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Materials and method 
 
Stochastic differential equations 

The cooperative oscillation process of networked degenerate optical parametric 
oscillators (DOPO) with a measurement and feedback (MFB) scheme is described by the 
following c-number stochastic differential equations (9, 23): 
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where ci and si are the in-phase and quadrature phase amplitudes of the ith DOPO, 
respectively. ic~  is the measured in-phase amplitude of the ith DOPO, which can differ 

from the original state due to the noise induced in the measurement process. Only the in-
phase component ci is amplified by the phase sensitive amplification of a DOPO, and the 
sign of ci corresponds to the binary oscillation mode. ξij = rJij is a coupling coefficient 
from the jth to ith DOPO, where r is a constant that determines the coupling strength. The 
pump rate p is normalized by the pump threshold of a single isolated DOPO, and AS is 
defined as the saturation amplitude. dW1 and dW2 are independent Gaussian noise 
processes that originate from vacuum fluctuations from the open port and the pump field 
fluctuation for in-phase and quadrature phase components, respectively. The 2nd term in 
the square brackets on the right hand side of Eq. (S1) gives the spin-spin coupling term, 
which is obtained by a calculation undertaken in the FPGA module. 
 
Maximum cut (MAX-CUT) problem 

MAX-CUT is the problem of dividing the nodes of a given graph into two subsets {S1, 
S2} to maximize the sum of the weights wij (iS1, jS2) of the edges between the divided 
subsets. The cut value )(C  can be counted as follows: 
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where we assign binary variables {1,1} to represent the divided subsets {S1, S2}. 
Here, H is the Ising Hamiltonian defined in Eq. (1) by Jij = wij, and the cut value is 
maximized when the Ising energy is minimized. This means that a MAX-CUT problem is 
intrinsically equivalent to the Ising problem, and we can solve a MAX-CUT problem 
with the coherent Ising machine (CIM) by finding the lowest-energy spin configuration 
of the corresponding Ising model. In the experiment, the quantities we observed with the 
BHD were the in-phase amplitudes of the signal DOPOs, { ̃ }, which are analog values.  
Therefore, when calculating cut values or Ising energies, we converted { ̃ } into {i} as 

sgn	 ̃ . 
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Implementation of simulated annealing 

Here we describe the implementation of simulated annealing used in our benchmark 
study, which was initially introduced by Kirkpatrick et al. (2). Since the benchmark 
instance of interest was a complete graph with edge weights wij{1, 1}, graph data 
could be represented by a binary array of size N (N − 1)/2. Spin values for N = |V | vertices 
were also stored in a binary array of size N, which is known as multi-spin coding (30). In 
the case of N=2,000, the size of graph data was ~244KB, which fitted in the 
cache of modern CPU so that we could efficiently access to the graph data. 
For the efficient calculation, we used a single instruction multiple data (SIMD) 
operation (bitwise XOR and pop count) to boost an energy difference calculation. The 
scheduling was based on a logarithmic function: the inverse temperature is set as 

β = β0 log(1 + t/T ),           (S4) 

where β0 and T are the temperature and time scaling factor, respectively. We implemented 
single-threaded C++ program whose pseudo-code is shown in Algorithm 1. The 
code is available in at (https://github.com/haribara/SA-complete-
graph/releases/tag/WK2000) 
 
Algorithm 1 Simulated Annealing 

1:  Read graph adjacency matrix J            Binary when solving ±1-weighted complete graph 
2:  Initialize spin variable σ  Binary array 
3:  E ← H(σ)  Calculate initial Ising energy using SIMD bit-count 
4:  loop 
5: β  ← β0log(1 + t/T )        Inverse temperature with normalized time t ∈ [0, 1] 
6: Randomly choose vertex v  ∈ V 
7: σ′ ← flip(σ, v)   State whose vertex v is flipped 
8: ∆E ← H(σ′ ) – E                                                     Calculate energy difference (SIMD) 
9: if ∆E < 0 or exp(−β ∆E ) ≥ Uniform(0, 1) then 

10: σ ← σ′   Update spin 
11: E ← E + ∆E 
12: end if 
13:  end loop When the value reaches the target or time runs out 
14:  return E , σ 

 
The graph we used in the benchmarking was generated by rudy.c provided by 

Helmberg which implements a machine independent random number generator (27).  
For example, the following command 
./ rudy − clique 2000 −random 0 1 20001 −times 2 − plus −1 
generates a 1-weighted complete graph of the order N  =  2000. 

The results in Fig. 3 and Fig. 4 were obtained after the parameter optimization. Figure 
S1A shows the parameter (β0, T) dependence of the 1-weighted K2000 in a fixed time of 
50 ms. Figure S1B shows the parameter dependence on the same graph when the target 
accuracy was changed. The benchmarking was performed on an Ubuntu 14.04.4 Linux 
server with two 6 core 2.67 GHz Intel Xeon X5650 processors (L1 data and L2 cache 
size were 32KB and 256KB respectively) and a 96 GB memory. The codes were 
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compiled with a GNU C++ compiler (version4.9.3). An option to reduce the 
computation time further is to parallelize on a multi-core CPU. However, in this 
N=2,000 case, the data size is small enough to fit in a cache of a single core, and each 
iteration is very fast. Therefore, because of the synchronization and communication 
overheads between threads, we benefit little from paralleling SA on a multi-core CPU. 
 
Details of experimental setup 

 The experimental setup is shown in Fig. 1. A 1536-nm continuous wave from a laser 
output is split into two paths, one of which is used as a local oscillator for the balanced 
homodyne detector (BHD), and the other is launched into an intensity modulator (IM1), 
which produces a pulse train with a 40-ps width and a 1-GHz repetition frequency. The 
pulse train is amplified by an erbium-doped fiber amplifier (EDFA1), and the resulting 
pulse train is further split into two parts, one of which is launched into a push-pull 
modulator to prepare a feedback optical signal and the other is launched into a second 
intensity modulator (IM2), which controls the amplitude of the pump pulses. The pulses 
are then amplified by EDFA2, filtered to suppress amplified spontaneous emission noise, 
and then launched into a periodically poled lithium niobate (PPLN) waveguide module 
(PPLN1) to obtain 768-nm pump pulses via the second harmonic generation (SHG) 
process. The 768-nm pump pulses are then input into another PPLN waveguide module 
(PPLN2), which is placed in a 1-km fiber cavity as a phase sensitive amplifier (PSA). 

To realize the pump schedule shown in Fig. S2A, the transmittance of IM2 was 
controlled in a 5-ms period.  
 
Periodically poled lithium niobate waveguides 

PPLN1 and PPLN2 are fiber-coupled modules that contain 5-cm-long ZnO-doped  
LiNbO3 ridge waveguides fabricated using the direct bonding method (31). The doping of 
the LiNbO3 core layer with ZnO made the waveguides highly resistant to photorefractive 
damage. By using the dry etching technique, we obtained a ridge waveguide with fine 
uniformity. As shown in Fig. 1, the PPLN waveguide modules are equipped with dichroic 
mirrors that reflect the 0.8-m light while transmitting the 1.5-m light in front of the 
input and output facets of the waveguides. The temperatures of the PPLN modules are 
tuned and stabilized so that the SHG power and the DOPO powers are maximized.  
 
Phase stabilization of optical system 

The output DOPO pulses extracted from 9:1 coupler 1 were divided into two using 
another coupler (not shown in Fig. 1). One part was launched into the BHD and the other 
was used for monitoring and cavity locking. The DOPO pulse train was further divided 
into two paths; one was used to monitor optical power and the other was launched into a 
photodetector after being amplified with an EDFA. The signal from the photodetector 
was used to obtain the error signal for cavity locking. We employed a dither-and-lock 
scheme (20), and we controlled the cavity length by feedback-controlling piezo-based 
fiber stretcher (FS1) so that the photocurrent was maximized. As a result, we observed 
that the phase pattern of the dummy DOPO pulses, which is inherently random but that 
should repeat that same pattern for every round trip, was kept the same on the 



 
 

5 
 

oscilloscope for an average of several tens of seconds. This confirms that the cavity phase 
was successfully locked to the pump phase. 

In addition to the phase locking of the 1-km fiber cavity, the phases of the local 
oscillator for the BHD and the coupling pulses were also stabilized by employing the 
dither-and-locking scheme using FS2 and FS3 shown in Fig. 1. To phase-lock the local 
oscillator, we obtained the error signal by dividing the detection signal from the BHD. 
The error signal for locking the coupling pulse phase was obtained from a photodetector 
placed at the output port of 9:1 coupler 2 (see Fig. 1). 
 
FPGA modules for measurement and  feedback scheme 

We used two cascaded Xilinx Virtex-7 (XC7VX690T) FPGAs for MFB. The FPGA 
contains 693,120 logic cells and 3,600 digital signal processor (DSP) slices, and has a 
52,920-Kb memory. The 2,048 signal DOPO amplitudes measured by the BHD were 
digitized by a 12-bit analog-to-digital converter (ADC). The FPGA could handle input 
data at up to 1 GS/s from the ADC through 8-channel parallel processing at an operation 
frequency of 125 MHz, and identify the number of signal DOPOs thanks to an external 
header signal. Since the number of logic cells in the FPGA was not large enough to allow 
us calculate the feedback signals for the 2,0482,048 matrix of spin-spin interactions Jij, 
we divided the calculation tasks between two FPGAs and connected them in tandem with 
four 12.5 Gbps transceivers. To reduce the number of logic cells required for the 
feedback signal calculations, we used the logic cells as the input data selectors instead of 
multipliers to implement the interaction weights of three values Jij{1, 0, 1}. In 
addition, the resolution of the input data was reduced from 12 bits (at the ADC output) to 
5 bits when calculating the feedback signals, so that we could further save the logic cell 
resources. To ensure the accuracy of the feedback signal calculations, the amplitude 
range for the 5 bits was changed during the temporal evolution of the DOPO amplitudes 
so that we could obtain adequate resolutions in the DOPO amplitude measurements. The 
2,048 calculation results were converted to feedback signals by a 14-bit DAC at a 
sampling frequency of 2 GHz, which were then imposed on the coupling pulses with a 
push-pull optical modulator. The coupling pulses that conveyed the feedback signals 
were injected into the corresponding signal DOPOs. The coupling pulses and the signal 
DOPOs were synchronized by adjusting the temporal delay of the FPGA output and the 
length of the optical path for the coupling pulses using a variable optical delay line placed 
in front of the push-pull modulator (not shown in Fig. 1). We could accomplish this MFB 
sequence within 3 s including the measurement time of 2,048 DOPO amplitudes and the 
2,0482,048 matrix calculation time in FPGA modules. The FPGA could store up to 512 
sets of 2,048 DOPO amplitudes. This means that we could store the final spin states of 
512 sequential measurements, or temporal evolutions of the 2,048 DOPO signals for up 
to 512 circulations. Therefore, when we observed a temporal evolution as shown in Figs. 
2 and 4, we recorded the signal DOPO amplitudes every 2 circulations since a 
computation trial took 1,000 circulations of DOPOs in the cavity. 

In the current FPGA module, the host computer sets Jij and retrieves ci one after the 
other via a slow serial communication interface (RS-232C), which makes the data 
transfer between the host computer and the FPGA module very slow (~60s). By 
implementing the data transfer between the FPGA module and the host computer with a 
high speed interface such as PCI-Express, we can significantly improve the transfer time. 



 
 

6 
 

Under the experimental condition described in this paper, the host computer sends 
~244KB of Jij data, and retrieves ~4KB of ci data. If we use  PCI-Express Gen3 (x8), the 
Jij and ci transfer times are estimated to be ~37 and 0.6 sec, respectively, which are 
much shorter than the typical operation time of the CIM. 

 
Pump schedule of CIM in solving MAX-CUT 

To obtain the results shown in Fig. 3, we employed the 1.5-m pump schedule for 
SHG shown in Fig. S2A. Here, the pump power was normalized at the DOPO threshold 
without optical couplings. The 1.5-m pump power, which is proportional to the 
amplitude of the 0.8-m pump for the PSA, was gradually increased from the first to the 
950th cavity circulation, and then abruptly increased at the 951st circulation to saturate 
the DOPOs so that their phases were discretized to either 0 or . The pump and injection 
pulses were turned off after the 1000th circulation to initialize the DOPO states. On the 
other hand, in the time evolution measurement shown in Fig 4, the 1.5-m pump power 
was abruptly increased at the first circulation to the maximum normalized pump power of 
1.2 so that the CIM could obtain the benchmark Ising energy faster than the schedule 
shown in Fig. S2A. The DOPO output power as a function of the normalized 1.5-m 
pump power is shown in Fig. S2B. At the DOPO threshold, the average 1.5-m pump 
power was 270 mW. 
 

Role of quantumness in CIM 

The balanced homodyne detection in our system is operated at nearly the shot-noise 
limit. Therefore, the DOPO oscillation is initiated by the quantum noise originating from 
a vacuum, and it undergoes a squeezed vacuum state formed by the nonlinear process in 
the phase sensitive amplification (PSA), before reaching a coherent state as a result of the 
DOPO phase transition. According to a numerical study in which optically-coupled 
DOPOs were analyzed, the formation of a superposed state is observed during the DOPO 
phase transition (Fig. 7 in (14)). It is also shown numerically that the solution searching 
assisted by the formation of a superposed state is severely perturbed by injecting thermal 
noise into the DOPO cavity (Fig. 13 in (14)). From these numerical results, we consider 
that the CIM is being operated in a partially quantum regime, but we have yet to confirm 
the quantum behavior of our system experimentally. Moreover, it is also important to 
clarify experimentally whether the existence of a superposed state in the CIM contributes 
to better performance in terms of computation time and accuracy.   

The lower-energy searching process of the CIM occurs during the DOPO phase 
transition, which is caused by the nonlinear interactions of photons in a PSA with an 
initial state originating from quantum noise. To the best of our knowledge, it is still an 
open question whether such a nonlinear phenomenon seeded by quantum noise can be 
efficiently emulated with a purely classical system, such as special purpose electronics 
without any quantum effects. 
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Supplementary Text 
 
Visualization of 2000-node graph 

Figure S3A shows the graph structure of G22, which is a sparsely connected random 
graph with 2,000 nodes and 19,900 edges. A solution to the MAX-CUT problem on G22 
graph obtained with the CIM is shown in Fig. S3B. The red and blue nodes correspond to 
up and down spin states of Ising model, respectively. The green lines show the edges 
between the divided subsets. The cut value was 13,313. 
 
Temporal evolutions of cut value and Ising energy 

Figure S4 shows the temporal evolutions of the cut value and the Ising energy for the 
data shown in Fig. 2. In this measurement, we employed the same pump schedule as that 
shown in Fig. S2A. At the 1,000th circulation, the cut value reached 32,612 and the Ising 
energy decreased to 66,264. 
 
Average temporal evolutions of Ising energy for solving complete graph K2000 

In addition to the best results obtained in 100 trials with the CIM and SA shown in Fig. 
4, we evaluated the average performance of the CIM and SA. The temporal evolutions of 
the Ising energy averaged for 26 trials with the CIM and those averaged for 100 trials 
with SA are shown by red and black curves, respectively, in Fig. S5. In the current CIM 
system, the transfer of the data to a computer takes approximately 60 seconds, which is 
much longer than the average stabilized time of the optical setup in the CIM. Therefore, 
we performed temporal evolution measurements 100 times sequentially using the CIM, 
and then eliminated the results where DOPO instabilities were observed. Such 
instabilities include phase flips of the local oscillators for the BHD or the coupling pulses 
and abrupt phase changes possibly caused by mechanical vibrations of the optical setup.  
The times required to reach the benchmark Ising energy were 270 s for the CIM and 5.5 
ms for SA.   
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Fig. S1 

Parameter optimization of SA in solving MAX-CUT for the complete graph K2000. (A) 
Average cut value of 100 trials obtained in a fixed time of 50 ms with various 
temperature scaling factors 0 and time scaling factors T. We used 0 = 4.0 and T = 4,200 
for obtaining the results shown in Fig. 3. (B) Computation time as a function of time 
scaling factor T for various target values. We used T = 200 to reach the target Ising 
energy of 60,278 as soon as possible for the time comparison in Fig. 4. 
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Fig. S2 

(A) Pump schedule for CIM when solving MAX-CUT in Fig. 3. (B) DOPO output power 
as a function of a normalized pump rate without optical couplings.  
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Fig. S3 

Visualization of 2000-node graph. (A) G22: a sparsely connected random graph with 
2,000 nodes and 19,900 edges. (B) A solution to MAX-CUT problem on G22 graph 
obtained by the CIM.  
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Fig. S4. 

Time evolutions of the MAX-CUT value (red) and Ising energy (blue) when solving the 
complete graph K2000. 
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Fig. S5 
Time evolutions of Ising energy obtained with CIM and SA when solving the complete 
graph K2000. The dotted line corresponds to the benchmark energy H = 60,278 obtained 
with the GW-SDP algorithm. The temporal evolution of the Ising energy averaged for 26 
trials with the CIM and that averaged for 100 trials with SA are shown by the red and 
black curves, respectively. The times required to reach the benchmark energy were 270 
s (CIM) and 5.5 ms (SA). 
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