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ABSTRACT

Laser-guide-star-based multi-conjugate adaptive optics (MCAO) systems require natural guide-stars to measure
tilt and tilt-anisoplanatism modes.

This paper focuses on the parameter optimisation of sub-optimal integrator-based controllers using a single
and a double integrator (baseline option) to drive the low-order loop of NFIRAOS, the 1st light MCAO system
for the Thirty-Meter Telescope. The minimum-variance (MV) controller is outlined, against which integrators
are compared.

Simulations using ∼500 asterisms considered in sky-coverage simulations for the TMT show that the double
integrator gives competitive results thoughout the range of asterisms and magnitudes considered. It is shown that
using an optimal modal gain integrator can further improve the performance with respect to using an averaged
gain for all of part of the modes. However, it is outperformed by the MV controller, in particular for asterisms
with relatively dim stars (lower bound is magnitude 22 in H-band) requiring low temporal frame-rates (as low
as 16Hz) to integrate more flux. Over all the cases tested, an average of ∼100 nm rms (23 nm rms median)
improvement can be achieved with the MV. The MV further increases by 15% the probability of working below
the 50th-percentile residual of the double integrator.

Keywords: Minimum-variance reconstruction, tilt anisoplanatism, Kalman filtering, Atmospheric tomography

1. INTRODUCTION

Adaptive Optics (AO) systems are used to recover the angular resolution of ground-based telescopes by correcting
in real-time the wave-front disturbances introduced during propagation across the Earth’s atmosphere.1, 2 The
classical concept with one wave-front sensor (WFS) and one deformable mirror (DM) is limited by angular
anisoplanatism, thus only providing correction over a small field-of-view.

In order to correct the atmosphere over a larger patch, tomography or volumetric estimation of the wave-
front above the observatory is required. For that, several wave-front sensors (WFS) are used to measure the
atmospheric disturbances in different directions. Those measurements are then utilised to estimate the three-
dimensional wave-front phase distortions on a discrete number of layers in the atmosphere based on a priori
spatial second-order moments of the of the wave-front phase and measurement noise. Such algorithms are called
static minimum-variance (MV) since they minimise the residual pupil-integrated phase variance – the same is
to say they optimise the Strehl-ratio3 – and do not take any temporal dynamics into account. Finally, for a
multi-conjugate system (MCAO) the phase estimates are projected onto several (> 1) deformable-mirrors (DM)
conjugated to different ranges, thus providing a correction across a much larger field.4

However, it has soon been realised that only using natural guide-stars to drive the AO systems would reach
very small portions of the available sky, even on future generation of 30 to 40m-class Extremely Large Telescopes
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(ELT). It became clear that laser guide stars (LGSs) will be required to achieve scientifically useful levels of
sky-coverage for astronomical MCAO systems.

Unlike natural guide-star MCAO, laser-tomography MCAO suffers from tilt anisoplanatism. This so occurs
because single LGS cannot be used to measure wave-front tilt since, being launched from the ground and
backscattered high in the atmosphere, the precise position of the laser beacon on the sky is uncertain – an effect
due to the upwards and downwards beam propagating across the same atmospheric path. Range variations make
the absolute focus measurement impossible to obtained with LGS, but this case is not dealt with here.

With multiple LGS, tilt anisoplanatism arises from a combination of a few modal components of the atmo-
spheric profile. These components are a combination of quadratic wave-front aberrations that produce field-
dependent tip/tilt (TT), which cannot be measured by the LGS WFS. Throughout this document, NGS modes
refers to the 5 modes comprising TT and TT-anisoplanatism (TTA), the latter being also called plate-scale
modes, in analogy to deformations given by the solutions to classical plate equations.

TMT 1st-light facility Narrow-Field Infrared Adaptive Optics System

The Thirty-Meter Telescope (TMT) 1st-light facility Narrow-Field Infrared Adaptive Optics System (NFI-
RAOS)5, 6 is a MCAO system with two deformable mirrors (DMs) conjugated to the range of 0 km and 11.2
km, respectively, an asterism of 6 sodium laser guide stars arranged in a pentagon with a 35” radius plus one
more on-axis, and up to three NIR (J and H band) on-instrument natural guide star low-order wavefront sensors
(OIWFS).

High sky-coverage goals will require considerably dim NGS down to magnitude 22 in H-band, which implies
increasing the exposure times to integrate sufficient light flux. Thus, the NGS loops may run at low frame-rates
even with the light-gathering capacity of the ELTs. NFIRAOS is expected to run at [20-800] Hz with 90 Hz
median to meet the tight sky-coverage specification of 50% at the galactic pole.7 The overall control scheme
adopted here is split tomography, in which the laser and natural guide star loops are driven independently,8

though a better performing jointly-optimal scheme has been proposed in [Gilles et al, 2009].9

This paper revisits the tilt-anisoplanatism principles inSect. 2 and focuses on the optimisation of the
integrator-based controller parameters in Sect. 3 where a optimal modal gain integrator is proposed. The
MV controller is outlined in Sect. 4. Numerical results are presented in Sect. 5.

2. LINEAR MODELLING OF TT/TTA MODES

2.1 TT/TTA-modes geometry

Most of the error in the TTA modes can be corrected for by applying a combination of three quadratic Zernike
modes with proportional amplitudes in two conjugate planes.10 For a two DM MCAO system like the TMT
NFIRAOS, 5 plate scale modes carry over 80% of the total error variance due to tilt anisoplanatism. These are the
global TT modes and the three dominant tilt anisoplanatism modes, a combination of focus and astigmatisms,
that must be measured using the low order NGS WFS.

The wave-front that cannot be seen by the LGS WFS takes the form

ϕ(ρ, θ, t) =

6∑

j=2

αj(t)Zj

( ρ

R

)
+

6∑

j=4

βj(t)Zj

(
ρ+ θhc

Rh

)
, (1)

where αj and βj are the Zernike coefficients (following the ordering of Noll11) in the lower and upper DM-
conjugate planes. For NFIRAOS the conjugate range of the upper DM in kilometres is hc =11.2 Km, R is the
radius of the telescope and Rh the radius of the meta-pupil at h = hc.

The coefficients βj can be worked out provided ϕ(ρ, θ, t) is such that the resultant only contains field-
dependent TT to which the LGS-WFS are insensitive. The relation is given by βj = −r2l αj , with rl given
by the ratio of the cone-intersected pupil and meta-pupil in the DM11.2 conjugate range is (see Fig. 1 for a
visual depiction)

rl = rn

(
1− hc

hNa

)
, (2)
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where rc � 1 − hc/hNa is the shrinking factor of the cone-intersected meta-pupil with respect to the cylinder-
intersected meta-pupil at 11.2km, translating the cone effect for a DM conjugated to range hc and an LGS at
range hNa (see Fig. 1 ) and

rn � D

D + FoV × hc × 1000
, (3)

normalises the upper modal coefficient to the particular choice of underlying pupils over which the modes are
defined, with FoV the field-of-view in radians.

The wave-front ϕ is defined over 2 layers in the volume. Let

ϕ(ρ, θ, t) �
[

ϕ0

ϕh

]
(ρ, θ, t), (4)

be a concatenation of phase coefficients of the decomposition of the WF phase at the DM-conjugate altitudes
onto an orthonormalised Zernike basis.11 For the NGS modes model, only modes Z2···6 are used that correspond
to the TT and the quadratic modes of Eq. (1), i.e. ϕk is a 10-coefficient column vector .

Expressing the Zernike polynomials using cartesian coordinates the 5 NGS modes are hence defined

xtip
k = 2(x0, 0); (5a)

xtilt
k = 2(0, y0); (5b)

xΔF
k = 2

√
3([x2

0 + y20 ];−[x2
c + y2c ]/r

2
l ); (5c)

xΔA0

k =
√
6([x2

0 − y20 ];−[x2
c − y2c ]/r

2
l ); (5d)

xΔA45

k = 2
√
6([x0y0];−[xcyc]/r

2
l ); (5e)

where x0, y0 and xc, yc are the actuator coordinates on the ground and upper DMs, normalised by the telescope
radius R. The notation ΔF is used to denote differential focus, resulting in radial amplification in the image-plane
whereas ΔA0 and ΔA45 is used for two differential amplification modes.

The relation of Zernike polynomials’ coefficients to NGS mode coefficients is straightforward: the projection
matrix of the 5 NGS modes (TT+TTA) onto the quadratic modes is given by (in matrix format)

�ϕtur
k � PM2Z�χk, (6)

where PM2Z ∈ R
10×5 translates 5 NGS mode coefficients to their layered version expressed in Zernike polynomials.

The global tip/tilt mode vectors xtip and xtilt have the tip/tilt Zernike modes applied to the ground DM only.

2.2 Measurement model

In order to exactly estimate the TT and the quadratic modes that produce field-dependent TT on the LGS
sensing directions, 3 independent measurements of TT in the field are required.10 In the particular case of
NFIRAOS, there are two single-aperture TT WFS and a 2 × 2 sub-aperture WFS for a third measurement of
TT, defocus and two astigmatisms (TTFA).

Let the resulting aperture-plane wave-front (WF) in direction θ

φtur
k = Pθϕ

tur
k , (7)

where Pθ is a projection matrix of Zernike polynomials on the intersected meta-pupils in DM-conjugated planes
with a pupil-sized cylinder of diameter D0 in the directions θ of the NGS.12

Since three NGS are required to estimate 5 NGS modes, matrix Pθ is subdivided into 3 horizontal slabs for
the three OIWFS and two vertical slabs, for the two DM-conjugate altitudes.

Assume the following measurement model
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Figure 1. The tilt anisoplanatism modes each contain a quadratic Zernike polynomial with proportional amplitudes on
the ground and upper DMs, whose combined effect produces pure tip/tilt in the LGS wavefront sensors (thus not sensed),
but contains field dependent tip/tilt (plate scale effect) and quadratic wavefront aberrations across the science field and
NGS patrol field.

sk(θ) =

∫ kTs

(k−1)Ts

G
(
Pθϕ(τ)

tur − Pθϕ(τ)
cor

)
dτ + ηk (8a)

= GPθ

(
ϕ̄tur
k − ϕ̄cor

k

)
+ ηk (8b)

= GPθϕ̄
res
k + ηk, (8c)

where G is the wave-front-to-measurements matrix and ’tur’, ’cor’ and ’res’ stand respectively for turbulent,
correction and residual phase and Ts is the OIWFS integration period. Ση is the noise covariance matrix expressed
in measurement space, i.e. a 12x12 diagonal matrix. A bar atop the wave-front phase vectors represents average
over time.

For the Hartmann-Shack WFS, sk are the WFS slopes.

The correction phase applied by the DM is ϕ̄cor
k = Nuk−1 with N the commands-to-phase matrix and ηk is a

zero-mean Gaussian-distributed spectrally white noise with η ∼ N (0,Ση).

The modal matrix G translates modal coefficients of TT, TT and TTFA modes into average slopes over the
illuminated sub-region of each sub-aperture. It is thus a contatenation of three phase-to-slopes matrices for each
individual OIWFS.

Figure 2 depicts schematically how the measurements are acquired in the simulation. The vector φres(ρ, t) ∈
�5×1 has the coefficients of the first (piston-removed) Zernike polynomials. Vector sk ∈ �12×1 has the averaged
slopes over each OIWFS sub-aperture and over the integration time Ts.
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Figure 2. Block diagram of the 3 OIWFS with additive measurement noise (photon +read-out). Different coloured lines
are for potentially different sampling rates. The upwards pointing arrow is used for a zoh up-sampler of factors {1, · · · , 40}.
Solid-lines are used for continuous-time variables whereas dashed-lines are used for discrete-time variables.

Define
P� � PθPM2Z. (9)

the projection of NGS modes onto TT and quadratic Zernike polynomials, the modes to be measured by the 3
OIWFSs. Equation (8) can be re-written as follows

sk(θ) = G
(
P�χ̄tur

k − P�χ̄cor
k

)
+ ηk, (10)

where the NGS modes are given by χ̄k � P †
M2Zϕ̄k with P †

M2Z the generalised inverse of matrix PM2Z in Eq. (6).

2.3 Noise model

In the following, the noise model detailed in13 is used. It is assumed that spots are diffraction limited. Therefore,
these equations apply for a Nyquist-sampled spot, i.e. with 2× 2 pixels, by other words a quadrant detector.

The noise added to each sub-aperture measurement is given by (in angle rms units)

ση =
θb

SNR
, (11)

where θb is the effective spot size of the sub-aperture, and SNR is the signal-to-noise ratio of a single sub-aperture.
For a quadrant detector, the SNR is given by

SNR =
Np√

Np + 4Nb + 4σ2
e

, (12)

where Np is the number of photo-detection events per sub-aperture, Nb is the number of background photo-
detection events per sub-aperture, and σe is the rms detector read noise per pixel.

In the IR (H band), the NGS images are assumed to contain a diffraction-limited core, for which case the
effective spot size is given by

θb =
3πλ

√
Nsa

16D0
, (13)

where Nsa is the total number of sub-apertures for the NGS WFS. The 2× 2 NGS WFS is therefore noisier than
any of the two single sub-aperture NGS WFS. Note θb is twice that of the latter, since Nsa is 4 instead of 1 and
that the number of photo-detections per sub-aperture is also cut by a factor of 4.
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Figure 3. Left: Measurement noise error (photon-noise + read-out noise). Solid-lines: single sub-aperture OIWFS,
dashed-lines: 2x2 TTF OIWFS. The noise ratio in rms units between the 2 × 2 and the single sub-aperture OIWFS is
ση,2×2/ση,1×1 ∈ {4.04, · · · , 7.96} for fs ∈ {20, · · · , 800}Hz and Np ∈ {5× 102, · · · , 5× 106}ph/m2/s.
Right: The read-out noise is σe = {2.99 · · · 3.69} for fs = {20 · · · 800}Hz.

3. OPTIMAL MODAL GAIN INTEGRATORS

The current NFIRAOS baseline controller for the NGS modes is a dual integrator-based controller with a lead
filter.14, 15 When using a sub-optimal integrator-based controller, the TT/TTA modes are estimated from the
OIWFS measurements using a noise-weighted least-squares reconstructor. Using the measurement equation of
Eq. (10) the noise-weighted least-squares reconstructor is given by

Ww =
(
PT
�G

TΣ−1
η GP�

)−1
PT
�G

TΣ−1
η , (14)

with noise propagation expressed in the NGS modes is

σ2
NP =

1

5
trace

{
WwΣηW

T
w

}
. (15)

The diagonal entries of WwΣηW
T
w are asterism-dependent since, depending on the star locations in the field,

plate-scale propagates differently onto the TT modes. Thus, one is led to a modal gain controller optimisation
where a set of optimal parameters is used mode-per-mode.

3.1 Loop temporal dynamics in Laplace domain

The open-loop transfer function for the double integrator (type-II) is defined as

hol(f) = hwfshdachlaghleadh
2
int, (16)

where the DM is considered to have a unitary transfer function, even when the woofer-tweeter scheme is used16

whereas the partial loop seen by the noise

hsys(f) = hdachlaghleadh
2
int = hol/hwfs, (17)

with the double integrator, lead filter, WFS, digital-to-analog converter and lag being given respectively by

h2
int(f) = g

(
1

1− e−2πfTs

)2

, (18a)
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hlead(f) =
1 + 2πfTl

1 + 2πfaTl
, Tl =

1

2πfc
√
a
, (18b)

where fc is the frequency for which the |hol||f=fc
= 1.

hwfs = hdac =
1− e−2πfTs

2πfTs
, (18c)

hlag = e−2πfTlag , (18d)

with Tlag = 1ms. For the single integrator, drop the square in Eq. (18a) and plug final result in Eq. (16).

The best set of parameters minimises the error function

(g∗, T ∗
l , a

∗) = argmin
g,Tl,a

{
ε2i (g, Tl, a)

}
, (19)

where

ε2i (g, Tl, a) =

∫ 1/(2Ts)

−1/(2Ts)

∣∣∣∣
1

1 + hol(f, g, Tl, a)

∣∣∣∣
2

PSDNGS,i(f) +

∣∣∣∣
hsys(f, g, Tl, a)

1 + hol(f, g, Tl, a)

∣∣∣∣
2

PSDη,i(f)df, (20)

is the residual error variance and PSDNGS,i(f) the temporal power-spectral density of the NGS modes and

PSDη,i(f) the measurement noise expressed on each mode, such that the one-sided integral
∫ 0.5T−1

s

0
PSDη,i(f) =

σ2
NP,i, ∀i ∈ {2, · · · , 6}, where σ2

NP,i are the diagonal entries of the bracketed matrix in (15) .

3.2 Parameter set optimisation

In practice, the optimal gain for the type-I is found by starting with a small gain and increase it until ε2(g)
reaches the global minimum, which is know to exist since the residual signal decreases monotonically with the
gain and the noise propagation increases monotonically with the gain.

The set (g∗, T ∗
l , a

∗) for the type-II can be found using two strategies: a) a constrained version in algorithm
1 and an unconstrained version in algorithm 2 where the optimal parameter set is found by dichotomy i.e. by
building a data-cube of values of ε2(g, Tl, a) and picking the set (g, Tl, a) that minimises the merit function.

Algorithm 1: Constrained optimisation of the type-II controller.

Input: Initial gain guess, Ts, PSDNGS,i(f) , PSDη,i(f), ε
2
0 = ∞

while ε2n−1 > ε2n and σ2
NP,i ≤ 1 do

1: g = 1.01× g;
2: Compute phase margin PM = ∠ghol and cross-frequency fc;
3: φd = 45− PM ;
4: a = (1 − sin(φd))/(1 + sin(φd));
5: Tl = 2πfc

√
a;

6: hlead =
1+2πfTl

1−2πfTl

√
a;

7: Compute ε2n;
end
Output: (g∗, T ∗

l , a
∗, ε2i )

To better suit discrete-time implementation on the RTC, a discrete version of hlead is given by hlead(z) =
(C0 + z−1C1)/(1 + D1z

−1), with C0 = (1 + 2Tl/Ts)/(1 + 2Tla/Ts), C1 = (1 − 2Tl/Ts)/(1 + 2Tla/Ts), and
D1 = (1− 2Tla/Ts)/(1 + 2Tla/Ts) using bilinear approximation.
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Algorithm 2: Unconstrained optimisation of the type-II controller.

Input: Initial guess set (g, Tl, a),Ts, PSDNGS,i(f), PSDη,i(f)
forall (g, Tl, a) do

1: Compute ε2 ;
2: Compute hlead as in Eq. (18b) ;
3: Find PM = ∠hol(g, Tl, a) ≤ 45o and σ2

NP,i ≤ 1 ;
4: Index the best overall case;

end
Output: (g∗, T ∗

l , a
∗, ε2i )

4. MINIMUM-VARIANCE CONTROLLER

4.1 Minimisation of the pupil-integrated residual phase variance

Minimising the variance of φres results in the maximisation of the Strehl-ratio (SR)3 leading to the continuous-
time criterion

Jc (u) � lim
τ→+∞

1

τ

∫ τ

0

‖φres (t)‖2 dt = lim
τ→+∞

1

τ

∫ τ

0

∥∥φtur (t)− φcor (t)
∥∥2 dt, (21)

where the residual phase is the difference between the turbulent and correction phases, φres(t) = φtur(t)− φcor(t)
in the direction of the science targets.

Using the LQG formulation,17 the optimal negative state-feedback controller has the form

uopt
k = Fϕ ̂̄ϕk+1|k, (22)

where ϕ̂k+1|k is the conditional mean of the disturbance phase to be estimated by a Kalman filter given the
set of current and past measurements χk···0 and Fϕ is a fitting operator that optimises the correction in the
β-directions where are located the science-targets. Since no temporal DM-dynamics are considered, the best

command is given by uk =
(
NT〈PT

β Pβ〉βN
)†

NT〈PβP
T
β 〉β ̂̄ϕk+1|k where 〈· · ·〉 represents averaging over a discrete

number of directions that sample the science field. With the DM commanded directly in Zernike polynomials,
i.e. N is the identity matrix, and noting the phase is defined at the DM-conjugate altitudes only, this simplifies
to

uopt
k � ̂̄ϕk+1|k. (23)

4.2 State space model

Define the discrete-time state-space model

xk+1 = Axk + Buk + Γεk (24a)

sk = Cxk +Duk + ηk, (24b)

where the state and the model matrices are a concatenation of discrete-time linear models for each of the modes
(TT /TTA) – Eq. (1). The full model is hence a concatenation of individual models

xk �

⎛

⎜⎜⎜⎜⎝

xtip
k

xtilt
k

xΔF
k

xΔA0

k

xΔA45

k

⎞

⎟⎟⎟⎟⎠
, A �

⎛

⎜⎜⎜⎝

Atip 0 · · · 0
0 Atilt · · · 0
... · · · . . .

...
0 · · · · · · AΔF45

⎞

⎟⎟⎟⎠ , (25a)

B �

⎛

⎜⎜⎜⎝

Btip

Btilt

...
BΔF45

⎞

⎟⎟⎟⎠ , Γ �

⎛

⎜⎜⎜⎝

Γtip 0 · · · 0
0 Γtilt · · · 0
... · · · . . . 0
0 · · · · · · ΓΔF45

⎞

⎟⎟⎟⎠ , (25b)
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C � GP�MI, D � −z−1GP�N, (25c)

where MI is a 0-1 valued matrix that extracts the component χ̄k, i.e. the average TT/TT-A mode over Ts. The
steps to build the individual mode-by-mode model can be found in.17, 18 Note that the NGS modes are (spatially)
statistically independent (so are the quadratic Zernike polynomials for a Kolmogorov turbulence spectrum). The
temporal correlations assuming Taylor’s hypothesis of frozen flow are not considered here.

The Kalman filter is seamlessly obtained from an estimation Riccati equation. Since the metric of interest
in AO is the long exposure integration of light on the science instruments such that TLE >> Ts, the asymptotic
solution can be used with strictly no loss of performance. The optimal gains are computed off-line from

L∞ = AH∞ = AΣ∞CT
(CΣ∞CT +Σw

)−1
, (26)

where Σ∞ is solution of the associated algebraic Riccati equation (ARE). The controller is applied in real-time
by computing, at iteration k

x̂k|k = x̂k|k−1 +H∞
(
sk − Cx̂k|k−1

)
(27a)

x̂k+1|k = Ax̂k|k + Buk (27b)

uk = ̂̄ϕk+1|k, (27c)

where the hat represents conditional mean estimation of the state. The fitting matrix Fϕ is defined in Eq. (23).

Figure 4 shows the block diagram of the recursive implementation of Eq. (27).

Figure 4. MV controller. Matrix P is used here to compute uk from the estimated state xk|k. With respect to Eq. (27),
uk = ̂ϕ̄k+1|k = MIxk|k = Pxk|k, with MI a 0-1 valued matrix that extracts components ̂ϕ̄k+1|k,i from the complete state.

The model of Eq. (25) is built upon the method laid out in17 with the A matrices identified by fitting the first
steps of the temporal auto-correlation function (computed from the temporal PSDs with the Wiener-Khinchine
theorem). Matrices Γ are determined from the solution of discrete-time Lyapunov equations that define the
state covariance noise from the model A and the total disturbance of each mode (computed from the numerical
integration of the temporal PSDs).7

4.3 Use of multiple frame-rates

One could arguably point out that in order to further optimise the NGS loop one should pick one frame-rate per
OIWFS and combine optimally the available information at each time step, as is explained in19 for the NGS/LGS
case.

End-to-end simulations have been setup to test this potential alternative. However the multi-rate controller
consistently failed to provide better results. The reason behind being that, at a given time-step, using the
information for a reduced set of OIWFS measurements renders the reconstruction rank-deficient, for the matrix
GtruncP� where Gtrunc is matrix G with rows corresponding to the inexistent measurements removed, is of rank
< 5 and thus the controller fails to provide a good correction.

Proc. of SPIE Vol. 8447  84471S-9

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/19/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Since the modes are spatially uncorrelated, uncorrelated between layers and temporally considered uncorre-
lated (and furthermore have similar variances and temporal spectra) the estimate produced from a reduced set
using multi-rate can always be outperformed by choosing a common frequency for all the OIWFS and using a
more straightforward single-rate LQG controller.

5. CONTROLLER COMPARISON VIA FREQUENCY AND TIME-DOMAIN
SIMULATIONS

A custom code was written to compare the NGS processing with 5 NGS modes using integrator-based controllers
(single and double integrators) to the MV solution. The disturbances considered consist of TT with 50%
percentile wind-shake on both axis with a total of 18.6 mas rms for a median profile with r0 = 0.186m, L0 = 30m.
The TTA modes were numerically computed using formulae in [Wang et al ]7 with a total of 407 nm rms per
mode. Results are computed assuming the NGS wavelength in J band using an optimal frame-rate computed
on a asterism-per-asterism basis and averaged over 55s of equivalent real-time simulation (excluding the initial
transient period). Noise is computed assuming a Strehl-ratio variation across the 2 arcmin patrol field-of-view
from 0.5 to 0.1 at the edge. Total throughput is 0.3, a rather small value chosen to boost overall noise to
compensate for aliasing and implementation errors that are not in the simulation but are considered in the
full-featured sky-coverage simulations.

Figure 5 shows the residual obtained with the constrained and UNconstrained algorithms for a single mode.
On the right y-axis, the phase margin obtained is roughly 65 deg for all the temporal sampling frequencies tested,
suggesting that imposing a 65 deg phase margin instead of a 45 deg is best in two ways: more stability and less
residual. To reduce the computational burden, the constrained optimisation is used to quickly find a sweet spot
around which a 2D grid of values for a and Tl is tested to further reduce the residual.
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Figure 5. Constrained vs UNconstrained optimisation. In this case, for computational performance purposes, the best
lead parameters where found for the best gain found using algorithm 1.

Using the re-optimisation of the type-II controller parameters as is explained in Fig. 5 results in further 43
nm rms on average (3 nm rms median) improvement with respect to using the constrained optimisation alone. A
further case was compared where the optimal parameter set is found on a mode-per-mode basis or as an averaged
parameter set for the TT and the TTA modes. A small improvement is obtained with 3.6 nm rms (2.4 nm rms
median) for the type-II controller whereas 48 nm rms (15.5 nm rms median) were found for the type-I controller.
The greater differences are particularly appreciated for the noisier cases at low temporal frame-rates.

Figure 6 plots the overall results obtained over 500 asterisms. On the left panel, results are given as a
function of the frame-rate whereas on the right panel the cumulative residuals are plotted. In both cases the
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theoretical residual obtained using transfer functions are also given for comparison. The theoretical residual
consistently under-estimates the actual residual obtained via time-domain simulations, a sign that a transfer-
function approach isn’t fully appropriate to describe a hybrid loop with continuous and discrete phenomena.
The discrepancies are greater at very low temporal rates.

Over all the cases tested, an average of ∼100 nm rms (23 nm rms median) improvement can be achieved.
The MV increases by 15% the probability of working below the 50th-percentile residual of the double integrator
(baseline option). Conversely, for the 50th-percentile, the MV obtains ∼25 nm rms residual against the ∼35 nm
rms of the double integrator, i.e. roughly 25 nm rms improvement in quadrature.
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Figure 6. Performance comparison. Top panel: residuals in nm rms, averaged over all the cases (left) and cumulative
probability (left). Bottom panel: histogram of frame-rates for the 3 controllers. The MV tends to use higher frame-rates,
with a median of 80Hz and average of 113Hz.

6. CONCLUSION

Using end-to-end temporal numerical simulations it has been shown that the optimal modal gain double integrator
is a competitive alternative to the optimal minumum-variance controller since it is conceptually simpler and
relatively straightforward to optimise. Using a more general unconstrained procedure developed here, the double
integrator was further improved by ∼43 nm rms on average (3 nm rms median) with respect to its previous
configuration.

However, the integrator-based controllers cannot reach the same levels of performance as the minimum-
variance controller, in particular when only dim stars are used to probe the NGS modes (requiring low temporal
frame-rates as low as 16Hz). Subtracting the residuals in quadrature, an average improvement of roughly 100 nm
rms (23 nm rms median) was found using the MV with respect to the re-optimised double integrator. The MV
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further increases by 15% the probability of working below the 50th-percentile residual of the double integrator.
This suggests that the sky-coverage can be improved by factors of 10% or more for the median case.

The advantages of the MV are manifold. Although conceptually more complex, it is much faster to compute
off-line, vibration suppression can be easily embedded, supports up-sample of commands to the LGS loop frame-
rate (800Hz for NFIRAOS) and is directly optimised in discrete-time.16

The model will in the future support absolute focus error due to sodium range variations. The authors plan
to compare the controllers using the full featured TMT sky-coverage code using the simulator MAOS ∗.
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