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Abstract

How can we help a forgetful learner learn multiple concepts within a limited
time frame? For long-term learning, it is crucial to devise teaching strategies
that leverage the underlying forgetting mechanisms of the learners. In this paper,
we cast the problem of adaptively teaching a forgetful learner as a novel discrete
optimization problem, where we seek to optimize a natural objective function that
characterizes the learner’s expected performance throughout the teaching session.
We then propose a simple greedy teaching strategy and derive strong performance
guarantees based on two intuitive data-dependent parameters, which characterize
the degree of diminishing returns of teaching each concept. We show that, given
some assumptions of the learner’s memory model, one can efficiently compute the
performance bounds. Furthermore, we identify parameter settings of our memory
models where greedy is guaranteed to achieve high performance. We have deployed
our approach in two concrete applications, namely (1) an educational app for online
vocabulary teaching and (2) an app for teaching novices how to recognize bird
species. We demonstrate the effectiveness of our algorithm using simulations along
with user studies.

1 Introduction
In many real-world educational applications, human learners often intend to learn more than one
concept. For example, in a language learning scenario, a learner aims to memorize a number of words
from a foreign language. In citizen science projects such as eBird [19], the goal of a learner is to
recognize multiple bird species from a given geographic region. As the number of concepts increases,
the learning problem may become overwhelmingly challenging due to the learner’s limited memory
and propensity to forget. It has been well established in the psychology literature that in the context
of human learning, the knowledge of a learner decays rapidly without reconsolidation [7]. Somewhat
analogously, in the sequential machine learning setting, modern machine learning methods, such as
artificial neural networks, can be drastically disrupted when presented with new information from
different domains, which leads to catastrophic interference and forgetting [10]. Therefore, to retain
long-term memory (for both human and machine learners), it is crucial to devise teaching strategies
that leverage the underlying forgetting mechanisms of the learners.

A prominent approach towards teaching forgetful learners is through repetition. Properly-scheduled
repetitions and reconsolidations of previous knowledge have proven effective for a wide variety of
real-world learning tasks, including piano practice [13, 16], surgery skills [22, 17, 4], video games
[15, 18], and vocabulary learning [6], among others. For many of the above application domains, it
has been shown that by carefully designing the scheduling policy, one can achieve substantial gains
over simple heuristics (such as spaced repetition at fixed time intervals, or a simple round robin
schedule) [5]. Unfortunately, despite the extensive empirical results in these fields, most of these
scheduling techniques are based on heuristics, and little is known about their theoretical performance.
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Figure 1: Illustration of our adaptive teaching framework applied to German vocabulary learning,
shown here for six time steps. Each learning phase proceeds in three stages: (1) the system displays a
flashcard with an image and its English description, (2) the learner inputs the German translation, and
(3) the system provides feedback in the form of the correct answer if the input is incorrect.

In this paper, we explore the following research question: Given limited time, can we help a forgetful
learner efficiently learn multiple concepts in a principled manner? More concretely, we consider an
adaptive setting where at each time step, the teacher needs to pick a concept from a finite set based on
the learner’s previous responses, and the process iterates until the learner’s time budget is exhausted.
Given the memory model of the learner, what is an optimal teaching curriculum? How should this
sequence be adapted based on the learner’s performance history?

For a high-level overview of our approach, let us consider the example in Fig. 1, which illustrates
one of our applications (cf. [1, 2]) on German vocabulary learning. Here, our goal is to teach
the learner three German words within six iterations. One trivial approach could be to show the
flashcards in a round robin fashion. However, the round robin sequence is deterministic and thus
not capable of adapting to the learner’s input. In contrast, our algorithm outputs a personalized
teaching sequence based on the learner’s performance history. Our algorithm is based on a novel
formulation of the adaptive teaching problem. In §3, we propose a novel discrete optimization
problem, where we seek to maximize a natural surrogate objective function that characterizes the
learner’s expected performance throughout the teaching session. Note that constructing the optimal
teaching policy could be prohibitively expensive for long teaching sessions, as it boils down to solving
a stochastic sequence optimization problem, which is NP-hard in general. In §4, we introduce our
greedy algorithm, and derive strong performance guarantees based on two intuitive data-dependent
parameters. We then show that for certain memory models of the learner, one can efficiently compute
the performance bounds. Furthermore, we identify parameter settings of the memory models where
the greedy algorithm is guaranteed to achieve high performance. We describe results for simulated
learners in §5, and show significant improvements over baselines for the challenging task of teaching
real humans in §6.

2 Related Work

Optimal scheduling with spaced repetition models Numerous studies in neurobiology and psy-
chology have emphasized the importance of the spacing and lag effects in human learning. The
spacing effect is the observation that spaced repetition produces greater improvements in learning
compared to massed repetition (i.e., “cramming”). The lag effect refers to the benefit of introducing
appropriate time lags between study sessions [21]. These findings lay the foundations of modern
spaced repetition research, including widely-used heuristic-based approaches, such as Leitner [9],
Pimsleur [11], and SuperMemo [3]. Settles and Meeder (2016) [14] introduced Half-life Regression
(HLR) as a generalization of these heuristics, and showed that HLR in general outperforms the
existing approaches. In this paper, we adopt a variant of the HLR to model the learner.

Recently, Reddy et al. (2016) [12] presented a queueing network for flashcard learning and provided
a tractable algorithm to approximate a solution. However, their approach is specifically designed for
Leitner systems, where the meters of learners’ skills often do not adequately reflect what they have
learned [14]. Tabibian et al. (2017) [20] considered optimizing learning schedules in continuous time
for independent items, and used optimal control theory to derive optimal scheduling when optimizing
for a penalized recall probability area-under-the-curve loss function. In contrast to [20], we consider
the discrete time setting. We are interested in the scenario where a learner studies their flashcards at
constant time intervals (e.g. on the way to work or before going to bed), rather than at arbitrary times.
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Sequence optimization / sequential decision making Our theoretical framework is inspired by
recent results on string submodular function maximization [23] and adaptive submodular optimiza-
tion [8]. In particular, Zhang et al. (2016) [23] introduced the notion of string submodular functions,
which, analogous to the classical notion of submodular set functions, enjoy similar performance
guarantees for maximization deterministic sequence functions. However, we note that our setting
is drastically different from [23]. The authors focus on deterministic string submodular functions,
whereas our teaching algorithm operates in the stochastic setting, and our objective function is highly
non-submodular. As a second note, our framework (in particular Corollary 2) can be viewed as a
strict generalization of string submodular function maximization to the adaptive setting.

3 The Teaching Model

In this section, we first introduce the notation for our teaching model. Then, we describe the interactive
teaching protocol and formally state the problem studied in this paper.

3.1 Target concepts and memory of the learner

Suppose that the teacher aims to teach the learner n independent concepts in a finite time horizon T .
W.l.o.g., we assume that each concept i ∈ {1, . . . , n} consists of one instance and a corresponding
label1. For instance, in language learning, a concept corresponds to a word in the vocabulary of a
second language. Let us use yt to denote the event that the learner recalls a concept at time step t,
where yt = 1 means that the learner successfully recalls the label, (i.e., the learner correctly translates
the word), and yt = 0 otherwise. We assume that the learner’s memory of concept i at time t is
captured by a memory model gi (t, ψ) := P [yi = 1 | ψ]. Here, ψ ∈ Ψ denotes the historical events
in which concept i was revealed and Ψ denotes the set of feasible histories. As an example, the
probability of recalling concept i at time t for the exponential forgetting curve model is given by
gi (t, ψ) = exp(−αni(ψ)(t−`)), and the recall probability for the power-law forgetting curve model
is given by gi (t, ψ) = (1 + β(t − `))−ni(ψ). Here, the variable ni(ψ) depends on the historical
frequency of showing concept i, and α, β are scaling parameters that characterize the forgetting rate.

3.2 Model of interaction

We consider the following interactive teaching protocol. At iteration t, the teacher picks a concept
from the set {1, . . . , n} and presents an instance of it to the learner without revealing its label. The
learner then tries to recall the concept. After the learner makes an attempt, the teacher collects the
outcome yt and reveals the true label. We use σ to denote the sequence of concepts picked by the
teacher, and use σt to denote the tth element of the sequence. At the end of iteration t, the teacher adds
(σt, yt) to the observation history ψ := (σ1:t−1, y1:t−1), and updates the memory model gi (t, ψ).

3.3 Objective function, policy and the optimal teaching problem

The goal of the teacher is to maximize the learner’s performance in recalling all concepts after
T iterations. A natural choice of the objective function is the average recall probability of all
concepts at the end of the teaching session. This objective, however, does not explicitly capture the
performance of the learner during the training phase, which may stretch over years for language
learning. Therefore, to provide the learner with high proficiency as soon as possible, we optimize
for concept retrievability during learning. We consider the following objective, which measures the
learner’s average cumulative recall probability for all the concepts across the teaching horizon

f(σ1:t, y1:t) =
1

nT

n∑
i=1

T∑
τ=1

gi
(
τ + 1, σ1:min(τ,t), y1:min(τ,t)

)
. (1)

Here, gi
(
τ + 1, σ1:min(τ,t), y1:min(τ,t)

)
denotes the probability of the learner recalling concept i

correctly at time step τ + 1, given the sequence of examples selected up to time step min(τ, t).
Intuitively, our objective function can be interpreted as the (discrete) area under the learner’s forgetting
curve over the entire teaching session (i.e., we are summing over the recall probabilities across all
time steps up to τ (and hence to T ), even when we have only observed the learner’s history up to t).

1In the case where a concept consists of multiple instances, we consider the teacher, at time t, showing the
full batch of instances to teach concept i.

3



Algorithm 1 The Greedy Algorithm

σ ← ∅, y ← ∅
for t = {1, . . . , T} do

it ← arg maxi ∆ (i | σ, y) . Choose the item with the largest conditional marginal gain
Observe yt
Set σ ← σ ⊕ it, y ← y ⊕ yt

end for

The teacher’s teaching strategy can be represented as a policy π : Ψ→ {1, . . . , n}, which maps any
observation history to the next concept to be revealed. For a given policy π, we use (σπ1:t, y

π
1:t) to

denote a random trajectory from the policy until time t. The average utility of a policy π is defined as

F (π) = Eσπ,yπ [f(σπ1:T , y
π
1:T )] . (2)

Given the learner’s memory model for each concept i and the time horizon T , we seek the optimal
teaching policy that achieves the maximal average utility

π∗ ∈ max
π

F (π) . (3)

Finding the optimal solution for Problem (3) is a formidable task. It requires searching through the
space of all possible feasible policies. In fact, even for the simple setting where the objective function
does not depend on the learner’s responses, i.e., when ∀y1:t, f(σ1:t, y1:t) = f(σ1:t, ·), Problem (3)
reduces to a combinatorial optimization problem over sequences, which is NP-hard. In the following,
we present a simple greedy algorithm, and provide a data-dependent lower bound on its average
utility against the optimal policy. Moreover, we prove that under some additional conditions on the
learner’s memory model, one can efficiently compute such an empirical bound.

4 Algorithms and Theoretical Analysis

We consider a simple, greedy approach towards constructing teaching policies. Formally, given an
observation history (σ1:t−1, y1:t−1), we define the conditional marginal gain of teaching a concept i
at time t as

∆ (i | σ1:t−1, y1:t−1) = Eyt [f(σ1:t−1 ⊕ i, y1:t−1 ⊕ yt)− f(σ1:t, y1:t)] , (4)

where ⊕ denotes the concatenation operation, and the expectation is taken over the randomness
of learner’s recall yt, conditioned on having observed (σ1:t−1, y1:t−1). The greedy algorithm, as
described in Algorithm 1, iteratively picks the item that maximizes this conditional marginal gain.

4.1 Theoretical Guarantees

We now present a general theoretical framework for analyzing the performance of the adaptive greedy
policy (Algorithm 1). Importantly, our bound depends on two natural properties of the objective
function f , both related to the notion of diminishing returns of a sequence function. Intuitively,
the following two properties reflect how much a bad choice by the greedy algorithm can affect the
optimality of the solution.
Definition 1 (Online stepwise submodular coefficient). Fix policy π of length T . The online submod-
ular coefficient of function f with respect to policy π at step t is defined as

γπt := min
σπ1:t,y

π
1:t

γ(σπ1:t, y
π
1:t) (5)

where γ(σ, y) = mini,(σ′,y′):|σ|+|σ′|<T
∆(i|σ,y)

∆(i|σ⊕σ′,y⊕y′) denotes the minimal ratio between the gain
of any item i given current observation history (σ, y) and the gain of i in any future steps.
Definition 2 (Online stepwise backward curvature). Fix policy π of length T . The online backward
curvature of function f with respect to policy π at step t is defined as

ωπt := max
σπ1:t,y

π
1:t

ω(σπ1:t, y
π
1:t) (6)

where ω(σ, y) = maxπ Eσπ,yπ
[

(f(σ,y)−f(∅))−(f(σ⊕σπ,y⊕yπ)−f(σπ,yπ))
f(σ,y)−f(∅)

]
denotes the normalized

maximal expected second-order difference when considering the current observation history (σ, y).
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Here, γ(σ, y) and ω(σ, y) generalizes the notion of string submodularity and total backward curvature
for sequence functions [23] to the stochastic setting. Intuitively, γ(σ, y) ≤ 1 measures the degree of
diminishing returns of a sequence function in terms of the ratio between the conditional marginal
gains. If ∀(σ, y), γ(σ, y) = 1, then the conditional marginal gain of adding any item to any subsequent
observation history is non-decreasing. In contrast, ω(σ, y) measures the degree of diminishing returns
in terms of the difference between the marginal gains. As our first main theoretical result, we provide
a data-dependent bound on the average utility of the greedy policy against the optimal policy.
Theorem 1. Let πg be the online greedy policy induced by Algorithm 1, and F be the objective
function as defined in Eq. (2). Then for all policies π∗,

F (πg) ≥ F (π∗)

T∑
t=1

γg
T−t
T

t−1∏
τ=0

(
1− ωg

τγ
g
τ

T

)
, (7)

where γg
t and ωg

t denote the online stepwise submodular coefficient and online stepwise backward
curvature of f with respect to the policy πg at time step t.

The summand on the R.H.S. of Eq. (7) is in fact a lower bound on the expected one-step gain of the
greedy policy. Therefore, if we run the greedy algorithm for only s ≤ T iterations, we can bound

its expected utility by F
(
πg

1:s

)
≥ F (π∗)

∑s
t=1

γg
T−t
T

∏t−1
τ=0

(
1− ωg

τγ
g
τ

T

)
, where π∗ is the optimal

policy (of length T ). We can further relax the bound by considering the worst-case online stepwise
submodularity ratio and curvature across all time steps.

Corollary 2. Let γg = mint γ
g
t and ωg = maxt ω

g
t . For all π∗, F (πg) ≥ 1

ωg

(
1− e−γgωg)

F (π∗) .

The proofs are deferred to the Appendix. Note that Corollary 2 generalizes the string submodular
optimization framework of [23], which only holds under the deterministic setting, to the stochastic
sequence optimization problem. In particular, for the special case where γg = ωg = 1 and f(σ1:t, y1:t)
is independent of y1:t, Corollary 2 reduces to f(σg, ·) ≥

(
1− e−1

)
f(σ∗, ·) where σg, σ∗ denote the

sequences selected by the greedy and the optimal algorithm. However, constructing the bounds in
Theorem 1 and Corollary 2 requires us to compute γg

t , ω
g
t for t ∈ {1, . . . T}, which is as expensive as

computing F (π∗). In the following subsection, we investigate a specific learner’s model, and provide
polynomial time approximation algorithms for computing theoretical lower bound in Theorem 1.

4.2 Performance Analysis: Half-life Regression (HLR) Learners

We consider the case of HLR learners with the following exponential forgetting curve model

gi (τ, (σ, y)) = 2−
τ−`i
h (8)

where `i is the last time concept iwas taught, and hi = 2θini denotes the half life of the learner’s recall
probability of concept i. Here, θi = (ai, bi, ci) parametrizes the retention rate of the learner’s memory,
and ni = (ni+, n

i
−, 1)>, where ni+ := |{t : σt = i ∧ yt = 1}| and ni− := |{t : σt = i ∧ yt = 0}|

denote the number of correct recalls and and incorrect recalls of concept i in (σ, y).

We would like to bound the performance of Algorithm 1. While computing γg
t , ω

g
t is NP-hard in

general, we show that one can efficiently approximate γg
t , ω

g
t in the deterministic setting.

Theorem 3. Assume that the learner is characterized by the HLR model (Eq. (8)) where ∀i, ai = bi.
We can compute empirical bounds on γt, ωt in polynomial time.

We defer the proof of Theorem 3, as well as the approximation algorithms for γt, ωt to the Appendix.
In Fig. 2, we demonstrate the behavior of three teaching algorithms on a toy problem with T =
15, n = 3. Fig. 2a-2c shows the learner’s forgetting curve (i.e., recall probabilities) and the sequences
selected by three algorithms: Greedy (Algorithm 1), Optimal (the optimal solution for Problem (3)),
and Round Robin (a fixed round robin teaching schedule for all concepts). Observe that Greedy
starts with easy concepts (i.e., concepts with higher memory retention rates), moves on to teaching
new concepts when the learner has “enough” retention for the current concept, and repeats previous
examples towards the end of the teaching session. This behavior is similar to the optimal teaching
sequence, and achieves higher utility in comparison to the fixed round robin scheduling (Fig. 2d).

In Fig. 2e-2g, we demonstrate the behavior of the conditional marginal gain, the empirical bounds
on γg

t , ω
g
t , as well as the exact values of γg

t , ω
g
t when running the greedy algorithm. In particular, in
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Figure 2: Performance analysis for the greedy algorithm when teaching a HLR learner three concepts.
Each colored marker from Fig. 2a–2c represents a different concept, with θ1 = (2.50, 2.50, 1.26)
for blue, (θ2 = 1.00, 1.00,−1.00) for orange, and θ3 = (0.08, 0.08,−0.88) for the green concept.
Intuitively, concepts with higher θi values are easier to teach.

Fig. 2e, we see that the marginal gain of the orange item is increasing in the early stages (as opposed
to many classical discrete optimization problems that exhibit the diminishing returns property), which
makes the analysis of the greedy algorithm non-trivial. Note that our algorithm for computing γg

t
actually outputs the exact value of γg

t (a näive approach to computing γg
t is via extensive enumeration

of all possible teaching sequences). In Fig. 2h, we plug in the empirical bounds on γg
t and ωg

t to
Theorem 1 and Corollary 2, and plot the empirical approximation bounds on F (πg) /F (π∗) as a
function of the teaching horizon T . For problem instances with a large teaching horizon T , it is
infeasible to compute the true approximation ratio. However, one can still efficiently compute the
empirical approximation bound as a useful indicator of the greedy performance.

Theorem 3 shows that it is feasible to compute explicit lower bounds on the utility of Algorithm 1
against the maximal achievable utility. The following proposition, proven in the Appendix, shows
that for certain types of learners, the greedy algorithm is guaranteed to achieve a high utility.

Proposition 4. Consider the task of teaching a HLR learner n independent concepts in time horizon
T , where all concepts share the same parameter configurations, i.e., ∀ i, θi = (a, a, 0). A sufficient

condition for the greedy algorithm to achieve 1− ε utility is a ≥ max
{

log T, log (3n) , log
(

2n2

εT

)}
.

5 Simulations
In this section, we experimentally evaluate our algorithm by simulating learners’ responses based on
a known memory model. This allows us to inspect the behavior of our algorithm and several baseline
algorithms in a controlled setting, which we cannot explicit access in a real-world user study.

Dataset We simulated concepts of three different types: “easy”, “medium”, and “hard”. The
learner’s memory for each concept is captured by an independent HLR model. Concepts of the
same type share the same parameter configurations. Specifically, for “easy” concepts, the parameters
are θ1 = (a1 = 6.37, b1 = 1.00, c1 = −0.26), for “medium”, θ2 = (a2 = 1.52, b2 = 1.00, c2 =
−2.73), and for “hard”, θ3 = (a3 = 1.38, b3 = 1.00, c3 = −3.11). Our parameters θi are chosen
by first fixing bi = 1, and then calculating the corresponding values of ai and ci by which the
learner’s recall probability of item i drops to a preset recall probability in the immediate next
step after showing concept i. For an “easy” concept, one can compute the corresponding recall
probability in the next step according to Eq. (8): g1 (t = 2, σ1 = 1, y1 = 1) = 2−1/(2a1+c1 ) = 0.99

and g1 (t = 2, σ1 = 1, y1 = 1) = 2−1/(2b1+c1 ) = 0.66. Similarly, these recall probabilities for
“medium” concepts is (0.20, 0.10), and for “hard” concepts they are (0.10, 0.05).

Evaluation metric We consider two different criteria when assessing the performance of the
candidate algorithms. Our first evaluation metric is the objective value as defined Eq. (1), which
measures the learner’s average cumulative recall probability across the entire teaching session. The
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Figure 3: Simulation results

second evaluation metric is the learner’s average recall probability of all concepts at the end of the
teaching session. We call this objective “Recall at T + s”, where s ≥ 0 is a integer measuring how
far in the future we choose to evaluate the learner’s recall.

Baselines To demonstrate the performance of our adaptive greedy policy (referred to as GR), we
consider three baseline algorithms. The first baseline, denoted by RD, is the random teacher that
presents a random concept at each time step. The second baseline is round robin, denoted by RR,
which picks concepts according to a fixed round robin schedule. Our third baseline is a variant of the
greedy approach employed in the original HLR paper [14] (where we consider a sightly different
formulation of the half life), which can be considered as a generalization of the popular Leitner /
Pimsleur approaches. At each iteration, the teacher chooses to display the concept with lowest recall
probability according to the HLR memory model of the learner. We refer to this algorithm as LR.

Simulation results We first evaluate the performance of our algorithm against the baselines as a
function of the teaching horizon T . In Fig. 3a and Fig. 3b, we plot the objective value and average
recall at T + s for all algorithms over 10 random trials, where we set s = 10, m = 5 with half
medium and half difficult concepts, and vary T ∈ [20, 60]. As we can see from both plots, GR
consistently outperforms the random baseline in all scenarios. For reasonably small m, when we are
teaching multiple concepts with very limited resources (i.e., small budget on T ), our greedy approach
(GR) outperforms the other baselines. The performance of the lowest recall (LR) and round robin
(RR) improves and eventually beats GR as we increase the budget — this behavior is expected, as it
corresponds to the scenario where all items get a fair chance of repetition with abundant time budget.
Furthermore, our analysis from §4.2 suggests that hard concepts (i.e., items with low retention rate)
suffer more from the non-diminishing returns effect (see Fig. 2e), and thus can keep the myopic
policy from approaching the optimal utility. In Fig. 3c and Fig. 3d, we show the performance plot
for a fixed teaching horizon of T = 60 when we vary the number of concepts m ∈ [2, 20]. Here
we observe a similar behavior as before. Our results suggest that GR is optimized for the more
challenging problem of teaching multiple concepts given a tight time budget.

6 User Study
We have developed online apps for two concrete real-world applications: (1) German vocabulary
teaching [2], and (2) teaching novices to recognize bird species as part of a citizen science project
[1]. We now briefly introduce the two systems, and present the results of deploying our vocabulary
learning app to real human learners.

Datasets As part of our beta testing for the German vocabulary teaching app, we collected 100
English-German word pairs in the form of flashcards, each associated with a descriptive image. To
extract a fine-grained signal for our user study, we further categorize the words into three difficulty
levels based on a thorough evaluation of each word from a domain expert. For the bird teaching app,
we collected an initial set of 18 of the most common bird species in North America. Examples from
both datasets can be seen in Fig. 4a-4b.

Online teaching interface We set up a simple and intuitive adaptive teaching interface to keep
the learners engaged in our user study (see Fig. 4d). In the following discussion, we use German
vocabulary learning as an example. Importantly, to establish an experimental setup that accurately
reflects our modeling assumptions, we integrate the following design ideas.

An important component of the user evaluation is to understand the learner’s bias (or prior knowledge),
which we cannot easily assess purely based on the learner’s feedback while learning. To resolve this
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Figure 4: Results from user study and experimental setup

issue, we introduce a prequiz phase for the user study, where we test the learner’s knowledge of all
the words in the task by asking them to type in translations before the learning phase starts. After
the learning phase, the learner will enter a postquiz testing phase. By recording this change in the
learner’s performance, we can estimate the gain of the teaching session.

To leverage the lag effect of human learning, we impose a minimum time window for each flashcard
presentation. In the learning phase, after a user enters her input for a question, she will have 10
seconds to review the correct answers provided by the system, before proceeding to the next question.
Furthermore, we also set a maximal answering time for a question to prevent unnecessary delays of
the teaching process. Therefore, the user will learn in constant time intervals, which is well-aligned
with our discrete-time problem formulation.

Another important aspect is the short-term memory effect. In general, it is highly non-trivial to carry
out large scale user studies that span over weeks/months (even though it better fits our HLR model of
the learner). Given the physical constraints of real-world experiments, we consider shorter teaching
sessions around 25-30 mins, involving teaching 15 words across a total number of 40 iterations. To
mitigate the short-term memory effect raised by our experimental setting, we impose an additional
constraint on our algorithm (henceforth GR) for the user study, such that it does not pick the same
concept twice in a row (otherwise, a learner will simply “copy” the answer she sees on the previous
screen). Furthermore, when computing the postquiz score, we exclude the first five entries at the
postquiz phase (from a randomly shuffled test sequence) to further reduce the short-memory bias.

Experimental Results For the user study, we focus on the German vocabulary learning problem,
and run each candidate algorithm with m = 15, T = 40 on 30 workers each on Amazon Mechanical
Turk. Note that for these real-world experiments, we do not have explicit access to the learner’s
memory model. While it is possible to fit a HLR model through an extensive pre-study survey as
in [14], we observe from our simulated experiments that our adaptive algorithm is robust to a wide
range of parameter configurations. After a thorough validation on the simulated learners, we choose
θ = (6.0, 2.0, 0.0) for both the GR and LR as the “robust” version of the two teaching algorithms.
Results for real human workers are shown in Fig. 4c. Overall, GR achieved higher gain than the
baselines. Although a fair number of learners fail to achieve good performance, GR managed to
teach a larger fraction of the “fast” learners achieving better performance compared to the baselines,
which suggests that our framework is a promising strategy for vocabulary teaching.

7 Conclusions
We presented an algorithmic framework for teaching multiple concepts to forgetful learners. We
proposed a novel discrete formulation of teaching based on stochastic sequence function optimization,
and provided a general theoretical tool for deriving performance bounds. We showed that although
the theoretical performance bound is NP-hard to compute in general, we can efficiently compute such
bounds for certain memory models of the learner. We have implemented a publicly available learning
platform for two concrete applications. We believe our results have made an important step towards
bringing the theoretical understanding of machine teaching closer to real-world applications where
the forgetting phenomenon is an intrinsic factor.
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A Proofs

A.1 Proof of the main results (Theorem 1 and Corollary 2)

A.1.1 Notations and Definitions

For simplicity, we first introduce the notation which will be used in the proof.

Let us use function φ(i, t) to represent a learner’s recall of item i at t, where φ(i, t) = 1 indicates
that the learner recalls item i correctly at time t, and φ(i, t) = 0 otherwise. We call the function
φ a realization, and use Φ to denote a random realization. A realization φ is consistent with the
observation history (σ1:t, y1:t), if φ(στ , τ) = yτ for all τ ∈ {1, . . . , t}. We denote such case by
φ ∼ (σ1:t, y1:t).

We further use (σπ(φ), yπ(φ)) to denote the sequence of items and observations obtained by running
policy π under realization φ. Here, σπ(φ) denotes the sequence of items selected by π if the learner
is responding according to φ.

Similarly with the conditional marginal gain of an item (Eq. (4)), we define the conditional marginal
gain of a policy as follows.

Definition 3 (Conditional marginal gain of a policy). Given observation history (σ1:t, y1:t) and an
item i, the conditional marginal gain of a policy π is defined as

∆ (π | σ1:t, y1:t) = E[f(σ1:t ⊕ σπ(Φ), y1:t ⊕ yπ(Φ))− f(σ1:t, y1:t) | Φ ∼ (σ1:t, y1:t)] . (9)

A.1.2 Proof of Theorem 1

To prove Theorem 1, we first establish a lower bound on the one-step gain of the greedy algorithm.
The following lemma provides a lower bound of the one-step conditional marginal gain of the greedy
policy πg against the conditional marginal gain of any policy (of length T ).

Lemma 5. Suppose we have selected sequence σ1:t and observed y1:t. Then, for any policy π of
length T ,

max
i

∆ (i | σ1:t, y1:t) ≥
γπt
T

∆ (π | σ1:t, y1:t) (10)

Proof. By Definition 3 we know that for all π it holds that

∆ (π | σ1:t, y1:t) = E[f(σ1:t ⊕ σπ1:T (Φ), y1:t ⊕ yπ1:T (Φ))− f(σ1:t, y1:t) | Φ ∼ (σ1:t, y1:t)]

(a)
= E

[
T∑
τ=1

(f(σ1:t ⊕ σπ1:τ (Φ), y1:t ⊕ yπ1:τ (Φ))−

f(σ1:t ⊕ σπ1:τ−1(Φ), y1:t ⊕ yπ1:τ−1(Φ))
)
| Φ ∼ (σ1:t, y1:t)

]
=

T∑
τ=1

E [f(σ1:t ⊕ σπ1:τ (Φ), y1:t ⊕ yπ1:τ (Φ))−

f(σ1:t ⊕ σπ1:τ−1(Φ), y1:t ⊕ yπ1:τ−1(Φ)) | Φ ∼ (σ1:t, y1:t)
]

10



(b)
=

T∑
τ=1

E [E [f(σ1:t ⊕ σπ1:τ (Φ′), y1:t ⊕ yπ1:τ (Φ′))−

f(σ1:t ⊕ σπ1:τ−1(Φ′), y1:t ⊕ yπ1:τ−1(Φ′))∣∣ Φ′ ∼ (σ1:t ⊕ σπ1:τ−1(Φ), y1:t ⊕ yπ1:τ−1(Φ))
] ∣∣ Φ ∼ (σ1:t, y1:t)

]
Eq. (4)

=

T∑
τ=1

E
[
∆
(
σπτ (Φ′) | Φ′ ∼ σ1:t ⊕ σπ1:τ−1(Φ), y1:t ⊕ yπ1:τ−1(Φ)

)
∣∣ Φ ∼ (σ1:t, y1:t)

]
(11)

Here, step (a) is a telescoping sum, and step (b) is by the law of total expectation.

Further, by the definition of γt (Definition 1) we know that for all π and φ it holds that

max
i

∆ (i | σ1:t, y1:t) ≥ γπt ∆
(
σπτ (Φ′) | Φ′ ∼ σ1:t ⊕ σπ1:τ−1(φ), y1:t ⊕ yπ1:τ−1(φ)

)
(12)

Combining Eq. (11) with Eq. (12) to get

∆ (π | σ1:t, y1:t)
Eq. (11)

=

T∑
τ=1

E
[
∆
(
σπτ (Φ′) | Φ′ ∼ σ1:t ⊕ σπ1:τ−1(Φ), y1:t ⊕ yπ1:τ−1(Φ)

)
∣∣ Φ ∼ (σ1:t, y1:t)

]
Eq. (12)

≤
T∑
τ=1

E
[

1

γπt
max
i

∆ (i | σ1:t, y1:t)
∣∣ Φ ∼ (σ1:t, y1:t)

]
=

T

γπt
max
i

∆ (i | σ1:t, y1:t)

which completes the proof.

In the following we provide the proof of Theorem 1.

Proof of Theorem 1. By the definition of ωt (Definition 2,Eq. (6)) we know that for all π it holds that

ωt ≥ 1− E[f(σ1:t ⊕ σπ(Φ), y1:t ⊕ yπ(Φ))− f(σπ(Φ), yπ(Φ)) | Φ ∼ (σ1:t, y1:t)]

f(σ1:t, y1:t)

Therefore, we get

∆ (π | σ1:t, y1:t) = E[f(σ1:t ⊕ σπ(Φ), y1:t ⊕ yπ(Φ))− f(σ1:t, y1:t) | Φ ∼ (σ1:t, y1:t)]

≥ E[f(σπ(Φ), yπ(Φ))− ωtf(σ1:t, y1:t) | Φ ∼ (σ1:t, y1:t)] (13)

Now suppose that we have run greedy policy πg up to time step t and have observed sequence
(σg

1:t, y
g
1:t). Combining Lemma 5 (Eq. (10)) with Eq. (13), we get

max
i

∆
(
i | σg

1:t, y
g
1:t

)
= E

[
f(σg

1:t+1(Φ), yg
1:t+1(Φ))− f(σg

1:t, y
g
1:t) | Φ ∼ (σg

1:t, y
g
1:t)
]

≥ γt
T
· E
[
f(σπ(Φ), yπ(Φ))− ωtf(σg

1:t, y
g
1:t) | Φ ∼ (σg

1:t, y
g
1:t)
]

which implies

E
[
f(σg

1:t+1(Φ), yg
1:t+1(Φ)) | Φ ∼ (σg

1:t, y
g
1:t)
]

≥γt
T
· E
[
f(σπ(Φ), yπ(Φ)) | Φ ∼ (σg

1:t, y
g
1:t)
]

+
(

1− γtωt
T

)
f(σg

1:t, y
g
1:t) (14)

Therefore, we get

F (πg) = E
[
f(σg

1:T (Φ), yg
1:T (Φ))

]
(a)
= E

[
E
[
f(σg

1:T (Φ), yg
1:T (Φ)) | Φ ∼ (σg

1:T−1(Φ′), yg
1:T−1(Φ′))

]]
Eq. (14)

≥ E
[γT−1

T
· E
[
f(σπ(Φ), yπ(Φ)) | Φ ∼ (σg

1:T−1(Φ′), yg
1:T−1(Φ′))

]]
+
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E
[(

1− γT−1ωT−1

T

)
f(σg

1:T−1(Φ′), yg
1:T−1(Φ′))

]
(b)
=
γT−1

T
· E[f(σπ(Φ), yπ(Φ))] +

(
1− γT−1ωT−1

T

)
· E
[
f(σg

1:T−1(Φ′), yg
1:T−1(Φ′))

]
=
γT−1

T
· F (π) +

(
1− γT−1ωT−1

T

)
· E
[
f(σg

1:T−1(Φ), yg
1:T−1(Φ))

]
(15)

where step (a) and step (b) are by the law of total expectation. Recursively applying Eq. (15) gives us

F (πg) ≥ γT−1

T
· F (π) +

(
1− γT−1ωT−1

T

)
· E
[
f(σg

1:T−1(Φ), yg
1:T−1(Φ))

]
≥
(γT−1

T
+
(

1− γT−1ωT−1

T

) γT−2

T

)
F (π) +(

1− γT−1ωT−1

T

)(
1− γT−2ωT−2

T

)
E
[
f(σg

1:T−2(Φ), yg
1:T−2(Φ))

]
≥ . . .

≥ F (π)

T−1∑
t=1

γT−t
T

t−1∏
τ=1

(
1− γτωτ

T

)
which completes the proof.

A.1.3 Proof of Corollary 2

Proof of Corollary 2. Since γg = mint γt and ωg = maxt ωt, by Theorem 1 we obtain

F (πg) ≥ F (π)

T∑
t=1

γT−t
T

t−1∏
τ=0

(
1− γτωτ

T

)
≥ F (π)

γg

T

T∑
t=1

(
1− γgωg

T

)t
= F (π)

1

ωg

(
1−

(
1− γgωg

T

)T)
which completes the proof.

A.2 Proof of Theorem 3

In this section, we provide the proof for Theorem 3. In particular, we divide the proof into two parts.
In §A.2.1, we propose a polynomial time algorithm which outputs a lower bound on γgt ; in §A.2.2,
we provide an upper bound on ωg

t which can be computed in linear time.

A.2.1 Empirical lower bound on γt for the case a = b

Let us use count (σ, i) to denote the function that returns the number of times item i appears in
sequence σ. We first show the following lemma.
Lemma 6. Fix s ≤ t. For any σ′ ∈ {σ : |σ| = t, count (σ, i) = s}, we have

∆
(
i | σit,1:s, ·

)
≥ ∆ (i | σ′, ·)

where σit,1:s := i⊕ i⊕ · · · ⊕ i︸ ︷︷ ︸
s times

⊕ _⊕ _⊕ · · · ⊕ _︸ ︷︷ ︸
t− s times

denotes the sequence of items of length t, where

the first s items are item i and the remaining t− s items are empty.

Proof. By definition of the marginal gain (Eq. (4))

∆ (i | σ, y) = E[f(σ1:t ⊕ i, y1:t ⊕ Φ(i, t+ 1))− f(σ1:t, y1:t) | Φ ∼ (σ1:t, y1:t)]

For the case a = b, the objective function f is independent of the observed outcomes of the learner’s
recall. That is,

∆ (i | σ1:t, ·) = f(σ1:t ⊕ i, ·)− f(σ1:t, ·)

12



Algorithm 2 Computing the empirical lower bound on the greedy online stepwise submodular
coefficient
Require: σ1:t; y1:t

for i = {1, . . . , n} do
CurrentGaini ← ∆ (i | σ1:t, y1:t)
for τ = {1, . . . , T − t} do

for s ∈ {1, . . . , τ} do
σ′ ← i⊕ i⊕ · · · ⊕ i︸ ︷︷ ︸

s times

⊕ _⊕ _⊕ · · · ⊕ _︸ ︷︷ ︸
τ − s times

. Only consider insertions in the front

vτ,s ← ∆ (i | σ1:t ⊕ σ′, ·) . Gain of item i at t+ τ , with s insertions
end for

end for
FutureGaini ← maxτ,s vτ,s . Maximal gain of item i at future time steps

end for
γt ← mini

CurrentGaini
FutureGaini

. Choosing the minimal ratio among all items
return γt

=
1

nT

n∑
i=1

T∑
τ=1

{gi (τ + 1, σ1:t ⊕ i, ·)− gi (τ + 1, σ1:t, ·)}

=
1

nT

n∑
i=1

T∑
τ=t+1

{gi (τ + 1, σ1:t ⊕ i, ·)− gi (τ + 1, σ1:t, ·)}

Denote Σit,s = {σ : |σ| = t, count (σ, i) = s}. For any σ, σ′ ∈ Σit,s, we know that

T∑
τ=t+1

gi (τ + 1, σ1:t ⊕ i, ·) =

T∑
τ=t+1

gi (τ + 1, σ′1:t ⊕ i, ·)

Therefore,

max
σ1:t∈Σit,s

∆ (i | σ1:t, ·) =
1

nT

n∑
i=1

T∑
τ=t+1

{
gi (τ + 1, σ1:t ⊕ i, ·)− min

σ1:t∈Σit,s

gi (τ + 1, σ1:t, ·)

}
(a)
=

1

nT

n∑
i=1

T∑
τ=t+1

{
gi (τ + 1, σ1:t ⊕ i, ·)− gi

(
τ + 1, σit,1:s, ·

)}
Here, step (a) is due to the fact that the learner’s recall of an item is monotonously decreasing
(therefore showing item i earlier leads to lower recall in the future). Therefore, it completes the
proof.

An approximation algorithm for γt is provided in Algorithm 2.

A.2.2 Empirical upper bound on ωt for the case a = b

In this section, we derive an upper bound on ωt which can be computed in polynomial time.

Using the notation defined in §A.1, we can rewrite the definition of the online greedy stepwise
backward curvature ωt as

ωt = max
π

{
1−

E
[
f(σg

1:t ⊕ σπ(Φ), yg
1:t ⊕ yπ(Φ))− f(σπ(Φ), yπ(Φ)) | Φ ∼ (σg

1:t, y
g
1:t)
]

f(σg
1:t, y

g
1:t)

}
For the case a = b, the objective function f is independent of the observed outcomes of the learner’s
recall (i.e., f is a deterministic function of the input teaching sequence). Therefore,

ωt = max
π

{
1− f(σg

1:t ⊕ σπ, ·)− f(σπ, ·)
f(σg

1:t, ·)

}
= 1 + max

π

{
f(σπ, ·)− f(σg

1:t ⊕ σπ, ·)
f(σg

1:t, ·)

}
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For simplicity let us use σg+π := σg
1:t⊕ σπ to denote the concatenated sequence, and w.l.o.g, assume

that π represent the one which maximizes the RHS of the above equation (i.e., π is the optimal policy).
Substituting the objective function f in the above equation with its definition (Eq. (1)), we get

ωt = 1 +
1

nT

1

f(σg
1:t, ·)

n∑
i=1

T∑
τ=1

{
gi (τ + 1, σπ1:τ , ·)− gi

(
τ + 1, σg+π

1:τ , ·
)}

= 1 +
1

nT

1

f(σg
1:t, ·)

n∑
i=1

{
T−t∑
τ=1

gi (τ + 1, σπ1:τ , ·) +

T∑
τ=T−t+1

gi (τ + 1, σπ1:τ , ·)

−
T∑

τ=t+1

gi

(
τ + 1, σg+π

1:τ , ·
)
−

t∑
τ=1

gi

(
τ + 1, σg+π

1:τ , ·
)}

= 1 +
1

nT

1

f(σg
1:t, ·)

n∑
i=1

{
T∑

τ=T−t+1

gi (τ + 1, σπ1:τ , ·)−
t∑

τ=1

gi

(
τ + 1, σg+π

1:τ , ·
)

+

T−t∑
τ=1

gi (τ + 1, σπ1:τ , ·)−
T∑

τ=t+1

gi

(
τ + 1, σg+π

1:τ , ·
)}

︸ ︷︷ ︸
≤0

≤ 1 +
1

nT

1

f(σg
1:t, ·)

n∑
i=1

{
T∑

τ=T−t+1

gi (τ + 1, σπ1:τ , ·)−
t∑

τ=1

gi

(
τ + 1, σg+π

1:τ , ·
)}

(16)

Let σi1:t := i⊕ i⊕ · · · ⊕ i︸ ︷︷ ︸
t times

denote the sequence of items of length t that consists of all i’s. Then,

clearly

T∑
τ=T−t+1

gi (τ + 1, σπ1:τ , ·) ≤
T∑

τ=T−t+1

gi
(
τ + 1, σi1:τ , ·

)
(17)

Combining Eq. (16) with Eq. (17) we get

ωt ≤ 1 +
1

nT

1

f(σg
1:t, ·)

n∑
i=1

{
T∑

τ=T−t+1

gi (τ + 1, σπ1:τ , ·)−
t∑

τ=1

gi

(
τ + 1, σg+π

1:τ , ·
)}

≤ 1 +
1

nT

1

f(σg
1:t, ·)

n∑
i=1

{
T∑

τ=T−t+1

gi
(
τ + 1, σi1:τ , ·

)
−

t∑
τ=1

gi

(
τ + 1, σg+π

1:τ , ·
)}

= 1 +
1

nT

1

f(σg
1:t, ·)

n∑
i=1

{
T∑

τ=T−t+1

gi
(
τ + 1, σi1:τ , ·

)
−

t∑
τ=1

gi
(
τ + 1, σg

1:τ , ·
)}

(18)

Proof of Theorem 3. Clearly, both the empirical bounds on γg
t (Algorithm 2) and ωg

t (RHS of Eq. (18))
can be computed in polynomial time. Plugging the values into Theorem 1 and Corollary 1 we get a
polynomial time approximation of the empirical bound.

A.3 Proof of Proposition 4

In this section, we provide the proof of Proposition 4.

Suppose there are n items, and T is a multiple of n. Fix a, and assume that ai = bi = a and ci = 0
for all i ∈ {1, . . . , n}. We first show a sufficient condition on a under which the greedy policy
reduces to the round robin policy.

Recall from Eq. (8) that the recall probability of an item is

gi (τ, ·) = 2
τ−`
hi (19)
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where hi = 2ani denotes the half life of item i, and ni denotes the number of times item i is presented
so far.

Now assume that the greedy algorithm picks item i at t = 1. Then, in order for the greedy algorithm
not to pick the same item at t = 2, we need to make sure that at t = 2, the gain of item i is smaller
than the gain of the best item. To achieve that, there must exist some other item j, such that

∆ (j | σ1 = i) > ∆ (i | σ1 = i)

That is,
T∑
t=2

(gj (t, σ1 = i, σ2 = j)− gj (t, σ1 = i)) >

T∑
t=2

(gi (t, σ1 = i, σ2 = i)− gi (t, σ1 = i))

A sufficient condition for the above inequality to hold is

gj (T, σ1 = i, σ2 = j)− gj (T, σ1 = i) = gj (T, σ1 = i, σ2 = j)

> gi (T, σ1 = i, σ2 = i)− gi (T, σ1 = i)

Plugging in the definition of gi, gj , we get

2−
T−1
2a > 2−

T−1

22a − 2−
T
2a (20)

It is easy to verify numerically that a sufficient condition for Eq. (20) to hold is

a ≥ log T (21)

Next, we provide a lower bound on the cost of the round robin algorithm. Let σ1:T be the round
robin teaching sequence. W.l.o.g., assume that the order of items shown in each round is 1, 2, . . . , n.
Therefore,

f(σ1:T ) =
1

nT

n∑
i=1

T∑
τ=1

gi (τ + 1, σ1:τ )

=
1

nT

n∑
i=1

T/n∑
r=1

n∑
τ=1

gi
(
(r − 1)n+ τ + 1, σ1:(r−1)n+τ

)
≥ 1

nT

n∑
i=1

T/n∑
r=1

ngi
(
rn+ 1, σ1:(r−1)n+τ

)
=

1

T

n∑
i=1

T/n∑
r=1

gi
(
rn+ i, σ1:(r−1)n+τ

)
For simplicity, define pi,r = gi

(
rn+ i, σ1:(r−1)n+τ

)
. We thus have

f(σ1:T ) =
1

T

n∑
i=1

T/n∑
r=1

pi,r (22)

Observe that for r ∈ {1, . . . , T/n}, it holds that

1− pi,r+1

1− pi,r
≥ 1− pi,r+2

1− pi,r+1
, and 1− pi,r ≥ 1− pi,r+1 (23)

From the above inequalities we get

1− pi,r+1 = (1− pi,r)
1− pi,r+1

1− pi,r

≤ (1− pi,r)
1− pi,r

1− pi,r−1

≤ (1− pi,r−1)
1− pi,r−1

1− pi,r−2
· 1− pi,r

1− pi,r−1
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≤ (1− pi,r−1)

(
1− pi,r−1

1− pi,r−2

)2

≤ (1− pi,1)

(
1− pi,2
1− pi,1

)r
Therefore, we have

T/n∑
r=1

(1− pi,r) ≤ (1− pi,1) + (1− pi,1)
1− pi,2
1− pi,1

+ · · ·+ (1− pi,1)

(
1− pi,2
1− pi,1

)T/n−1

=

T/n∑
r=1

(1− pi,1)

(
1− pi,2
1− pi,1

)r−1

=

(1− pi,1)

(
1−

(
1−pi,2
1−pi,1

)T/n)
1−

(
1−pi,2
1−pi,1

)
≤ (1− pi,1)2

pi,2 − pi,1
(24)

Combining Eq. (22) with Eq. (24) we get

f(σ1:T ) =
1

T

n∑
i=1

T/n∑
r=1

pi,r

= 1− 1

T

n∑
i=1

T/n∑
r=1

(1− pi,r)

≥ 1− 1

T

n∑
i=1

(1− pi,1)2

pi,2 − pi,1
(a)
= 1− n

T

(1− pi,1)2

pi,2 − pi,1
where step (a) is due to the fact that pi,1 = 2−n/2

a

, and pi,2 = 2−n/2
2a

for all i.

Now suppose that we would like to lower bound the utility f(σ1:T ) by 1− ε. Therefore,

n

T

(1− pi,1)2

pi,2 − pi,1
≤ ε (25)

While it is challenging to solve Eq. (25) in an analytical form, we consider a stronger condition to
simplify the calculation. Consider a configuration of a which also satisfies the following inequality

1− pi,2 ≤
1− pi,1

2
(26)

Therefore, a sufficient condition for Inequality (25) to hold is

(1− pi,1)2

pi,2 − pi,1
=

(1− pi,1)2

(1− pi,1)− (1− pi,2)

Eq. (26)

≤ (1− pi,1)2

(1− pi,1)− 1−pi,1
2

= 2(1− pi,1) ≤ εT

n

Plugging in pi,1 = 2−n/2
a

into the above inequality, we get

2−n/2
a

≥ 1− εT

2n
(27)

Now, let us consider the following two cases:

C1 1− εT
2n > 0 (that is, ε < 2n/T ). In this case, we get

a ≥ log

 n

log
(

1
1−εT/(2n)

)

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= log n− log log

(
1

1− εT/(2n)

)
(a)

≥ log n− log

((
1

1− εT/(2n)

)
− 1

)
= log

((
2n2

εT

)
− n

)

where step (a) is by the inequality log(x) ≤ x − 1 for x > 0. A feasible configuration of a
satisfying the above inequality is

a ≥ log

(
2n2

εT

)
(28)

It is easy to verify that Condition Eq. (28) also satisfies our additional constraint Eq. (26).
C2 A second case is ε ≥ 2n/T . In this case, Eq. (27) holds for all a, and we only need to find a

feasible configuration of a that satisfies Eq. (26). A suitable choice of such a constraint is

a ≥ log (3n) (29)

Combining Eq. (21) Eq. (28) and Eq. (29) we obtain

a ≥ max

{
log T, log (3n) , log

(
2n2

εT

)}
which finishes the proof.
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