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1 Introduction

A recent surge of interest in quantum chaos has revolved around a strongly-interacting

quantum system called the Sachdev-Ye-Kitaev (SYK) model [1, 2]. This model of N all-

to-all randomly interacting Majorana fermions is solvable at strong-coupling and appears to

be in the same universality class as black holes, exhibiting an emergent reparametrization

invariance and an extensive ground-state entropy. More compellingly, the out-of-time order

correlation function (OTOC) of the theory [1, 3] saturates a universal bound on chaotic

growth [4], a seemingly unique feature of gravity [5, 6] and conformal field theories with

a holographic dual [7]. The low-energy description of the theory in terms of a Schwarzian

effective action also encapsulates dilaton gravity in AdS2 [8, 9]. This model should be seen

as a valuable resource for understanding both black holes and quantum chaos.

There have already been a myriad of generalizations of the SYK model, including

an extension by Fu, Gaiotto, Maldacena, and Sachdev, to a supersymmetric model of

strongly interacting Majoranas [10], which has been further explored in [11–15]. The
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supersymmetric version of the model also displays many of the same holographic properties.

Notably, at strong-coupling the theory has an emergent superconformal symmetry which

renders it solvable and allows one to compute correlation functions. At low-energies the

symmetry is broken, giving a Schwarzian-like effective action which mimics supergravity

in AdS2 [16]. Like its non-supersymmetric counterpart, the model has random matrix

universality in its spectral statistics [17, 18] and appears to exhibit thermalization in its

eigenstates [19, 20], both hinting at underlying chaotic dynamics.

Although we lack a precise definition of quantum chaos, there are still universal fea-

tures one expects of quantum chaotic systems: most notably, having the spectral statistics

of a random matrix [21]. Information scrambling [22, 23] and chaotic correlation func-

tions [5] have also been extolled as symptoms of chaos. Ideas from quantum information

have helped make these notions more precise, quantifying how scrambling [24] and random-

ness [25] are encoded in OTOCs. Similarly, [26] explored the connection to random matrix

dynamics, quantifying randomness and scrambling in the time evolution by random matrix

Hamiltonians and computing a quantity called the frame potential. The onset of random

matrix behavior can also be seen in the spectral form factor, which has been studied in the

SYK model [27].

Motivated by this, we may ask the question: what are the universal features of super-

symmetric SYK models, or more generally, of all supersymmetric quantum chaotic systems?

And how do we quantify them from an information-theoretic standpoint?

To address this, we consider the Wishart-Laguerre ensembles, also termed random

covariance matrices [28], which appeared in the random matrix classification of the su-

persymmetric SYK models [18]. Recall that the Hamiltonian in supersymmetric quantum

mechanics is constructed as the square of a supercharge. Loosely speaking, the intution is

that this random matrix ensemble arises from squaring the Gaussian random matrices, just

as we might think of a chaotic supersymmetric system defined by a disordered supercharge.

In this paper we consider the simplest Wishart-Laguerre ensemble,1 the Wishart-Laguerre

unitary ensemble (LUE), corresponding to supersymmetric quantum systems without ad-

ditional discrete symmetries. In the following, we will quantitatively derive predictions for

the spectral form factors, frame potential, and the out-of-time-ordered correlators, where

a central distinction from the non-supersymmetric models arises in the spectral 1-point

functions, which modifies the early time decay of the spectral form factor. A slower decay

in the LUE frame potential indicates less efficient information scrambling and the failure

of the ensemble to become Haar-random. Our predictions for the LUE match those from

the 1-loop partition function of the supersymmetric SYK model.

The paper is organized as follows: in section 2, we review the supersymmetric model

and spectral form factor, discussing its universal features and behavior in SYK models. In

section 3, we review the basic tools in random matrix theory and then compute spectral

form factors for the Wishart-Laguerre ensemble. In section 4, we explore chaos this random

matrix ensemble by computing the frame potentials and correlation functions, and comment

1Interestingly, Wishart ensembles have appeared in studying the reduced density matrix in systems

evolved with random matrix Hamiltonians [29]. Wishart ensembles have also appeared in random matrix

contructions of supergravity to explore the space of AdS vacua [30].
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on its complexity growth. In section 5, we discuss chaos in supersymmetric SYK and

compare with the random matrix predictions, concluding in section 6. In appendix A we

present some numerical checks of our expressions.

2 Setup and overview

2.1 Supersymmetric SYK model

We first briefly review the supersymmetric extension of the SYK model. For an in-depth

discussion of the original model, see [3]. ConsiderN all-to-all interacting Majorana fermions

ψi with random couplings, which anticommute as {ψi, ψj} = δij . The (2q − 2)-point

N = 1 supersymmetric model is constructed from the supercharge Q, a q-body Majorana

interaction with odd q. The Hamiltonian is then given by the square of the supercharge as

H = Q2 , where Q = i(q−1)/2
∑

i1<...<iq

Ci1...iqψi1 . . . ψiq , (2.1)

with Gaussian random couplings Ci1...iq of mean and variance

〈
Ci1...iq

〉
= 0 ,

〈
C2
i1...iq

〉
=
J2(q − 1)!

N q−1 , (2.2)

and where J is a positive constant. We also define J as J2 = 2q−1J 2/q, with a slightly

more convenient scaling in q.

In the large N limit, this model shares many of the same appealing holographic fea-

tures as the SYK model, such as chaotic correlation functions, a zero-temperature entropy,

and an emergent superconformal symmetry which is broken at low-energies, admitting a

Schwarzian-like desciption [10]. We can compute the free energy at large N by evaluating

at the saddle point, and at low temperatures find

logZ = −βE0 +Ns0 +
cN

2β
+ . . . , (2.3)

where s0 is the zero-temperature entropy density and c is the specific heat. In the super-

symmetric theory we have c = απ2/J with a constant α, which becomes c = π2/4q2J in

the large q limit. The ground-state entropy density is computed to be s0 = 1
2 log(2 cos π

2q )

and the ground state energy E0 can be subtracted off.

The SYK model with N Majoranas enjoys a random matrix classification, where the

symmetry class of the theory is dictated by a particle-hole symmetry [17, 27]. Depending

on N , the spectrum will display level statistics of one of the three Gaussian ensembles:

GUE, GOE, or GSE. For the supersymmetric extension of SYK, we can similarly classify

the random matrix behavior for a given number of Majoranas N , going beyond Dyson’s

classification to the extended 10-fold symmetry classification of Altland-Zirnbauer [31].

Understanding how anti-unitary symmetries act on the supercharge Q, we can identify the

appropriate symmetry class [18]. The Hamiltonian, given as the square of the supercharge,

then has random matrix description in terms of the Wishart-Laguerre ensembles. The

level statistics are still those of the Gaussian ensembles, but the spectral correlations are
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different. Roughly, we can think of the supersymmetric SYK behaving like the square of

Gaussian random matrices, which are the Wishart ensembles. For more details, see [18] as

well as an extension of the classification to the N = 2 supersymmetric models [15].

Speaking generally, there a number of reasons one might wish to consider supersymmet-

ric generalizations of SYK. For instance, much is understood about the low-energy physics

in nearly AdS2 spacetimes purportedly dual to the low-energy dynamics in SYK, but the

exact holographic dual of the theory is not know. As many of the best understood exam-

ples of AdS/CFT are supersymmetric, one might hope that this particular construction

might provide guidance on the correct UV completion of the SYK model. Less ambitiously,

considering the supersymmetric models might be useful in contructing higher dimension

analogs [12].

2.2 Spectral form factor

Quantum chaotic systems are often defined to have the spectral statistics of a random ma-

trix. An object familiar in random matrix theory which exhibits these universal properties

is the spectral form factor. We will introduce this object more precisely in our review of

random matrix theory in section 3.1, but the 2-point spectral form factor R2(t, β) can be

given simply in terms of the analytically continued partition function

R2(t, β) ≡
〈
Z(β, t)Z∗(β, t)

〉
, where Z(β, t) ≡ Tr

(
e−βH−itH

)
, (2.4)

and where the average 〈 · 〉 is taken over an ensemble of Hamiltonians (e.g. SYK, or some

disordered spin system, or a random matrix ensemble). This object was discussed more

recently in [27], where they studied the form factor in SYK and found that the theory

revealed random matrix behavior at late times. From the bulk point of view, one motivation

for studying this object was a simple version of black hole information loss [32]: 2-point

functions appear to decay exponentially in terms of local bulk variables, whereas a discrete

spectrum implies a finite late-time value. The same inconsistency is apparent in the spectral

form factor.

Some characteristic features of the time-evolved form factor R2(t), exhibited in both

the SYK model and in random matrix theories, are: an early time decay from an initial

value called the slope, a crossover at intermediate times called the dip, a steady linear

rise called the ramp, and a late-time floor called the plateau. In figure 1 we observe

these features in SYK. While the early time decay depends on the specific system, the

ramp and plateau should be universal features of quantum chaotic systems. The ramp is

characteristic of spectral rigidity: the long-range logarithmic repulsion of eigenvalues. The

anticorrleation of eigenvalues causes the linear increase in the form factor. At late times,

or at energy scales smaller than the mean spacing, the form factor reaches a plateau as

degeneracies are rare and neighboring eigenvalues repel in chaotic systems.

SYK form factor and GUE. Recently, [27] studied the form factor in SYK and found

agreement with random matrix theory, showing analytically and numerically the aspects

of the dip, ramp, and plateau of SYK agree with those of the Gaussian unitary ensemble

– 4 –
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Figure 1. The 2-point spectral form factor and its connected component for SYK with N = 24

Majoranas at inverse temperature β = 1, computed for 800 realizations of disorder. We observe the

slope, dip, ramp, and plateau behaviors.

(GUE), an ensemble of L × L random Hermitian matrices. We will avoid explicitly in-

troducing and defining the original Majorana, instead simply mentioning a few details to

better frame the discussion of the model’s supersymmetric extension.

The emergent reparamentrization invariance of SYK at strongly-coupled is broken

spontaneously and explicitly at low-energies, yielding an effective description in terms of

the Schwarzian derivative [1, 3]. The 1-loop partition function of the Schwarzian theory

ZSch
1-loop ∼ ecN/2β/β3/2, can be analytically continued to β + it to study the form factor of

SYK. At early times, R2(t, β) is dominated by the disconnected piece which gives a 1/t3

power law decay, normalized by its initial value we have

〈Z(β, t)Z∗(β, t)〉
〈Z(β)〉2

' β3e−cN/β

t3
, (2.5)

for times greater than t &
√
N when the time dependence in the exponent disappears and

where c is the specific heat of the theory. To isolate this contribution, [27] considered a

special limit (a ‘triple scaled’ limit) where only the Schwarzian contributes. Moreover, [33]

showed that the Schwarzian theory is 1-loop exact and recieves no higher-order corrections,

indicating that the power-law decay predicted by the Schwarzian should dominate the

disconnected form factor for long times.2 This power law decay is simply the Laplace

transform of the statement that the spectrum has a square-root edge3

ρ(E) ∼ sinh
√

2cEN . (2.6)

Knowing the free energy in the large N limit, we can also show that the form factor of

SYK transitions to a ramp at a dip time td ∼ eNs0/2, growing linearly until a plateau time

of tp ∼ eNs0+cN/2β , where s0 is the zero-temperature entropy density.

Many of these features of the SYK form factor agree with the universal predictions

from GUE. The form factor for GUE has been studied extensively in the random matrix

2For more on solving the Schwarzian theory, see [34, 35].
3As discussed in [3]. The spectral density of SYK has been further studied in [27, 36, 37].
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literature [38–40] and references therein, and revisited more recently in the context of SYK

and black holes in [26, 27, 41]. Simply stating the results, the early-time decay of the GUE

form factor transitions to a linear ramp at a dip time of td ∼
√
L, growing linearly until

the plateau time tp ∼ L. We note that around the plateau time the ramp is not quite

linear as nonperturbative effects become important as we transition to the plateau [42].

The non-universal early time decay also has the same power law 1/t3, due to the fact the

Wigner semicircle law for Gaussian random matrices ρ(λ) = 1
2π

√
4− λ2, also exhibits a

square-root edge.

Supersymmetric SYK form factor. From the large N partition function of the su-

persymmetric theory, we can also make predictions as to the behavior of the spectral form

factor. We will present a more explicit treatment of this in section 5. At low-energies, the

fluctuations around the large N saddle point of the supersymmetric theory break super-

conformal symmetry; the action for these reparametrizations is a super-Schwarzian [10],

where the action integrates over τ and a superspace coordinate θ and the super-Schwazian

acts just like the standard Schwarzian derivative except as a super-derivative, respecting a

similar chain rule. The action gives a 1-loop partition function

ZsSch
1-loop(β) ∼ 1√

βJ
eNs0+cN/2β , (2.7)

which differs in the 1-loop determinant from the SYK model. The super-Schwarzian theory

is also 1-loop exact [33], ensuring its validity away from very early times. Analytically

continuing the partition function β → β + it, disconnected piece of the form factor which

dominates at early times, is

〈Z(β, t)Z∗(β, t)〉
〈Z(β)〉2

' βe−cN/β

t
, (2.8)

exhibiting a 1/t decay in the slope, slower with than the decay in SYK. This can also be

understood as the contribution from the edge of the spectrum, where the Laplace transform

of the 1-loop partition function gives

ρ(E) ∼ 1√
JE

cosh
(√

2cNE
)
, (2.9)

observing a square-root growth at the edges of the spectrum.

As we discuss later, computing the ramp function for supersymmetric SYK, we find

the ramp and slope intersect at a dip time td ∼ eNs0 , which is the same time scale as the

ramp’s transition to the plateau tp ∼ eNs0 . The slow decay at early times means that the

slope transitions to ramp behavior at the same time-scale as the plateau time, i.e. the ramp

is hidden beneath the slope. We plot the 2-point form factor for the model in figure 2.

Subtracting the disconnected contribution reveals the ramp in the connected form factor,

also plotted. The lack of a dip in the supersymmetric model will have implications for our

discussion of the frame potential and randomness.

– 6 –
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Figure 2. The 2-point spectral form factor and its connected piece for the supersymmetric SYK

model with N = 24 Majoranas at inverse temperature β = 1, computed for 800 realizations of

disorder. We observe the slope and plateau behaviors, while the ramp is obscured by the slow

early-time decay of the 1-point function.

Notation. A brief comment on notation. In recent work studying the spectral form

factor, the normalized 2-point form factor is often denoted as g(t, β), and its connected

component as gc(t, β):

g(t, β) ≡ 〈Z(β, t)Z∗(β, t)〉
〈Z(β)〉2

, and gc(t, β) ≡ g(t, β)− 〈Z(β, t)〉〈Z∗(β, t)〉
〈Z(β)〉2

. (2.10)

While in [26], we denoted the 2-point form factor as R2(t, β), and more generally the 2k-th

form factor as R2k(t, β). Just to be clear

g(t, β) =
R2(t, β)

〈Z(β)〉2
, or at β = 0 : g(t, 0) =

R2(t)

L2
. (2.11)

For us, working directly with the numerator turns out to be more convenient when dis-

cussing the frame potential and correlation functions, and avoids subtleties regarding the

appropriate or tractable normalization, i.e. ‘quenched’ vs ‘annealed’.

3 Form factors for Wishart matrices

3.1 Basic setup in random matrix theory

In this paper, we consider the Wishart-Laguerre Unitary Ensemble (LUE), an ensemble of

L× L random matrices which can be generated as H†H, where H is a complex Gaussian

random matrix with normally distributed complex entries drawn with mean 0 and variance

σ2 = 1/L. This is the ‘physics normalization’, where the spectrum does not scale with

system size.4 The joint probability distribution of LUE eigenvalues is given by

P (λ)dλ = C |∆(λ)|2
L∏
k=1

e−
L
2
λkdλk , (3.1)

4Note that it is common in the random matrix literature to instead work with unit variance σ2 = 1.
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where ∆(λ) is the Vandermonde determinant and the constant factor is define such that the

distribution integrates to unity. One can think of LUE matrices as square of a Gaussian

random matrix. More generally, we could define L × L Wishart matrices generated by

L′ × L Gaussian matrices, where L′ ≥ L, which gives a slightly more general eigenvalue

distribution. But given the supersymmetric Hamiltonians we consider defined as the square

of the supercharge, we just consider Wishart matrices generated by square matrices with

L = L′. We average over the random matrix ensemble as

〈O〉 ≡
∫
DλO where

∫
Dλ = C

∫ ∏
k

dλk|∆(λ)|2e−
L
2

∑
k λk . (3.2)

The spectral density is given by integrating the joint probability P (λ) over L−1 variables,

ρ(λ) =

∫
dλ1dλ2 . . . dλL−1P (λ1, λ2, . . . λL−1, λ) . (3.3)

More generally, we can define the k-point spectral correlation function by integrating over

all but k arguments

ρ(k)(λ1, λ2, . . . , λk) =

∫
dλk+1dλk+2 . . . dλLP (λ1, λ2, . . . λk, λk+1, . . . , λL) . (3.4)

Recall that for the Gaussian ensembles, we may take the large L limit famously recover

Wigner’s semicircle law for the distribution of eigenvalues. Instead in the LUE, we take

the large L limit and find [43]

ρ(λ) =
1

2πλ

√
λ(4− λ) , (3.5)

which is referred to as the Marčenko-Pastur distribution.

Just as in the GUE, the LUE is a determinantal point process, which means the k-point

spectral correlators are given by a kernel K as

ρ(k)(λ1, . . . , λk) =
(L− k)!

L!
det
(
K(λi, λj)

)k
i,j=1

. (3.6)

Demonstrating the universality of Dyson’s sine kernel [44], the Wishart ensemble has sine

kernel statistics in the large L limit [28, 45], meaning

K(λi, λj) =


sin
(
Lρ(u)π(λi − λj)

)
π(λi − λj)

for i 6= j

L

2πλi

√
λi(4− λi) for i = j ,

(3.7)

where u is an arbitrary constant valued in [0, 4]. We will fix the value of u numerically.5

The spectral form factor, defined as the Fourier transform of the spectral correlation

functions, is a standard quantity to consider in random matrix theory; see [38] for an

5The analogous constant in considering the GUE would be fixed to u = 0, given the symmetry of the

spectrum. However, for the LUE u = 0 it is divergent. The value of u specifies the center of the two

eigenvalues λi and λj .

– 8 –
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overview. We define the 2-point spectral form factor in terms of the analytically continued

partition function Z(β, t) as6

R2(t, β) ≡ 〈Z(β, t)Z∗(β, t)〉 =

∫
Dλ

∑
i,j

ei(λi−λj)te−β(λi+λj) , (3.8)

where the continued partition function Z(β, t) is

Z(β, t) = Tr
(
e−βH−iHt

)
. (3.9)

More generally, we consider k-point spectral form factors which we define as

R2k(t, β) ≡
〈

(Z(β, t)Z∗(β, t))2k
〉

(3.10)

=

∫
Dλ

∑
i,j

ei(λi1+...+λik−λj1−...λjk )te−β(λi1+...+λik+λj1+...+λjk ) . (3.11)

In the following subsections, we will compute the LUE spectral form factors and compare

analytical results with numerical observations.

At large L, we compute the spectral form factors by Fourier transforming the deter-

minant of kernels in eq. (3.6). We integrate the products of K as [38]

∫  n∏
j=1

dλj e
ikjλj

 K(λ1, λ2)K(λ2, λ3) . . .K(λn−1, λn)K(λn, λ1)

= αL

∫
dλ ei

∑n
j=1 kjλ

∫
dk g(k)g

(
k +

k1
2παL

)
g

(
k +

k2
2παL

)
. . . g

(
k +

kn−1
2παL

)
,

(3.12)

where the Fourier transform of the sine kernel is

g(k) ≡
∫
dr e2πikr

sin(πr)

πr
=

{ 1 for |k| < 1/2

0 for |k| > 1/2
(3.13)

and where αL ≡ Lρ(u). The integral over the sine kernel is unbounded and can be treated

by imposing a cutoff. We use the box approximation [26]

αL

∫
dλ ei

∑n
j=1 kjλ → αL

∫ L/2αL

−L/2αL
dλ ei

∑n
j=1 kjλ = L

sin
(∑n

j=1 kj/2ρ(u)
)∑n

j=1 kj/2ρ(u)
, (3.14)

fixed such that eq. (3.12) over the truncated range with ki = 0 integrates to L. This will

be helpful in computing the higher-point spectral form factors, for instance, R4.

6This is slightly different than the standard presentation in the RMT literature, where the form factor

is usually given as the Fourier transform of a connected form factor, called the cluster function. Here we

work with both connected and disconnected pieces.
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It will also be convenient to define the following functions which will appear in com-

puting the LUE form factors

r1(t) ≡ e2it
(
J0(2t)− iJ1(2t)

)
r2(t) ≡

 1− t

2πLρ(u)
for 0 < t < 2πLρ(u)

0 for t > 2πLρ(u)

r3(t) ≡
sin
(
t/2ρ(u)

)
t/2ρ(u)

. (3.15)

3.2 Two point form factor at infinite temperature

Let us start with the simplest case, the two point spectral form factor at infinite tempera-

ture β = 0. Pulling out coincident eigenvalues, we have

R2(t) =

∫
Dλ

∑
i,j

ei(λi−λj)t = L+ L(L− 1)

∫
dλ1dλ2 ρ

(2)(λ1, λ2)e
i(λ1−λ2)t . (3.16)

The determinant of kernels in eq. (3.6) gives a squared 1-point function and 2-point function

contribution. Using the integration formula in eq. (3.12), we obtain

R2(t) = L+ L2|r1(t)|2 − Lr2(t) (3.17)

in terms of the functions defined above, and where

|r1(t)|2 = J2
0 (2t) + J2

1 (2t) . (3.18)

In figure 3, we plot the infinite temperature LUE 2-point form factor as derived in

eq. (3.17) along side the GUE form factor (see [26]). Note that unlike in the GUE case

there is no dip or ramp. The lack of a intermediate time scale at which the initial slope

decay transitions at the dip to a linear growth to a plateau, is due to the slow decay of the

1-point functions which gives the slope.

Subtracting off the contribution from the 1-point functions defines the connected piece

of the 2-point form factor

Rc2(t) ≡
〈
|Z(β, t)|2

〉
−
〈
Z(β, t)

〉2
= L− Lr2(t) , (3.19)

which exposes the linear growth before the plateau. The connected components are also

plotted in figure 3.

The transition point in the function of r2 is defined as the plateau time tp = 2παL,

where αL = Lρ(u). The value of 2παL is not straightforwardly fixed given the unbounded

support when integrating over kernels. The constant also determines the linear slope of

the ramp function r2 prior to the plateau. As we discuss in appendix A, the constant u is

fixed by numerically fitting to the ramp. We find a plateau time of tp ∼ πL/2 for the LUE

2-point form factor.

Using the asymptotic form of the Bessel function,

Jk(z) ∼
√

2

πz
cos

(
z − kπ

2
− π

4

)
, (3.20)
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Figure 3. On the left: the 2-point spectral form factor and its connected component for the LUE

at infinite temperature, as given in eq. (3.17), plotted for different values of L and normalized by

the initial value L2. We observe the slow 1/t decay down to the plateau value, hiding the linear

ramp in the connected piece. On the right: the 2-point spectral form factor for the GUE at infinite

temperature, with a faster early-time decay exposing the ramp.

we conclude that the disconnected piece decays at early times (for t much smaller than L

but larger than O(1)) as

r1(t)r
∗
1(t) = J2

0 (2t) + J2
1 (2t) ∼ 1

πt

(
cos2(2t− π/4) + sin2(2t− π/4)

)
=

1

πt
. (3.21)

This O(1/t) decay of the LUE form factor is to be contrasted with the slower O(1/t3)

decay in both the GUE and the SYK model [26, 27]. However, the connected piece,

dominated by the universal sine kernel in the large L limit, still sees the steady linear rise

O(t) at intermediate time scales. This fact reaffirms the expectation that the decay in

the disconnected piece, the Fourier transformed one-point functions, is model dependent.

However, the ramp in the connected 2-point function is a universal feature of quantum

chaotic systems.

In addition to a hidden dip, another difference with the GUE result is the lack of an

oscillating decay in the LUE at infinite temperature. In the GUE, the Bessel function decay

at β = 0 gives a true dip time O(1). The envelope of this decay was what we considered

as the decay to a dip given that a finite β smoothed out the oscillations.

3.3 Two point form factor at finite temperature

Now let us consider the two point form factor at finite temperature. For small β, one may

effectively insert the one point distribution in the integration formula. We walk through

the computation in some detail as it will mimic the calculation of the supersymmetric SYK

form factor in section 5. To be concrete, we write

R2(t, β) =

∫
Dλ

∑
i,j

ei(λi−λj)te−β(λi+λj)

= L

∫
dλ ρ(λ)e−2βλ + L(L− 1)

∫
dλ1dλ2 ρ

(2)(λ1, λ2)e
i(λ1−λ2)te−β(λ1+λ2)

– 11 –
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Figure 4. The 2-point spectral form factor for LUE at finite temperature, as given in eq. (3.25),

plotted for different values of L and at different temperatures, normalized by the initial value. The

plateau value depends on both L and β, while the plateau time is just L dependent.

= L

∫
dλ ρ(λ)e−2βλ

+

∫
dλ1dλ2

(
K(λ1, λ1)K(λ2, λ2)−K2(λ1, λ2)

)
ei(λ1−λ2)te−β(λ1+λ2)

= Lr1(2iβ) + L2r1(t+ iβ)r1(−t+ iβ)

−
∫
dλ1dλ2K

2(λ1, λ2)e
i(λ1−λ2)te−β(λ1+λ2) , (3.22)

simply integrating the kernels as specified above. For the final integral, we make the change

of variables

u1 =
1

2
(λ1 + λ2) , u2 = λ1 − λ2 , (3.23)

which allows us to compute∫
dλ1dλ2K

2(λ1, λ2)e
i(λ1−λ2)te−β(λ1+λ2) =

∫
du1du2

(
sin(Lπu2)

πu2

)2

eiu2t−2βu1

≈
∫
du1 e

−2βu1ρ(u1)

∫
du2

(
sin(Lπu2)

πu2

)2

eiu2t

=Lr1(2iβ)r2(t) , (3.24)

where we regulate the unbounded integral with the insertion of ρ(u1). The 2-point spectral

form factor at finite temperature is

R2(t, β) = Lr1(2iβ) + L2r1(t+ iβ)r1(−t+ iβ)− Lr1(2iβ)r2(t) . (3.25)

We plot the analytic result in figure 4 and observe that at finite temperature there is still

no clear dip time in LUE, unlike for the GUE, and that the plateau time tp does not

depend on β. For the LUE, we define h1(β) ≡ r1(2iβ), a purely real function of the inverse

temperature, with the plateau value

R2(tp, β) = h1(2β)L . (3.26)
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At small but finite β we have

h1(2β) = 1− 2β + 4β2 +O(β3) , (3.27)

compared to the GUE result 1 + 2β2 +O(β4) [26], one can see that the LUE plateau value

is smaller than GUE, which is also observed in numerics.

3.4 Four point form factor at infinite temperature

As an example of a higher point form factor, we compute the 4-point R4 at infinite tem-

perature. By definition we have

R4(t) ≡
〈
Z(t)Z(t)Z(t)∗Z(t)∗

〉
LUE

=

∫
Dλ

∑
i,j,k,`

ei(λi+λj−λk−λ`)t . (3.28)

To evaluate the expression we must consider all possible ways in which the eigenvalues

can collide in the sum, i.e. all equal, λi = λj , λk = λ`, etc, and treat them separately.

Making use of the 2-point form factors we derived above, and computing the 3 and 4-point

function contributions by expanding the determinant and integrating products of kernels

as eq. (3.12), we obtain

R4(t) = L4|r1(t)|4 − 2L3Re(r21(t))r2(t)r3(2t)− 4L3|r1(t)|2r2(t) + 2L3Re(r1(2t)r
∗2
1 (t))

+ 4L3|r1(t)|2 + 2L2r22(t) + L2r22(t)r23(2t) + 8L2Re(r1(t))r2(t)r3(t)

− 2L2Re(r1(2t))r3(2t)r2(t)− 4L2Re(r∗1(t))r3(t)r2(2t) + L2|r1(2t)|2

− 4L2|r1(t)|2 − 4L2r2(t) + 2L2 − 7Lr2(2t) + 4Lr2(3t) + 4Lr2(t)− L . (3.29)

In the large L limit, some of the terms above are subdominant or suppressed in L at all

times, allowing us to simplify the expression as

R4(t) ≈ L4|r1(t)|4 +2L2r22(t)−4L2r2(t)+2L2−7Lr2(2t)+4Lr2(3t)+4Lr2(t)−L , (3.30)

similar to the result we derived for the GUE [26]. At times much earlier than the plateau

time, we have

R4 ≈ L4|r1(t)|4 +
t(t− 2πρ(u))

2π2ρ(u)2
∼ L4

π2t2
+
t(t− 2πρ(u))

2π2ρ(u)2
. (3.31)

Again, we find a slow decay of O(1/t2) and thus no visible dip at large L. The plateau

time is still 2παL, with a plateau value R4(tp) = 2L2 − L ∼ 2L2.

4 Chaos and Wishart matrices

We want to study the chaotic nature of time-evolution by LUE Hamiltonians. Consider

the ensemble of unitary time-evolutions generated by LUE random matrices

Et =
{
e−iHt , with H ∈ LUE

}
. (4.1)

We want to understand how random LUE time-evolution is by asking when the ensemble

forms a k-design. Computing the frame potential for the ensemble will quantifies a distance

to Haar-randomness. We also compute correlation functions of operators evolved by the

LUE to look at early-time chaos in the chaotic decay of 2k-point functions.
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4.1 QI overview

Before discussing the frame potential and measures of chaos for the random matrix en-

semble, we will briefly overview the quantum information theoretic concepts and tools we

use, namely the notion of a unitary k-design and the frame potential. For a more in-depth

review of these in the context of information scrambling in chaotic systems, see [25, 26].

For a finite dimensional quantum mechanical system, with Hilbert space H of di-

mension L, the unitary group U(L) can be equipped with the Haar measure, the unique

left/right invariant measure on U(L). Given some ensemble of unitary operators E , we say

that the ensemble forms a unitary k-design if it reproduces the first k-moments of Haar∫
Haar

dU (U⊗k)†(·)U⊗k =

∫
V ∈E

dV (V ⊗k)†(·)V ⊗k , (4.2)

for any operator. More intuitively, we should think of this as capturing how random

the ensemble is, in that the ensemble is sufficiently spread out over the unitary group to

reproduce its statistics. A precise measure of Haar-randomness is the frame potential [46],

which measures the 2-norm distance between the k-th moments of an ensemble E and Haar.

The k-th frame potential is defined with respect to an ensemble E as

F (k)
E ≡

∫
U,V ∈E

dUdV
∣∣Tr(U †V )

∣∣2k . (4.3)

The frame potential for any ensemble E is lower bounded by the Haar value

F (k)
E ≥ F (k)

Haar , (4.4)

with equality iff E forms a k-design. The k-frame potential for the Haar ensemble is simply

F (k)
Haar = k! for k ≤ L.

The frame potential appeared in the context of information scrambling and black holes

as the average of all out-of-time ordered correlators [25]

1

L4k

∑
A’s,B’s

∣∣∣〈A1B1(t) . . . AkBk(t)
〉
E

∣∣∣2k =
1

L2(k+1)
F (k)
E , (4.5)

where “B(t)” = UBU † and U ∈ E , averaged over any ensemble of unitaries E , with each Ai
and Bi summed over all Pauli operators. This makes precise an approach to randomness,

where the chaotic decay of correlators at late-times means the frame potential becomes

small and the ensemble forms a k-design.

4.2 Frame potentials

First frame potential at β = 0. We start by computing the first frame potential at

infinite temperature F (k)
E for the ensemble of LUE time-evolutions. Following [26], we have

F (k)
LUE =

∫
dH1dH2 e

−L
2
TrH2

1 e−
L
2
TrH2

2
∣∣Tr
(
eiH1te−iH2t

)
|2 . (4.6)
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Using the unitary invariance of the ensemble and integrating using the second moment of

the Haar ensemble, we find

F (k)
LUE =

1

L2 − 1

(
R2

2 + L2 − 2R2

)
, (4.7)

with the same dependence on the form factors as in the GUE case.

In figure 5 we plot our analytic form of the first frame potential of the LUE at infinite

temperature. We can see that there are significant differences between the supersymmetric

and non-supersymmetric cases. The slow decay of the LUE means there the ensemble does

not form a k-design at the dip. At late-times after the plateau, we find the frame potential

approaches a value of 2.

First frame potential at finite β. We can also generalize the frame potential to fi-

nite temperature by averaging over all thermal 2k-point functions with operators spaced

equidistant on the thermal circle (i.e. inserting ρ1/2k between operators in the 2k-OTOC).

Averaging over operators, we find [25]

F (k)
Eβ =

∫
E
dH1dH2

∣∣Tr
(
e−(β/2k−it)H1e−(β/2k+it)H2

)∣∣2k
Tr(e−βH1)Tr(e−βH2)/L2

, (4.8)

with the normalization that gives the standard frame potential as β → 0. For the LUE,

we compute the finite temperature frame potential just as above, Haar integrating to find

F (1)
LUE(t, β) =

1

L2 − 1

(
R̃2

2(β/2) + L2 − 2R̃2(β/2)
)
, (4.9)

where we define a slightly more conveniently normalized form factor

R̃2(t, β) =

∫
Dλ

∑
ij e

it(λi−λj)e−β(λi+λj)∑
i e
−2βλi/L

. (4.10)

As it is more analytically tractable, we opt to separately average the numerator and de-

nominator (the ‘quenched’ version), and checked numerically that the results are in good

agreement. We see that at early times, near t = 0, we have the β-dependent value

F (1)
LUE ≈ L

2h1(β/2)4

h1(β)2
, (4.11)

While at late times, after the plateau time, we have F (1)
LUE(tp, β) = 2.

Second frame potential at β = 0. The second frame potential for the LUE at infinite

temperature in expressed in terms of the spectral form factors as [26]

F (2)
LUE =

1

(L2 − 9)(L2 − 4)(L2 − 1)L2

( (
L4 − 8L2 + 6

)
R2

4 + 4L2
(
L2 − 9

)
R4

+ 4
(
L6 − 9L4 + 4L2 + 24

)
R2

2 − 8L2
(
L4 − 11L2 + 18

)
R2 − 4L2

(
L2 − 9

)
R4,2

+
(
L4 − 8L2 + 6

)
R2

4,2 + 2
(
L4 − 7L2 + 12

)
R2

4,1 − 8
(
L4 − 8L2 + 6

)
R2R4
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Figure 5. We show the first and second frame potentials for the LUE at infinite temperature at

L = 1000. The slow decay means we do not form a k-design at the dip time. For comparison, the

Haar value is plotted in grey.

− 4L
(
L2 − 4

)
R4R4,1 + 16L

(
L2 − 4

)
R2R4,1 − 8

(
L2 + 6

)
R2R4,2

+ 2
(
L2 + 6

)
R4R4,2 − 4L

(
L2 − 4

)
R4,1R4,2 + 2L4

(
L4 − 12L2 + 27

) )
(4.12)

where we have defined

R4,1(t) ≡
∫
Dλ

L∑
i,j,k=1

ei(λi+λj−2λk)t , R4,2(t) ≡
∫
Dλ

L∑
i,j=1

e2i(λi−λj)t . (4.13)

The 4-point form factor with two coincident eigenvalues, R4,2(t), is simply R2(2t). The

3-point form factor R4,1(t) for the LUE can be computed just as in section 3, where we find

R4,1(t) = L3Re
(
r1(2t)r

∗2
1 (t)

)
− L2Re(r1(2t))r3(2t)r2(t)− 2L2Re(r∗1(t))r3(t)r2(2t)

+ L2|r1(2t)|2 + 2L2|r1(t)|2 + 2Lr2(3t)− Lr2(2t)− 2Lr2(t) + L . (4.14)

We plot the second frame potential for LUE alongside the first frame potential in figure 5.

The second frame potential has an initial value of L4 and late-time value of 10, just as for

the GUE. But again the difference arises at intermediate time scales, where the LUE fails

to form a k-design.

4.3 Correlation functions

As we discussed before, the recent interest in quantum chaos has involved extensive dis-

cussion of out-of-time order correlation functions (OTOCs). Namely, the following 4-point

functions of pairs of operators in thermal states

〈AB(t)AB(t)〉β where B(t) = e−iHtBeiHt . (4.15)

We consider OTOCs with operators evolved by LUE Hamiltonians and averaged over the

random matrix ensemble. In [26], we studied 2k-OTOCs and related them to spectral

quantities, both by averaging over the operators in the correlation function or over an

ensemble of Hamiltonians. In that work, we averaged 2k-OTOCs over the GUE and related

– 16 –



J
H
E
P
0
5
(
2
0
1
8
)
2
0
2

the correlators to spectral quantities using the unitary invariance of the measure. As

the LUE is similarly invariant, the relation between correlation functions averaged over

the random matrix ensemble and the form factors will be the same as thus parts of the

discussion here will closely follow [26]; the differentiating aspects of LUE time-evolution

thus lie in the spectral form factors themselves.

First we look at the 2-point function and integrate over Hamiltonians drawn from

the LUE, using the unitary invariance of the measure and Haar integrating in the eigen-

value basis

〈AB(t)〉LUE =

∫
dH〈AB(t)〉 =

R2(t)− 1

L2 − 1
〈AB〉c + 〈A〉〈B〉 , (4.16)

where 〈AB〉c denotes the connected correlator. For non-identity Paulis, the expression is

nonzero for B = A†, and thus

LUE average : 〈AA†(t)〉LUE ≈
R2(t)

L2
, (4.17)

for R2(t) � 1. We note that, just as is the case for GUE, if we instead average the same

2-point function over all operators A, we arrive at the same expression

Operator average :

∫
dA 〈AA†(t)〉 =

R2(t)

L2
, (4.18)

which is true regardless of the Hamiltonian. The fact that the LUE averaged 2-point

function equals the operator averaged correlator means that LUE does not care about

the size or locality of the operator A, given that we made no assumptions about A in

computing eq. (4.17), and thus is blind to phenomena relevant for early-time chaos such

as operator growth.

We next compute the 4-point OTOC averaged over the LUE, using the fourth moment

of Haar and looking at the leading order behavior

〈AB(t)AB(t)〉LUE =

∫
dH 〈AB(t)AB(t)〉 ≈ R4(t)

L4
, (4.19)

for non-identity Pauli operators A and B. Note that the OTOCs of the form 〈AB(t)CD(t)〉
are all almost zero unless ABCD = I.

We can now comment on the time scales that LUE describes as seen from the averaged

correlation functions. The time scale of 2-point function decay corresponds to the time

scales for which the system thermalizes. Using the early time piece of the 2-point form

factor we derived in section 3, where the contribution from the 1-point function gives

the decay

〈AA†(t)〉LUE ≈ J2
0 (2t) + J2

1 (2t) ∼ 1

πt
, (4.20)

contrasted to the 1/t3 decay for GUE. Similarly, we can comment on scrambling in the

LUE by looking at the early time decay of the LUE averaged 4-point OTOCs. The early

time behavior of the 4-point form factor means the OTOC decays like

〈AB(t)AB(t)〉LUE ≈
(
J2
0 (2t) + J2

1 (2t)
)2 ∼ 1

π2t2
. (4.21)

– 17 –



J
H
E
P
0
5
(
2
0
1
8
)
2
0
2

The characteristic time-scale for decay of LUE 2-point functions is t2 ∼ O(1), or for

systems at finite temperature O(β). The time-scale for 4-point function decay is also order

1, but faster than the decay of 2-point functions t4 ∼ t2/2. Although the decay is slower

than for GUE, unsurprisingly, the conclusion about the LUE’s perception of early-time

chaos is the same: the LUE 4-point OTOCs decay faster than the LUE 2-point functions,

which means the random matrix ensemble fails to describe scrambling at early times.

4.4 Complexity

Lastly, we briefly comment on the complexity growth under time-evolution of LUE Hamil-

tonians. Here we simply discuss the results; details and definitions of ensemble complexity

and its relation to the frame potential are given in [25, 26]. The gate complexity of an

ensemble E , i.e. the number of gates needed to generate E , is lower bounded by the frame

potential as

C(t) ≥
2kn− logF (k)

E (t)

2 log n
. (4.22)

At early times before the dip time t � td, the dominant contribution to the k-th frame

potential is F (k)
E ' R2

2k(t)/L
2k [26]. For k � L, the 2k-th form factor goes as R2k ∼ r2k1 ,

the function defined in eq. (3.15) in terms of Bessel functions. The decay r21 ∼ 1/t, gives a

lower bound on the growth of the circuit complexity

C(t) ≥ O
(
k log t

log n

)
, (4.23)

where the slower decay for LUE still gives the same logarithmic lower bound as GUE.

Interestingly, in GUE the 1-point function contribution to the form factor at early times

is an oscillating Bessel function decay J2
0 (2t)/t2, which formally gives a dip time O(1).

As these oscillations are not present in the LUE, we can bound the complexity up to the

dip time even at infinite temperature. But for large k, we recover the quadratic growth

of complexity: C ≥ t2/ log n, hinting again at the unphysical nature of LUE evolution at

early times.

5 Chaos in supersymmetric SYK

The supersymmetric SYK model admits a classification by Wishart-Laguerre random ma-

trix ensembles and has a density of states which closely follows a Marčenko-Pastur dis-

tribution [18]. Having discussed the properties of LUE random matrices, we turn to the

supersymmetric SYK model and check that the form factor acts similarly. From the frame

potential, we then discuss the Haar-randomness of the model’s time evolution.

Assuming that the spectral statistics of the theory are Gaussian, as both SYK and

the Wishart matrices are, allows us to use the sine kernel to compute the spectral n-point

functions. We note that if the statistics are GUE/GOE/GSE, the sine kernel is slightly

modified and the ramp function differs as we approach t ∼ L, but the universal growth

of the ramp is still present. Knowing that the supersymmetric SYK model has Gaussian
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spectral statistics [18], we can compute the finite temperature form factor for the theory

just as in eq. (3.22), and find

R2(t, β) =
〈
Z(β + it)Z(β − it)

〉
=

∫
Dλ

∑
i,j

ei(λi−λj)te−β(λi+λj)

≈ L
∫
dE ρ(E)e−2βE +

∣∣〈Z(β + it)〉
∣∣2 − L ∫ dE e−2βEρ(E)r2(t) , (5.1)

where r2(t) is the ramp function from the LUE and we define E = 1
2(λ1 +λ2). Continuing,

we find the finite temperature form factor

R2(t, β) ≈ |〈Z(β + it)〉|2 + Z(2β)
(
1− r2(t)

)
. (5.2)

As a sanity check, the late-time value Z(2β) here matches the infinite-time average of the

spectral form factor. As we discussed in section 2, the 1-loop partition function from the

super-Schwarzian theory is

ZsSch
1-loop(β) ∼ 1√

βJ
eNs0+cN/2β , (5.3)

where s0 is the ground-state entropy density and c is the specific heat. At early times, the

form factor is dominated by its disconnected component, decaying as 1/t

Early : R2(t, β) ∼ e2Ns0

J t
(5.4)

for times greater than t ∼
√
N = logL/2, but shorter than t ∼

√
L. Computing the

connected form factor, we find

Rc2(t, β) ≡
〈
Z(β + it)Z(β − it)

〉
− |〈Z(β + it)〉|2

= Z(2β)
(
1− r2(t)

)
=

1√
2βJ

eNs0+cN/4β
(
1− r2(t)

)
. (5.5)

Equating the 1/t decay with the ramp gives a dip time td ∼ eNs0 , the same order as the

plateau time tp. Even in light of the exactness of the super-Schwarzian theory, we should

be cautious in extrapolating to very late times. It is possible that in the large N theory

the slope is not well-described by the effective theory at late times and, in turn, decays

faster at an intermediate time scale.

Lastly, to get a hint at the nature of scrambling and an approach to randomness in SYK

and its supersymmetric extension, we numerically plot the first frame potential for each

in figure 6 at infinite temperature and for N = 16 Majoranas. The faster decay and dip

that appears for SYK means the frame potential decays quickly, forming an approximate

k-design at the dip time. Although the dip value of the SYK frame potential for N = 16 is

larger than the Haar value, we checked that as we increase N the dip value decreases and

expect that SYK forms an approximate k-design in the large N limit. The frame potential

for the supersymmetric model exhibits a much more gradual approach to its minimal value

which is larger than in SYK, indicating less effective information scrambling and a greater
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Figure 6. Numerics for the first frame potential of SYK and supersymmetric SYK at β = 0 for

N = 16 Majoranas and 200 samples. The decay and dip of SYK indicates faster scrambling and an

approximate k-design behavior not as readily apparent in the supersymmetric model.

distance of the ensemble to forming a k-design. It would be interesting to see, either

numerically or analytically, if these behaviors persist at large N . Both theories, like their

random matrix counterparts, become less random and increase after the dip, deviating

further from an approximate design, which suggests that k-invariance [26] might provide a

better insight in how information scrambles in SYK models.

There are a few comments worth making relating the discussion here with the behavior

of the form factor in similar models.7 In the complex SYK model, the spectral form

factor appears to have a 1/t4 power-law decay at early times [19, 47], in contrast to the

Majorana and SUSY SYK models. As we discussed, the respective power-law decays in

these models arise from the Schwarzian and super-Schwarzian modes governing the low-

energy physics, and persist for a long time as a result of the 1-loop exactness of the

effective actions. In the complex SYK model, where we have a conserved U(1), there

is an additional contribution to the effective action from the phase fluctuations of the

reparametrization mode, as was discussed in [47]. Combined with the contribution from the

Schwarzian mode, the partition function has a Z(β) ∼ 1/(βJ )2 dependence. Continuing

to real-time, the early-time contribution to the 2-point form factor gives a power-law decay

R2(t) ∼ |Z(β, t)|2 ∼ 1/t4. As the low-energy description is likely also 1-loop exact, one

expects this behavior to persist for a long time. It is further interesting to note that

while the power-law indicates a more rapid onset of late-time chaos as seen by the frame

potential, the additional U(1)-mode does not contribute to the Lyapunov exponent of the

theory [48]. Thus, like Majorana SYK and SUSY SYK models, the complex SYK model

is maximally chaotic at early times, but in the above sense scrambles quicker.

We should also comment on the behavior of spectral quantities more generally in

chaotic systems with gravitational duals. In 2d CFTs, an analysis of the contribution

from different saddles indicates a persisting 1/t3 decay in the form factor for holographic

CFTs, and a 1/t decay for rational CFTs [49].8 A slow decay of spectral quantities also

7We thank an anonymous JHEP referee for raising these points.
8Relatedly, [50] discussed a distinction between entanglement scrambling in rational and holo-

graphic CFTs.
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appears in the D1-D5 theory at the orbifold point, in line with the fact that the theory

does not have chaotically decaying correlation functions [52] and appears to exhibit a log-

arithmic ramp [51], in contrast to the universal linear ramp we expect in chaotic systems.

Although [27] argued for the rapid decay of spectral functions and the late-time appear-

ance of a ramp in super Yang-Mills at strong-coupling, better analytic control of spectral

quantities is needed to understand quantum chaos in holographic theories.

6 Conclusion and outlook

In this paper, we considered the Wishart-Laguerre unitary ensemble in order to understand

universal features of supersymmetric quantum mechanical systems. We computed the 2-

point spectral form factor for the LUE and found the one-point function contribution gives

a 1/t power law decay at early times, hiding the dip and transitioning directly into the

plateau. This is relatively slow compared to the ∼ 1/t3 decay seen in both SYK and the

GUE. The universal ramp behavior from the sine kernel can be seen in the connected LUE

2-point form factor. These results agrees with the prediction from the 1-loop partition

function in supersymmetric SYK. This slow decay implies the onset of a random matrix

description occurs at much later times. This can best be seen from the frame potential,

where we find a more gradual decay to Haar-random dynamics. Moreover, the frame

potential for the LUE, unlike that of the GUE, does not reach the Haar value and does

not form an approximate k-design. This is also what we predict and observe numerically

in the supersymmetric SYK model, where the slower decay and larger dip value imply less

effective information scrambling.

The supersymmetric model, while maximally chaotic, sees a slower onset of random

matrix behavior — made evident by the lack of a dip in the form factor and by the

slow approach to Haar-randomness in the frame potential. The apparent distinction here

between early-time chaos, in terms of chaotic correlation functions, and late-time chaos, in

terms of scrambling and Haar-randomness, demands a deeper understanding.

Note added: in the preparation of this draft, [53] appeared which also considers the

infinite temperature 2-point spectral form factor for Wishart matrices in a different context.

Namely, they study the statistical properties of the reduced density matrix on spatial

regions in quantum many-body systems. They also comment on universal features of

Wishart matrices in Floquet systems. As there is a sense in which Floquet systems may

be thought of as supersymmetric quantum mechanics [54], where the Floquet unitary is

built from two ‘supercharges’, it would be interesting to explore further connections with

our work.
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Figure 7. Numerics for both the LUE 2-point form factor and its connected component, compared

to the analytic expressions derived in section 3, for L = 500 and with 10000 samples. We find good

agreement in the slope and plateau, with expected deviations around the plateau time. The very

early time behavior of the connected form factor can also be understood analytically.
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A Numerics

In this appendix we discuss numerics to fix an analytic form of the form factors for LUE

and to further provide checks on the expressions we derived for the form factors and frame

potentials. As we mentioned in section 3, there was a free parameter u in the expressions

we derived for the k-point form factors. This dependence appears in the ramp function

r2(t), defined in eq. (3.15), and determines both the slope of the linear ramp in Rc2(t) and

the plateau time. Numerically computing the connected 2-point form factor for L = 500,

we fix u by fitting the ramp between times ∼1 and
√
L/2. We know that the early time

behavior of the ramp is quadratic before t ∼ 1 and expect a loss of analytic control as we

approach the plateau time. We thus linearly fit points in this intermediate regime and find

u = 1.156. We hope to derive this result more rigorously in the future.

We also present some numerical checks of our expressions for the LUE 2-point form

factor in figure 7, where we find good agreement in the slope, ramp, and plateau. Our

results were derived for LUE at large L and thus should capture the perturbative behavior.

But in the transition to the plateau, nonperturbative effects [42] become important and

our results deviate from numerics in this regime. After the plateau time, we return to

contributions from the 1-point function. At very early times, before t ∼ O(1), the connected

component grows as Rc2(t) ∼ t2. This quadratic growth can be derived from an impressive

integral representation of the connected 2-point form factor [40]. We have also checked our

expressions of the finite temperature and higher point LUE spectral functions and found

good agreement with numerics.
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