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Optical Neural Networks

Demetri Psaltis and Michael Levene

California Institute of Technology
Department of Electrical Engineering

Pasadena, California 91125

ABSTRACT

The trade -off between the number of neurons that can be im-
plemented with a single correlator and the shift invariance that each
neuron has is investigated. A new type of correlator implemented
with a planar hologram is described whose shift invariance can be
controlled by setting the position of the hologram properly. The shift
invariance and the capacity of correlators implemented with volume
holograms is also investigated.

1. Introduction

Image processing is the primary application for optical neural
networks. In this application shift invariance is an important consid-
eration. Normally, we wish to recognize an image independently of
its position in the field of view. Optical pattern recognition systems
have traditionally been designed with shift invariance using the clas-
sical VanderLugt correlator [1] and its variants. A schematic diagram
of the conventional correlator is shown in Fig. 1. The output is the
2 -D correlation between the input image and a reference image stored
in the Fourier transform hologram at the middle plane. If there is a,
match between the input and the stored reference then a correlation
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Figure 1. VanderLugt Correlator
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peak forms at the output. The position of the correlation peak corre-
sponds to the position of the input object. If the input object moves
then the correlation peak follows it. In recent years such correlators
have been used as building blocks to construct large optical neural
networks [2]. Networks with several thousand units can be readily
constructed optically. Each unit can be thought of as an optical cor-
relator with the weights of the neuron encoded in the hologram.

It is not practical to duplicate the basic correlator hundreds or
thousands of times in order to build a large network. Therefore, meth-
ods have been developed for storing the weights of multiple neurons
on the same hologram [3] . Different pixels at the output plane are
devoted to represent the response of different units. This raises the
trade -off between shift, invariance and the number of units that can
be represented by a single correlator. If the response of multiple neu-
rons can be represented by pixels at the output plane then the shift
invariance for each has to be at least partially destroyed to make
room for the additional units. In this paper we explore two methods
for representing multiple neurons with a single correlator. The first
method uses Fresnel holograms instead of Fourier holograms which de-
stroys the shift invariance of the system and permits multiple locally
tuned units to operate in parallel. The second method uses volume
holograms in the middle plane. The Bragg selectivity of volume holo-
grams destroys the shift invariance of the correlator. The thickness
of the hologram and the geometry used determine the degree and the
type of shift invariance obtained.

2. Fresnel Correlator

The Fresnel correlator is shown in Fig. 2. The only difference
between the systems in Figures 1 and 2 is the fact that the hologram
is positioned a distance d away from the Fourier plane. The hologram
is recorded with a plane wave reference at an angle A,. as shown in
Fig. 2. The transmittance of the recorded hologram is

t(r) oc FL(sn e,.:r+CO.Ord)L -,j27riAx /ÀFe j7ri2z 2d /ÀF2) (2)

where F is the focal length of the lens, A is the pixel spacing at the
input plane, and A is the wavelength of light.
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Figure 2. Fresnel correlator

When the same image fi is placed at the input plane then the light
at the output plane of the correlator is

9(e) = t(r) 2,j7ri0:r/aF -
E

I.fil26(e -

i202d/aF2) -2.jaF
c:

da,

(3)

In other words when the input is an exact replica of the image that
was used to record the hologram then the output can be approximated
by a delta. function when the finite apertures are ignored. In practice,
this means that a. sharp autocorrela.tion peak appears in the Fresnel
correlator just a.s in the conventional correlator. When the input is a.
shifted version of fi, then the output. becomes

= J (x) f(i - 2p)c,.2,jni0.r/aFC,-.jni202d/aF-)e-2.7 /..\Fdc

: \ j2riio0zdaF''. I.fi
2 c: - F..in.e,. -

(4)
The correlation peak shifts at the output a.s in the conventional corre-
lator however, the strength of the correlation peak diminishes clue to
the phase factor in the summation over i in Eq. (4). We can obtain
an estimate for the allowable shift invariance by assuming that fi is
bandlimited by B. In this case we can show that the correlation peak
will become zero when
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When the same image /) is placed at the input plane then the light 
at the output plane of the correlator is

0(f) = f t(x)^ /XF e~J*t2 ^dlXF2) e~2^lXF dx

i
~ ]-f' 2<"{' ~ Fsnld' ) (3)

In other words when the input is an exact replica of the image that 
was used to record the hologram then the output can be approximated 
by a delta function when the finite apertures are ignored. In practice, 
this means that a sharp autocorrelation peak appears in the Fresnel 
correlator just as in the conventional correlator. When the input is a 
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0(f) = f /(.,•)£/(, - ?;0)e2.?.)A,/AFe-.,.dAb//AF2)e-2,^/AFfk
7

~ Y2 \f,\2(j2wi,oA2d/XF2HC - FstnOr - 10A)

(4)
The correlation peak shifts at, the output as in the conventional corre­
lator however, the strength of the correlation peak diminishes due to 
the phase factor in the summation over i in Eq. (4). We can obtain 
an estimate for the allowable shift invariance by assuming that /,; is 
bandlimited by D. In this case we can show that the correlation peak 
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Zoo > 2B.F2 /d (5)

Therefore, by selecting d sufficiently large, we can limit the shift in-
variance to any desired value. In this way we can allocate a specified
region of the output plane to each reference image recorded on the
hologram. Multiple neurons can be recorded on the saine hologram
by changing the angle of the reference beam for each new hologram
which relocates the position of the autocorrelation peak. There is
an obvious trade -off between shift invariance and the number of refer-
ence images that can be accommodated in the same system. Complete
shift invariance would allow only one reference, and if there is no shift
invariance then each output pixel can be used for a separate neuron.
There are other limits, however, that restrict the number of neurons
that can be represented. One limit is the limited dynamic range of
the recording medium. The diffraction efficiency of the hologram goes
as 1 /M2 where M is the number of holograms stored. Therefore, for
large enough M, the output falls below the noise level and it cannot
be reliably detected.

A second, more serious limit is the crosstalk that arises when
multiple holograms stored in a planar medium are read out. In the
above equations we approximated the output correlation pattern by a.
delta function whose amplitude drops as the input shifts or changes.
In reality, a finite signal level will be distributed throughout the entire
output plane due to each recorded hologram. We can obtain a rough
estimate for the amplitude of the signal away from the peak by as-
suming that the amplitude of the crosstalk is the random sum of the
signals from the N pixels of the input image diffracted by the M holo-
grams stored in the hologram. The standard deviation of the crosstalk
noise goes as oc AIN. The amplitude of the autocorrelation peak is
proportional to N, therefore the SNR. is \N /117. Therefore, given a.
desired SNR, and N, the crosstalk limited bound on M can be readily
calculated. For instance, if the desired SNR. =10, and the number of
pixels N in 2 -D is 106, then M = 104.
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3. Volume hologram correlator in the 90° geometry

The crosstalk obtained in the Fresnel correlator described in the
previous section is drastically reduced when volume holograms are
used. This is due to the Bragg selectivity of volume holograms.
The diffraction efficiency drops when the angle of the read -out beam
changes. In a correlator, the read -out beam is actually the Fourier
transform of the input image. If the input image is a replica of the
image used to record the hologram, then the read -out beam is auto-
matically Bragg matched and a strong autocorrelation peak is pro-
duced. When the input shifts, the Fourier transform is multiplied by

a linear phase term. Physically, this phase term describes a tilt in
the beam that illuminates the hologram compared to the recording
beam. Thus, a shift in the input leads to a Bragg mismatch and a,
reduction in the diffraction efficiency. The loss in shift invariance due
to Bragg mismatching is fundamentally different from the mechanism
in the Fresnel correlator. Bragg mismatching leads to a loss in diffrac-
tion efficiency and hence no crosstalk. In the Fresnel correlator there
is crosstalk due to defocussing that redistributes the energy from a
single correlation peak to the entire output plane.

Figure 3. The 90° geometry

An optical correlator implemented in the 90° geometry is shown
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in Figure 3. The hologram is approximately a cube. The signal beam
enters the crystal from a different facet of the crystal than the refer-
ence beam, as shown in Fig. 3. The two beams intersect in the crystal
at 90 °. When a recorded hologram is read out with the Fourier trans-
form of the input image, the diffracted- signal is produced through a
third facet of the crystal and the correlation signal forms at the out-
put plane. If the input image shifts by a distance i0 A then the wave
illuminating the crystal tilts be an angle DA = io /F. The angu-
lar selectivity of the hologram in the 90° geometry is approximately
À /Lx, where Lx is the size of the crystal in the x direction. From
these two relationships the maximum allowable shift is found to be

i. < AF/LTA (6)

pixels. The quantity on the RES of the above equation is typically
approximately equal to rule, therefore this correlator has no shift in-
variance in the x direction. In the y direction , the volume hologram
has no selectivity and therefore the shift invariance in y is approx-
imately maintained. We can take advantage of the loss in shift in-
variance in x by recording multiple holograms. The reference beam is
rotated in the x -z plane by an angle AO before each new hologram
is formed. The position of the correlation peak in the z direction is
proportional to 8in8y. which implies that the a.utocorrelation peaks
due to different holograms will be horizontally displaced. The pres-
ence of a strong correlation peak unambiguously identifies the input
image since a horizontal shift in the input that might move the corre-
lation peak to the position of another reference image would be Bragg
mismatched. Therefore there is almost no crosstalk in this architec-
ture. The limit on the number of holograms that can be stored in
this case is no longer limited by the SNR.. Instead it is the geometri-
cal limit due to the finite lens apertures that in practice imposes the
upper bound on the number of holograms. Practical systems with
M = 1,000 references can be readily implemented.

Figure 4. Volume hologram correlator in the reflection geometry

Although the 90° geometry allows one to record many indepen-
dent correlators in one crystal, it is often desirable to have limited
shift invariance in both dimensions rafter than broad shift invariance
in only one direction. This can be accomplished by recording holo-
grams in the reflection geometry as shown in Fig. 4. The Bragg
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selectivity function in the reflection geometry, within the paraxial ap-
proximation, is given by

Lt
11 oc S2nC[

A
OfÌs(OOy + Os + Or)]

where II is the diffraction efficiency, 9r is the angle of the reference
wave with respect to the z axis, A, is the angle of the recorded signal
wave, OBq is the shift in the reconstructing signal wave, and sine(x) =
sin(lrx) /7rx.

F F

o,

Figure 4. Reflection geometry correlator

The expression describing the field at the correlation plane due to the
auto-correlation of f (x) is

L i09() => , f(io).f (i-o + + e,.F)sie[ -( F + r)( + (9,,)]. (12)

This is just the auto -correlation of f(i0) except for the sine term
that accounts for Bragg selectivity. The sine terni limits the shift
invariance of the correlator. In this case, we get a. similar windowing
effect as in the 90° geometry. As images shift out of the center of
the image plane the .sine term causes the correlation peak to diminish
until, for a certain critical shift given by the first, zeros of the sine,
the peak disappears completely. The .sine term also apodizes the
image with increasing shift, so that, features on the edge of the image
contribute less to the correlation peak than those in the center.
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The expression describing the field at the correlation plane due to the 
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9(0 = /(*A)/*(*A + C + 0,F),ine[Tf(y + 0r)(! + 6r)]. (12)

i

This is just the auto-correlation of ,/(?A) except for the sine term 
that accounts for Bragg selectivity. The sine term limits the shift 
invariance of the correlator. In this case, we get a. similar windowing 
effect as in the 90° geometry. As images shift out of the center of 
the image plane the sine term causes the correlation peak to diminish 
until, for a. certain critical shift given by the first zeros of the sine, 
the peak disappears completely. The sine term also apodizes the 
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contribute less to the correlation peak than those in the center.
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The limited shift invariance of the reflection geometry volume
correlator creates the opportunity to tile the correlation plane with
several correlators with limited shift invariance such that each correla-
tor has its own square within the output plane. The center correlators
(those recorded with on -axis reference waves) will have the most shift
invariance, while those on the edges will have the least. The maximum
allowable shift invariance for Or = 0 is

A
AO, =

The shift invariance decreases rapidly as Or increases. If we record
adjacent correlators such that their first zeros overlap, we can be
assured that there will be no confusion as to which correlator a. given
location on the corelation plane is responding to. Fig. 5 plots the
shift invariance half angle versus recording angle in one dimension for
such a recording scheme (angles are in radians external to an 8 mm
crystal). If we assume a maximum 0, 0.08r ad, then a. grid of 30 x
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30 correlators can be formed. Larger images should be stored further
from the center, since they are less likely to shift as much as smaller
images.

5. Summary

The shift invariance and the capacity of the three architectures
we discussed are summarized in Table 1, along with the conventional
VanderLugt correlator. This simple comparison reveals the advantage
of the reflection geometry which combines a large number of neurons
with a limited shift invariance in both dimensions. The maximum
allowable shift is VTV pixels in both dimensions for the 180° geometry.
The allowable shift invariance decreases rapidly as the reference beam
angle is changed (see Fig. 5).

Shift Invariance Number of Neurons

Correlator N x N 1

Fresnel Correlator /( SNR) x /N(SNEW (SNR)2

90° Geometry N x 1 ti N

Reflection Geometry < \/N x IN N

Table 1. Comparison of the four architectures
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we discussed are summarized in Table 1, along with the conventional 
VanderLugt correlator. This simple comparison reveals the advantage 
of the reflection geometry which combines a large number of neurons 
with a limited shift invariance in both dimensions. The maximum 
allowable shift is \/N pixels in both dimensions for the 180° geometry. 
The allowable shift invariance decreases rapidly as the reference beam 
angle is changed (see Fig. 5).

Shift Invariance Number of Neurons

Correlator N x N 1

Fresnel Correlator \/N(SNR) x VN(SNm/(SNR.)2

90° Geometry iV x 1 ~ N

Reflection Geometry < \/N x \/N ~ N

Table 1. Comparison of the four architectures
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