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Materials and Methods 

Animals 

Naive male C57BL/6J (purchased from Sankyo Labo Service Co. Inc., Tokyo, Japan) and c-

Fos::tTA transgenic mice (Mutant Mouse Regional Resource Center, stock number: 031756-MU) 

were obtained as described previously (11, 16). The R26R::H2B-mCherry transgenic mice 

(CDB0204K) have been described previously (29). The progeny for the c-Fos::tTA and c-

Fos::tTA/R26R::H2B-mCherry double transgenic mouse lines were generated using in vitro 

fertilization with eggs from C57BL/6J mice and embryo transfer techniques. These transgenic 

mice were raised on food containing 40 mg kg−1 DOX and maintained on Dox pellets except for 2 

days before the conditioning session. All mice were maintained on a 12 h light/dark cycle at 24°C 

± 3°C and 55% ± 5% humidity, had access to food and water ad libitum, and were housed with 

littermates until surgery. Mice for behavioural analyses were 12–18 weeks old. All procedures 

involving the use of animals were performed in accordance with the guidelines of the National 

Institutes of Health (NIH) and were approved by the Animal Care and Use Committee of the 

University of Toyama and the Institutional Committee for the Care and Use of Experimental 

Animals of Jikei University. 

 

Viral constructs 

The recombinant AAV vectors used were AAV-TRE3G-Cre and AAV-hSyn1-DIO-oChIEF-

Citrine at a 1:10 ratio. The pAAV-hSyn1-DIO-oChIEF-Citrine plasmid was acquired from 

Addgene (Addgene plasmid 50973). For pAAV-TRE3G-Cre preparation, pAAV-TRE3G-CreERT2 

was first constructed by replacement of the PCR-amplified TRE3G-CreERT2 of pLenti-TRE3G-

CreERT2, which has been described previously (18), with primers (sense, 

GCGACGCGTCGAATTCGTCTTCAAGAATTCCTC; antisense, 

CAGGCCGCGGGAAGGAAG) into pAAV-EF1a-DIO-EYFP (donated by Dr K. Deisseroth) at 

the MluI-SacII restriction sites. Then, inverse PCR was performed using the pAAV-TRE3G-

CreERT2 template with primers (sense, GGATCATCCATCCATCACAGTGGC; antisense, 

TTAATCGCCATCTTCCAGCAGGCG) to construct pAAV-TRE3G-Cre. The recombinant AAV 

vectors were produced as described previously (30, 31), and were injected with viral titres of 2.8 

× 1013 vg/mL for AAV9-hSyn1-DIO-oChIEF-Citrine and 1.4 × 1013 vg/mL for AAV9-TRE3G-

Cre. 

 

Drugs and peptides  

Anisomycin (Sigma Aldrich Japan Co., Tokyo, Japan) was dissolved in a minimum quantity 

of HCl, diluted with phosphate buffered saline (PBS), and adjusted to pH 7.4 with NaOH. The Tat-

beclin 1 peptide D-amino acid sequence (RRRQRRKKRGYGGTGFEGDHWIEFTANFVNT; 

synthesized by GenScript through Funakoshi Co., Ltd., Tokyo, Japan) was dissolved in either PBS 

(tat-beclin) or anisomycin solution (anisomycin + tat-beclin). Drugs and peptides were aliquoted 

into single experiment volumes and stored at −80°C. 

 

Surgery  

Mice were 10–12 weeks old at the time of surgery. They were anesthetized with isoflurane, 

given an intraperitoneal injection of pentobarbital solution (80 mg/kg of body weight), and then 

placed in a stereotactic apparatus (Narishige, Tokyo, Japan). Virus (500 nL) was injected at 100 

nL min−1 bilaterally into the AC (−2.7 mm anteroposterior [AP], ±4.4 mm mediolateral [ML], +3.3 

mm dorsoventral [DV]), MGm (−3.1 mm AP, ±1.9 mm ML, +3.5 mm DV), and LA (−1.7 mm 
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AP, ±3.4 mm ML, +4.1 mm DV). After injection, the injection cannula was kept in place for 5 min 

before its withdrawal, then a stainless guide cannula (PlasticsOne, Roanoke, VA, USA) targeting 

the LA was positioned 3.1 mm ventral to the bregma and fixed on the skull with dental cement. A 

dummy cannula (PlasticsOne) with a cap was then inserted into the guide cannula. Mice were 

allowed to recover for at least 7 days in individual home cages before starting the experiments. All 

drug infusions were performed under isoflurane anaesthesia, using an injection cannula with a 0.25 

mm internal diameter (PlasticsOne), and extending beyond the end of the guide cannula by 1 mm. 

Immediately after retrieval, 0.5 µL of drug solution was injected bilaterally (total: 1 µL/mouse) 

into the LA at a flow rate of 0.2 µL/min. Following drug infusion, the injection cannula was left 

for 2 min to allow for drug diffusion. In all experiments, 1 µL of drug solution contained either 

PBS, 125 µg of anisomycin, or 125 µg of anisomycin + 20 µg of tat-beclin. 

 

Auditory fear conditioning (AFC)  

All behavioural sessions were conducted during the light cycle, in a dedicated soundproof 

behavioural room (Yamaha Co., Shizuoka, Japan), described here as Room A. Different chambers 

were used for each AFC session. All chambers were different in shape, lighting pattern, and floor 

texture. After recovery from surgery, a maximum of six mice were moved from their home cages 

on racks in the maintenance room to a soundproof waiting room (Yamaha Co.). Mice were left 

undisturbed for at least 15 min before and after each session, and during the experiment. In each 

session, one mouse in its home cage was moved into Room A. The experiments were performed 

on AAV-injected c-fos-tTA mice, maintained on food containing 40 mg/kg doxycycline (DOX).  

Habituation. Three–four weeks after virus infection, mice were allowed to explore the 

context for 2 min before exposure to a neutral tone (30 sec, 65 dB, 2 kHz). The mice then remained 

for an additional 2.5 min before being returned to their home cages. After the second habituation 

session, DOX was removed and the mice were maintained on normal food. Habituation was done 

with tone presentation to decrease the startle response to any tone presentation in the subsequent 

sessions. 

Conditioning. Two days later, mice were placed in the context for 2 min, and then received 

a single presentation of a conditioned tone (30 sec, 65 dB, 7 kHz), co-terminating with a shock (2 

sec, 0.4 mA); mice remained for 30 sec, and were then returned to their home cages. Six hours 

later, the food was changed to one containing 1000 mg/kg DOX.  

Testing. Mice were allowed to explore the unfamiliar context for 2 min before receiving the 

test tone (30 sec, 65 dB, 7 or 2 kHz), then 30 sec later they were returned to their home cages, 

except in the test 1 condition, where they were subjected to isoflurane anaesthesia and drug 

infusion.  

Optogenetic stimulation (10 and 20 Hz). For the placement of two branch-type optical 

fibres (internal diameter, 0.25 mm) connected to a housing with a cap, mice were anaesthetized 

with approximately 2.0% isoflurane and the optic fibres were inserted into guide cannulas. The tip 

of the optical fibre was targeted 0.5 mm above the LA (DV 3.6 mm from the bregma). Mice with 

the inserted optic fibres were then returned to their home cages and left for at least 2 h. The fibre 

unit-connected mouse was attached to an optical swivel, which was connected to a laser unit (8–

10 mW, 473 nm). The delivery of light was controlled using a schedule stimulator in time-lapse 

mode. The optogenetic session was 9 min in duration, and consisted of three 3 min epochs, with 

the first and third being Light-Off epochs, and the second being a Light-On epoch. During the 

Light-On epoch, mice received optical stimulation (10 or 20 Hz, 15 ms pulse width) for the entire 



 

 

4 

 

3 min. One hour after the end of the session, the fibre was removed from the cannula under 

anaesthesia. 

In vivo LTP induction. Immediately after test 4, mice were placed in a different home cage, 

and after being allowed 2 min for exploration, optical LTP was induced with 10 trains of light 

(each train consisted of 100 pulses of light, 5 ms each, at 100 Hz) at 90 sec inter-train intervals. 

 

Experiments consisting of two overlapping memories (Figs. 3, 4, S5 and S6) 

Habituation, testing, and optogenetic stimulation sessions were as described above. 

Conditioning. After 2 days OFF DOX, mice were fear conditioned to a 7 kHz tone as described 

above. Immediately after the session, mice were put back on food containing 1000 mg/kg DOX. 

One hour later, mice were injected intraperitoneally with doxycycline hyclate (120 mg/kg) to stop 

the expression of oChIEF. Five or twenty-four hours after the 7 kHz fear conditioning, mice were 

exposed to 2 kHz fear conditioning. 

In vivo LTP or LTD induction. Immediately after the test session, optical LTP or LTD was 

applied. Optical LTP was induced with 10 trains of light (each train consisted of 100 pulses of 

light, 5 ms each, at 100 Hz) at 90 sec inter-train intervals. Optical LTD was induced with 900 

pulses of light, 2 ms each, at 1 Hz. 

 

Two tone discrimination experiment (Fig. S1) 

Naive male C57BL/6J mice were used. Mice were exposed to the above-mentioned protocol 

during the habituation and conditioning sessions. One day after conditioning, mice were divided 

into two groups, the first of which was tested with the 7 kHz tone first, and was then tested with 

the 2 kHz tone on the following day, and the second of which was tested with the 2 kHz tone first, 

and was then tested with the 7 kHz tone. During test sessions, mice were allowed to explore the 

unfamiliar context for 2 min before receiving the testing tone, and then 30 sec later, the mice were 

returned to their home cages. 

 

Behavioural analysis 

All experiments were conducted using a video tracking system (Muromachi Kikai, Tokyo, 

Japan) to measure the freezing behaviour of the animals. Freezing was defined as a complete 

absence of movement, except for respiration. Scoring of the duration of the freezing response was 

started after 1 sec of sustained freezing behaviour. All behavioural sessions were digitally recorded 

using Bandicam software (Bandisoft, Seoul, Korea). Animals were excluded when the virus or the 

cannula was not in the target position. 

 

In vivo LTP or LTD induction (Figs. 1 and 4) 

For behavioural experiments, optical LTP was induced with 10 trains of light (each train 

consisted of 100 pulses of light, 5 ms each, at 100 Hz) at 90 sec inter-train intervals. Optical LTD 

was induced with 900 pulses of light, 2 ms each, at 1 Hz. For the LTP occlusion experiment, optical 

LTP was induced with five trains of light (each train consisted of 100 pulses of light, 5 ms each, 

at 100 Hz) at 3 min inter-train intervals. 

 

In vivo recording (Fig. 2 and S3) 

Four weeks after the injection of AAV viral vectors into the MGm and AC, mice were 

anesthetized with pentobarbital and mounted on a stereotaxic frame. An optic fibre was glued to 

the recording tungsten electrode so that the tip of the fibre was 500 μm above the tip of the 
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electrode. The optrode was inserted into the LA, and the optic fibre was connected to a 473 nm 

laser unit. The LTP or LTD induction protocol was identical to that used in the behavioural test. 

After establishing a stable baseline at the recording site for 20 min (stimulation frequency of 0.033 

Hz), in vivo LTP or LTD was optically induced, which was followed by at least 20 min of 0.033 

Hz stimulation. Data were analysed using Clampex 10.7 software. All animals were perfused after 

the recordings, and the positions of the recording sites were verified. 

 

LTP occlusion experiment 

The behavioural part of this experiment was performed as described above. One day after the 

test session and drug infusion, mice were anesthetized and the guide cannulas with dental cement 

were removed from the skull. In vivo recording was then performed as described above. 

 

Immunohistochemistry  

One and a half hours after the desired session, the mice were deeply anesthetized with 

pentobarbital solution and perfused transcardially with PBS (pH 7.4) followed by 4% 

paraformaldehyde in PBS (PFA). The brains were removed, further post-fixed by immersion in 

PFA for 12–18 h at 4°C, equilibrated in 25% sucrose in PBS for 36–48 h at 4°C, and then stored 

at –80°C. Brains were cut into 50 μm coronal sections using a cryostat and transferred to 12-well 

cell culture plates (Corning, NY, USA) containing PBS. After washing with PBS, the floating 

sections were treated with blocking buffer (3% normal donkey serum; S30, Chemicon by EMD 

Millipore, Billerica, MA, USA) in PBS containing 0.2% Triton X-100 and 0.05% tween 20 

(PBST), at room temperature for 1 h. The following primary antibodies were applied in blocking 

buffer at 4°C for 24–36 h: rat anti-GFP (1:1000, Nacalai Tesque, 04404-84, GF090R), rabbit anti-

c-Fos (1:1000, Santa Cruz Biotechnology, sc-7202), goat anti-c-Fos (1:1000, Santa Cruz 

Biotechnology, sc-52-G), and rabbit anti-mCherry (1:1000, Clontech, 632496). After three 10 min 

washes with 0.2% PBST, sections were incubated in blocking buffer at room temperature for 2–3 

h, with the following corresponding secondary antibodies: donkey anti-rat IgG Alexa Fluor 488 

(1:1000, Molecular Probes, A21208), donkey anti-rabbit IgG Alexa Fluor 546 (1:1000, Molecular 

Probes, A10040), or donkey anti-goat IgG Alexa Fluor 647 (1:1000, Molecular Probes, A21447). 

Finally, the sections were treated with DAPI (1 μg/mL, Roche Diagnostics, 10236276001) and 

then washed with 0.2% PBST three times for 10 min each before being mounted onto glass slides 

with ProLong Gold antifade reagent (Invitrogen). 

 

Confocal microscopy and cell counting 

Images were acquired using a Zeiss LSM 780 confocal microscope (Carl Zeiss, Jena, 

Germany) with a 20× plan apochromat objective lens. All acquisition parameters were kept 

constant within each magnification. To quantify the number of each immunoreactive cell type in 

the target regions after collecting z-stacks (approximately 10 optical sections of 10 μm thickness), 

three coronal sections per mouse (n = 4 mice) were manually counted. Overlaps between the GFP+ 

and c-fos+ cells, as well as mCherry+ and c-fos+ cells, were manually counted. Chance level was 

calculated by multiplying % mCherry+ / DAPI by % c-fos+ / DAPI. 

 

Statistics  

Statistical analyses were performed using Prism 6.01 (GraphPad Software, San Diego, CA, 

USA). Data from two groups were compared using two-tailed unpaired Student’s t-tests. Multiple-
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group comparisons were assessed using ANOVA with post hoc tests as described in the 

appropriate figure legend. Quantitative data are presented as mean ± s.e.m. 
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Fig. S1. Mice discriminate between 2 kHz and 7 kHz tones.  

(A) Design for the discrimination experiment. Wild-type mice were exposed to AFC and then 

divided into two groups; the first one received a 7 kHz tone in test 1 and a 2 kHz tone in test 2, 

while the second group received the tones in the opposite order. (B) Freezing levels before and 

during the two tones (n = 11 mice/group). Statistical comparisons were performed using a paired 

t-test. * P < 0.05; ** P < 0.01. Data are represented as mean ± SEM. 
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Fig. S2. 7 kHz and 2 kHz tones activate different neuronal ensembles in the AC.  

(A) Experimental design to label the 7 kHz and 2 kHz-responsive ensembles in the AC with citrine 

and c-Fos antibodies, respectively. (B) Freezing levels before and during 7 kHz and 2 kHz tone 

presentations in test sessions. (C) Representative images showing two different ensembles 

encoding different tones. Arrow heads represent overlapping cells (c-Fos+/citrine+ overlap). Scale 

bars, 50 μm. (D) Left, c-Fos+ neurons activated during test session. Right, c-Fos+/citrine+ overlap 

cell counts (n = 4 mice/group). Statistical comparisons were performed using an unpaired t-test. * 

P < 0.05. Data are represented as mean ± SEM. 
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Fig. S3. In vivo induction of optical LTP and LTD.  

(A) Experimental design. (B) Top, average of in vivo field EPSP slope (normalized to baseline) 

before and after LTP induction (n = 4 mice/group). Bottom, representative traces before (black) 

and after (red) the stimulation protocol. (C) Top, average of in vivo field EPSP slope (normalized 

to baseline) before and after LTD induction (n = 4 mice/group). Bottom, representative traces 

before (black) and after (red) the stimulation protocol. Statistical comparisons were performed 

using two-way repeated measures ANOVA. * P < 0.05. Data are represented as mean ± SEM. 
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Fig. S4. LA engram cells no longer store the memory after complete amnesia.  

(A) Left, labelling strategy for the AFC-responsive ensemble in LA using the c-Fos/TetTag 

system. Right, expression of oChIEF in LA neurons. Dashed line shows the border of LA. Scale 

bar, 100 μm. (B) Experimental design for erasure of the memory engram. (C to H) Top, freezing 

levels during fear memory recall by 10 Hz stimulation (C), in response to the conditioned tone 

(D), during 10 Hz stimulation (E), during 20 Hz stimulation (F), in response to the conditioned 

tone and neutral tone at a remote time point (G), and during 10 Hz stimulation at a remote time 

point (H). Bottom, statistical significance between groups (n = 10 mice/group). Statistical 

comparisons were performed using one-way ANOVA (D and G) and two-way ANOVA (C, E, F 

and H). Ani, anisomycin; tBC, tat-beclin. * P < 0.05; ** P < 0.01. Data are represented as mean ± 

SEM. 

 

  



 

 

11 

 

 

Fig. S5. Memory enhancement after encoding two memories 5 hours apart.  

(A) Design for the memory linking experiment. Wild-type mice were exposed to event 1 (7 kHz + 

shock) and then divided into two groups. The first group was exposed to event 2 (2 kHz + shock) 

5 h after being exposed to event 1, while the second group was exposed to event 2 after 24 h. Both 

groups received a 7 kHz tone in test 1, while they received a 2 kHz tone in test 2. (B) Freezing 

levels of both groups in tests 1 and 2 (n = 6 mice/group). Statistical comparisons were performed 

using an unpaired t-test. * P < 0.05. Data are represented as mean ± SEM. 
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Fig. S6. Five hours ON DOX is enough to stop the expression of oChIEF.  

(A) Experimental design. After 2 days without DOX in their food, mice were put back on DOX 

for 5 h, and were then either exposed to AFC or stayed in their home cage (HC). One day later, 

they were perfused. (B) Representative images showing oChIEF-citrine expression in AC after 

AFC while mice were ON DOX chow (1 g kg−1). Scale bar, 100 μm. (C) oChIEF-citrine cell counts 

(unpaired t-test, n = 4 mice/group). * P < 0.05. Data are represented as mean ± SEM. 
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Fig. S7. Efficiency of engram labelling was similar across groups.  

(A and B) Related to figure 2, E to I. (A) Counts for mCherry+ neurons which activated during 7 

kHz fear conditioning. (B) Counts for c-Fos+ neurons which activated in response to 10Hz 

optogenetic stimulation. (C to F) Related to figure 3, A to E. (C and E) Counts for mCherry+ 

neurons which activated during 7 kHz fear conditioning in AC (C) and in LA (E). (D and F) Counts 

for c-Fos+ neurons in AC (D) and in LA (F). Data are represented as mean ± SEM. 
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