1:GFP; flk1:mCherry) zebrafish embryos revealed Notch activity in the 

vasculature, as indicated by the overlapped yellow color, corroborating the role of 

endothelial Notch activity in the site of vascular repair. The control group developed 

vascular regeneration at 3 days post tail amputation (dpa). UFP or ADAM 10 inhibitor 

(GI254023X) treatment attenuated endothelial Notch activity in the site of injury and 

impaired vascular regeneration. Injection of dominant negative (DN)-Notch1b mRNA 

further attenuated Notch signaling-mediated vascular regeneration. As a corollary, NICD 
mRNA injection upregulated Notch activity and rescued UFP-, ADAM10 inhibitor- or DN-
Notch1b mRNA-impaired vascular regeneration.
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Figure 6. Shear stress is implicated in PKCε-dependent vascular repair
(A) Blood viscosity of the embryonic zebrafish was genetically manipulated to alter the level 

of endothelial wall shear stress. Compared to control embryos, micro-injection of Gata1a 
MO reduced the level of erythropoiesis and consequent wall shear stress, whereas 

erythropoietin (EPO) mRNA resulted in the opposite effect. (B) The control and p53 MO-

injected fish developed vascular repair at 3 dpa (yellow arrows). Reduction of viscosity-

mediated shear stress with Gata1a MO delayed vascular repair from 3 dpa to 5 dpa. The 

presence of Tnnt2 MO to arrest myocardial contractility led impaired vascular repair at 3 

dpa, while embryos failed to thrive at 5 dpa (red arrow). On the other hand, increased level 

of erythropoiesis with EPO mRNA promoted vascular regeneration. Silencing PKCε with 

MO attenuated vascular repair at both 3 and 5 dpa, whereas upregulation of PKCε mRNA 

restored vascular impairment in Gata1a MO injected embryos.
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Figure 7. Glycolytic metabolite, dihydroxyacetone (DHA) promoted vascular regeneration
Transgenic Tg(flk1:GFP) embryos injected with control P53 MO or PKCε MO were treated 

with or without DHA at 1mg/mL for 3 days after initial vascular injury. Micro-injection of 

PKCε MO resulted in impaired vascular regeneration (red arrow), whereas DHA treatment 

reversed the effect of PKCε MO and promoted vascular regeneration (yellow arrows).
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