J. Am. Chem. Soc., 1997, 119(48), 11620-11627, DOI:10.1021/ja9723803

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permission.html

Table S1. Crystal and Intensity Collection Data for Pt(bpy)(bdt)

Formula: $PtC_{16}H_{12}N_2S_2$	Formula Weight: 491.49
Crystal Color: red	Habit: needle
Crystal Size: 0.15 x 0.18 x 0.26 mm	$\rho_{\text{calcd}} = 2.18 \text{ g cm}^{-3}$
Crystal System: monoclinic	Space group: $P2_1/n$ (no. 14)
a = 8.206(2) Å	
b = 11.456(4) Å	$\beta = 103.14(2)^{\circ}$
c = 16.350(4) Å	
$V = 1496.8(7) Å^3$	Z = 4
Lattice parameters: 25 reflections,	$6 \le \theta \le 11^{\circ}$
$\mu = 97.33 \text{ cm}^{-1}$	Absorption correction: Ψ scans
Enraf-Nonius Cad-4 diffractometer	ωscans
MoK α , $\lambda = 0.7107$ Å	Graphite monochromator
2 <i>θ</i> range: 2 - 50°	$-9 \le h \le 9, -13 \le k \le 13, 0 \le l \le 19$
T = 297 K	
Number of reflections measured: 5743	Number of independent reflections: 2634
Number with $F_o^2 > 0: 2469$	Number with $F_o^2 > 3\sigma(F_o^2)$: 2087
Standard reflections: 3 every 150 min.	Variation: within counting statistics
GOF _{merge} : 1.11 for 2500 multiples	R_{merge} : 0.024 for 2127 duplicates
Number used in refinement: 2634	Criterion: All reflections used
Final R on F: 0.033 for 2469 reflections with	$F_o^2 > 0$
Final R on F: 0.024 for 2087 reflections with	$F_o^2 > 3\sigma(F_o^2)$
Final weighted $R_{\rm w}$ on F_o^2 : 0.053	
Final GOF: 1.37 for 190 parameters and 2634	reflections
$(\Delta/\sigma)_{max}$ in final least squares cycle: < 0.005	
$\Delta \rho_{\text{max}}$: 1.3 e Å ⁻³ , $\Delta \rho_{\text{min}}$: -1.2 e Å ⁻³ in final di	ifference map

Definitions:

۴.,

GOF = $\left(\sum w \left(F_o^2 - F_c^2\right)^2 / (n-p)\right)^{\frac{1}{2}}$ where *n* is the number of data and *p* is the number of parameters refined.

 $R = \sum |F_o - |F_c|| / \sum |F_o|; \ R_w = \left(\sum w \left(F_o^2 - F_c^2 \right)^2 / \sum w \left(F_o^2 \right)^2 \right)^{1/2}$

30

-

Table S2. Final Heavy Atom Parameters for

Pt(bpy)(bdt)

x,y,z and $U_{eq}{}^a imes 10^4$

Atom	$oldsymbol{x}$	y	z	U_{eq}
Pt	1425(.3)	1917(.2)	4101(.1)	367(.4)
S1	3055(2)	1 221(1)	3281 (1)	49 3 (4)
S2	3139(2)	3469(1)	4398 (1)	557(4)
N1	-313(6)	605(4)	3837(3)	417(11)
N2	-146(6)	2415(4)	4848(3)	443(12)
C1	-325(8)	-259(5)	3284(4)	51 3 (15)
C2	-1582(9)	-1089(6)	3122(4)	616(18)
C3	-2838(9)	-10 31 (6)	3542(5)	64 2(19)
C4	-2839 (8)	-157(6)	4113(4)	595(18)
C5	-1561(7)	667(5)	4248(4)	435(14)
C6	-1492(7)	1666(5)	48 13 (4)	481(15)
C7	-2675(8)	1925(7)	5277(4)	6 32 (18)
C8	-2481(10)	2908(8)	5774(4)	733(22)
C9	-1136(10)	3602(7)	58 2 0(4)	68 3(2 0)
C10	18(9)	3341(5)	5355(4)	588(17)
C11	4598(7)	2299(5)	3309(4)	4 31 (14)
C12	5837(8)	2129(5)	2845(4)	529(16)
C13	7058(8)	2982(7)	2857(4)	6 36 (19)
C14	70 32 (9)	3979(7)	3330(4)	704(21)
C15	5846(9)	4144(6)	3786(4)	611(18)

Table S2. (Cont.)

-

-

Atom x y z U_{eq}

C16 4620(7) 3293(5) 3781(4) 444(14)

^a $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} [U_{ij}(a_{i}^{*}a_{j}^{*})(\vec{a}_{i} \cdot \vec{a}_{j})]$

نو

÷

Table S3. Assigned H Atom Parameters for

Pt(bpy)(bdt)

$x, y \text{ and } z \times 10^4$

Atom	$oldsymbol{x}$	y	z	В
H1	554	303	2995	6.0
H2	-1570	-1691	2724	6.0
H3	-3710	-1595	3439	6.0
H4	-3701	-113	4413	6.0
H7	-3610	1427	5 25 0	6.0
H8	-3293	3097	6085	6.0
H9	-986	4271	6172	6.0
H10	962	3837	5396	6.0
H12	5839	1 43 6	2526	6.0
H13	7892	2879	2544	6.0
H14	7858	4563	3339	6.0
H15	5853	4836	4106	6.0

5

....

Table S4. Anisotropic Displacement Parameters for

Pt(bpy)(bdt)

Atom	U_{11}	U_{22}	U33	U_{12}	U_{13}	U_{23}
Pt	385 (1)	341(1)	367(1)	32(1)	67(1)	-37(1)
S1	504(9)	432(9)	575(10)	-6(7)	188(8)	-95(7)
S2	582(10)	454(9)	659(11)	-72(8)	192(9)	-169(8)
N1	438(28)	406(27)	389(26)	3(22)	56(22)	18(23)
N2	461(29)	457(28)	376(27)	126(25)	23(22)	7(23)
C1	531(39)	501(37)	487(36)	-60(30)	77(30)	-82(31)
C2	600(44)	552(42)	607(42)	-107(34)	-46(36)	-103(34)
C3	570(44)	614(46)	661(46)	-161(35)	-28(37)	58(38)
C4	445(37)	715(47)	615(42)	-14(35)	98(32)	141(38)
C5	368(32)	474(35)	430(33)	58(27)	20(26)	110(29)
C6	429(35)	580(42)	415(33)	156(30)	57(27)	90(30)
C7	542(40)	828(50)	570(40)	144(39)	221(33)	144(41)
C8	660(50)	1044(66)	530(43)	352(46)	211(38)	20(45)
C9	765(56)	738(49)	561(44)	286(41)	181(40)	-51(38)
C10	709(46)	528(42)	539(39)	120(33)	164(35)	-141(32)
C11	351(31)	510(37)	429(33)	42(26)	81(26)	78(28)
C12	579(39)	564(41)	433(35)	56(32)	89(30)	110(30)
C13	443(38)	952(58)	505(38)	-82(39)	90(30)	180(41)
C14	683(49)	825(55)	557(44)	-285(42)	42(38)	176(41)
C15	647(45)	590(43)	554(40)	-146(36)	47(34)	19(35)
C16	433(33)	475(37)	400(31)	6(28)	44(26)	28(28)

 $U_{i,j}$ values have been multiplied by 10^4 The form of the displacement factor is: $\exp -2\pi^2 (U_{11}h^2a^{*^2} + U_{22}k^2b^{*^2} + U_{33}\ell^2c^{*^2} + 2U_{12}hka^*b^* + 2U_{13}h\ell a^*c^* + 2U_{23}k\ell b^*c^*)$

*

Table S5. Complete Distances and Angles for Pt(bpy)(bdt)

D	istance(Å)	$\operatorname{Distance}(\operatorname{\AA})$		
Pt -S1	2.244(2)	C7 -C8	1.376(11)	
Pt -S2	2.250(2)	C7 –H7	0 .95 0	
Pt -N1	2.050(4)	C8 –C9	1.349(11)	
Pt -N2	2.049(5)	C8 –H8	0.950	
S1 –C11	1.762(6)	C9 –C10	1.375(10)	
S2 –C16	1.759(6)	C9 –H9	0.950	
N1 -C1	1.338(7)	C10 -H10	0 .95 0	
N1 –C5	1.348(7)	C11 –C12	1.413(8)	
N2 –C6	1 .389(8)	C11 –C16	1.373(8)	
N2 -C10	1 .33 4(8)	C12 -C13	1.397(9)	
C1 –C2	1 .383(9)	C12 –H12	0.950	
C1 -H1	0.950	C13 –C14	1.383(10)	
C2 –C3	1 .36 4(10)	C13 –H13	0.950	
C2 -H2	0.950	C14 –C15	1.367(10)	
C3 –C4	1 .369(10)	C14 -H14	0.950	
C3 –H3	0.950	C15 –C16	1.399(9)	
C4 –C5	1 .39 0(9)	C15 –H15	0.950	
C4 –H4	0.950	S1 –H1	2.653	
C5 –C6	1.464(8)	S2 -H10	2.712	
C6 –C7	1 .393(9)	H4 -H7	2.224	

Table S5. (Cont.)

-

9

	Angle('	°)	А	.ngle(°)
S1	-Pt -S2	89.0(1)	C4 -C3 -C2	119.8(6)
S1	-Pt -N1	95.4(1)	H3 -C3 -C2	120.1
S1	-Pt -N2	175.2(1)	H3 -C3 -C4	120.1
S2	-Pt -N1	174.7(1)	C5 -C4 -C3	11 9.2 (6)
S2	-Pt -N2	95.7(1)	H4 -C4 -C3	120.4
N1	-Pt -N2	80.1(2)	H4 -C4 -C5	120.4
\mathbf{Pt}	-S1 -C11	10 4.9(2)	C4 –C5 –N1	121.1(5)
Pt	-S2 -C16	105.3(2)	C6 –C5 –N1	115.5(5)
\mathbf{Pt}	-N1 -C1	125.6(4)	C6 –C5 –C4	1 23. 4(5)
\mathbf{Pt}	-N1 -C5	115.3(4)	C5 -C6 -N2	11 5.2 (5)
Pt	-N2 -C10	127.1(4)	C7 -C6 -N2	119.4(5)
Pt	-N2 -C6	113.9(4)	C7 –C6 –C5	125.4(6)
C5	-N1 -C1	119.0(5)	C8 –C7 –C6	119.7(6)
C10) –N2 –C6	119.0(5)	H7 -C7 -C6	120.2
C2	-C1 -N1	121.9(6)	H7 -C7 -C8	120.2
H1	C1N1	119.1	C9 –C8 –C7	119.9(7)
H1	-C1 -C2	119.1	H8 -C8 -C7	1 20. 1
C3	-C2 -C1	119.1(6)	H8 -C8 -C9	120.1
H2	-C2 -C1	120.5	C10 -C9 -C8	1 20.0 (7)
H2	-C2 -C3	1 20.5	H9 -C9 -C8	1 20. 0

Table S5. (Cont.)

-

•

Angle(°)

Angle(°)

120.4(5)

119.9(5)

			•	
H9	-C9	-C10	120.0	C15 -C16 -S2
C9	-C10	-N2	122.1(6)	C15 -C16 -C11
H10	-C10	-N2	119.0	
H10	-C10	-C9	119.0	
C12	-C11	-S1	119.3(4)	
C16	-C11	-S1	120.9(4)	
C16	-C11	-C12	119.8(5)	
C13	-C12	-C11	119.8(6)	
H12	-C12	-C11	120.1	
H12	-C12	-C13	120.1	
C14	-C13	-C12	118.9(6)	
H13	-C13	-C12	120.6	
H13	-C13	-C14	120.6	
C15	-C14	-C13	121.5(7)	
H 14	-C14	-C13	119.3	
H14	-C14	-C15	119.3	
C16	-C15	-C14	120.1(6)	
H15	-C15	-C14	120.0	
H15	-C15	-C16	1 20. 0	
C11	-C16	-S2	119.7(4)	

.

t

Table S6. Crystal and Intensity Collection Data for Pt(bpy)(bdtO₂)

Formula: $PtC_{16}H_{12}N_2O_{2.28}S_2$	Formula Weight: 527.96
Crystal Color: orange	Habit: needle
Crystal Size: 0.05 x 0.05 x 0.50 mm	$\rho_{\text{calcd}} = 2.28 \text{ g cm}^{-3}$
Crystal System: monoclinic	Space group: $P2_1/c$ (no. 14)
a = 8.045(2) Å	
b = 14.629(3) Å	$\beta = 101.71(2)^{\circ}$
c = 13.342(4) Å	
$V = 1537.5(7) Å^3$	Z = 4
Lattice parameters: 25 reflections,	$10 \le \theta \le 13^{\circ}$
$\mu = 94.93 \text{ cm}^{-1}$	Absorption correction: Gaussian quadrature
Enraf-Nonius Cad-4 diffractometer	ωscans
MoK α , $\lambda = 0.7107$ Å	Graphite monochromator
2 <i>θ</i> range: 2 - 50°	$0 \le h \le 9, -17 \le k \le 17, -15 \le l \le 15$
T = 293 K	
Number of reflections measured: 6125	Number of independent reflections: 2704
Number with $F_{\vec{o}}^2 > 0$: 2493	Number with $F_o^2 > 3\sigma(F_o^2)$: 1993
Standard reflections: 3 every 150 min.	Variation: within counting statistics
GOF _{merge} : 0.97 for 2596 multiples	R_{merge} : 0.025 for 2078 duplicates
Number used in refinement: 2704	Criterion: All reflections used
Final R on F: 0.034 for 2493 reflections with	$F_o^2 > 0$
Final R on F : 0.022 for 1993 reflections with	$F_o^2 > 3\sigma(F_o^2)$
Final weighted $R_{\rm w}$ on F_o^2 : 0.050	
Final GOF: 1.19 for 228 parameters and 2704	reflections
$(\Delta/\sigma)_{max}$ in final least squares cycle: < 0.005	
$\Delta \rho_{\text{max}}$: 0.9 e Å ⁻³ , $\Delta \rho_{\text{min}}$: -0.9 e Å ⁻³ in final di	ifference map

Definitions:

GOF = $\left(\sum w \left(F_o^2 - F_c^2\right)^2 / (n-p)\right)^{\frac{1}{2}}$ where *n* is the number of data and *p* is the number of parameters refined.

$$R = \sum |F_o - |F_c|| / \sum |F_o|; \ R_w = \left(\sum w (F_o^2 - F_c^2)^2 / \sum w (F_o^2)^2 \right)^{2}$$

, , , ,

Table S7. Final Heavy Atom Parameters for

$Pt(bpy)(bdtO_2)$

x,y,z and $U_{eq}{}^a imes 10^4$

Atom	\boldsymbol{x}	y	ĩ	U_{eq}
Pt	2328(.3)	58(.1)	3681(.1)	309
N1	2445(5)	-65(3)	5242(3)	386(10)
N2	1269(6)	1288(3)	4004(4)	385(11)
S1	2127(2)	303(1)	2016(1)	395(3)
S2	3596(2)	-1291(1)	3502(1)	460(4)
O1 ^{<i>b</i>}	2987(6)	1143(3)	1818(4)	525(12)
O2 ^b	407(6)	230(3)	1443(3)	564(13)
O3 ^c	4937(23)	-1478(14)	4156(14)	563(59)
O4 ^c	2100(22)	-2034(12)	3382(15)	54 3 (53)
C1	3012(8)	-800(4)	5815(5)	514(17)
C2	3060(9)	-816(5)	6859(5)	54 3 (18)
C3	2508(8)	-79(5)	7313(5)	610(19)
C4	1930(8)	681(5)	6729(5)	509(17)
C5	1906(7)	676(4)	5694(4)	405(14)
C6	1 334(7)	1449(4)	5010(5)	417(14)
C7	851(9)	2293(5)	5325(5)	5 99(18)
C8	268(9)	2964(4)	4639(6)	651(21)
С9	106(8)	2779(4)	3621(6)	566(18)
C10	648(8)	1943(4)	3320(5)	494(16)
C11	3941(7)	-1277(4)	2238(4)	386(14)

Table S7. (Cont.)

-

Atom	x	y	z	U_{eq}
C12	4904(8)	-1972(4)	1884(5)	489(16)
C13	5095(9)	-1969(5)	891(6)	608(19)
C14	4372(9)	-1289(5)	205(5)	598(18)
C15	3453(9)	-603(4)	548(5)	488(16)
C16	3270(7)	-591(3)	1561(4)	371(13)

^a $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} [U_{ij}(a_{i}^{*}a_{j}^{*})(\vec{a}_{i} \cdot \vec{a}_{j})]$

- ^b Refined to 92.8% occupancy.
- ^c Refined to 22.5% occupancy.

• *

-

Table S8. Assigned Hydrogen Atom Parameters for $Pt(bpy)(bdtO_2)$

x,y and $z imes 10^4$

Atom	x	y	z	В
H1	3388	-1320	5497	4.7
H2	3476	-1340	7252	4.9
H3	2517	-84	8027	5.5
H4	1552	1205	7040	4.6
H7	92 9	2405	6034	5.4
H8	-20	3549	4 863	5.9
H9	-376	3219	3123	5.1
H10	581	1828	2612	4.5
H12	5418	-2439	2337	4.4
H1 3	5735	-2442	660	5.5
H14	4511	-1299	-486	5.4
H15	2944	-137	90	4.4

Table S9. Anisotropic Displacement Parameters for $Pt(bpy)(bdtO_4)(H_2O)$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pt	309(1)	304(1)	319(1)	6(1)	75(1)	2(1)
N1	311(24)	489(27)	356(24)	-11(25)	62(20)	0(25)
N2	295(26)	366(25)	500(30)	-2(20)	98(24)	-28(22)
S1	418(9)	386(7)	394(8)	31(6)	112(7)	32(6)
S2	578(11)	360(8)	461(9)	73(7)	148(9)	46(7)
$O1^a$	642(34)	366(25)	607(32)	-3(22)	219(27)	34(21)
$O2^a$	414(28)	807(35)	460(27)	102(24)	66(22)	-12(24)
$O3^b$	407(125)	861(149)	422(120)	99(101)	87(100)	125(98)
$O4^{b}$	396(121)	499(109)	771(146)	-138(88)	204(108)	11(94)
C1	473(41)	568(39)	48 2(40)	37(32)	50(34)	76(31)
C2	475(42)	754(46)	406(39)	51(35)	105(33)	114(33)
C3	447(37)	1031(56)	359(32)	-108(43)	1 01(29)	3(40)
C4	379(38)	728(44)	428(38)	-8(33)	104(32)	-120(32)
C5	317(34)	455(33)	441(36)	-85(27)	70(29)	-109(27)
C6	304(32)	433(32)	534(39)	-37(26)	1 31(30)	-126(28)
C7	547(44)	607(42)	664(46)	25(35)	171(38)	-217(36)
C8	578(49)	458(38)	935(60)	108(34)	1 96(44)	-134(38)
C9	427(40)	477(36)	823(53)	121(30)	198(38)	35(35)
C10	470(41)	460(34)	568(41)	75(30)	143(34)	25(30)
C11	313(32)	341(29)	517(37)	-67(25)	115(28)	-66(26)
C12	384(37)	401(32)	688(46)	-3(27)	121(34)	-100(30)
C13	488(45)	568(42)	835(56)	-61(33)	296(42)	-336(38)
C14	689(49)	614(42)	573(44)	-14(38)	321(39)	-121(34)
C15	652(45)	440(34)	412(36)	-29(32)	205(34)	13(27)
C16	336(32)	315(28)	496(36)	-83(24)	163(28)	-50(25)

 $U_{i,j}$ values have been multiplied by 10^4 The form of the displacement factor is: $\exp -2\pi^2(U_{11}h^2a^{*^2} + U_{22}k^2b^{*^2} + U_{33}\ell^2c^{*^2} + 2U_{12}hka^*b^* + 2U_{13}h\ell a^*c^* + 2U_{23}k\ell b^*c^*)$ ^a Refined to 92.8% occupancy.

^b Refined to 22.5% occupancy.

‴ ז

Table S10. Complete Distances and Angles for Pt(bpy)(bdtO₂)

		- •	
Dis	$\operatorname{stance}(\operatorname{\AA})$	Dis	$tance(\text{\AA})$
Pt -N1	2.074(4)	C14 -H14	0.950
Pt -N2	2.075(4)	C15 –C16	1.390(8)
Pt -S1	2.223(1)	C15 - H15	0.950
Pt -S2	2.256(2)		
S1 –C11	2.717(6)		
S2 -C16	2.747(6)		
N1 -C1	1.345(8)		
N1 - C5	1.354(7)		
N2 -C6	1.352(7)		
N2 -C10	1.347(8)		
S1 -O1	1.460(5)		
S1 - O2	1.442(5)		
S2 -O3	1.272(19)		
S2 -O4	1.605(18)		
C1 - C2	1.385(9)		
C1 –H1	0.950		
C2 - C3	1.356(9)		
C2 $-H2$	0.950		
C3 - C4	1.384(9)		
C3 -H3	0.950		
C4 - C5	1.376(9)		
C4 - H4	0.950		
C5 - C6	1.468(8)		
C6 - C7	1.385(9)		
C7 - C8	1.359(10)		
C7 - H7	0.950		
C8 –C9	1.365(10)		
C8 - H8	0.950		
C9 –C10	1.385(9)		
C9 –H9	0.950		
C10 - H10	0.950		
C11 - C12	1.416(8)		
C11 -C16	1.385(8)		
C12 –C13	1.364(9)		
C12 - H12	0.950		
C13 -C14	1.396(10)		
C13 -H13	0.950		
C14 -C15	1.379(9)		

Table S10. (Cont.)

` -

Angle(°)

Angle(°)

N1 - Pt - N2	78.6(2)	C7 - C6 - N2	119.9(5)
S1 - Pt - S2	88.8(1)	C7 - C6 - C5	124.7(5)
S1 - Pt - N1	175.4(1)	C8 –C7 –C6	121.3(6)
S1 - Pt - N2	96.8(1)	H7 -C7 -C6	119.3
S2 - Pt - N1	95.8(1)	H7 -C7 -C8	119.3
S2 - Pt - N2	174.1(1)	C9 –C8 –C7	118.4(7)
Pt -S1 -C11	79.9(1)	H8 -C8 -C7	120.8
Pt -S1 -O1	112.0(2)	H8 -C8 -C9	120.8
Pt -S1 -O2	112.6(2)	C10 -C9 -C8	119.5(6)
C11 -S1 -O1	118.2(2)	H9 -C9 -C8	120.3
C11 -S1 -O2	115.6(2)	H9 -C9 -C10	120.3
O1 -S1 -O2	113.9(3)	C9 -C10 -N2	121.8(6)
Pt -S2 -C16	79.3(1)	H10 -C10 -N2	119.1
Pt -S2 -O3	116.9(9)	H10 -C10 -C9	119.1
Pt -S2 -O4	104.9(7)	C16 –C11 –C12	118.0(5)
C16 -S2 -O3	129.2(9)	C13 -C12 -C11	120.0(6)
C16 -S2 -O4	103.4(7)	H12 –C12 –C11	120.0
O3 -S2 -O4	115.9(11)	H12 –C12 –C13	1 20.0
C5 -N1 -C1	119.2(5)	C14 - C13 - C12	121.7(6)
C10 –N2 –C6	118.9(5)	H13 -C13 -C12	119.2
O2 -S1 -O1	113.9(3)	H13 -C13 -C14	119.2
O4 -S2 -O3	115.9(11)	C15 -C14 -C13	118.8(6)
C2 -C1 -N1	121.5(6)	H14 –C14 –C13	120.6
H1 -C1 -N1	119.2	H14 - C14 - C15	120.6
H1 -C1 -C2	119.2	C16 -C15 -C14	120.1(6)
C3 -C2 -C1	119.4(6)	H15 –C15 –C14	119.9
H2 -C2 -C1	120.3	H15 –C15 –C16	119.9
H2 -C2 -C3	120.3	C15 -C16 -C11	121.4(5)
C4 - C3 - C2	119.4(6)		
H3 -C3 -C2	1 20.3		
H3 -C3 -C4	120.3		
C5 -C4 -C3	119.7(6)		
H4 -C4 -C3	120.2		
H4 -C4 -C5	1 20.2		
C4 - C5 - N1	120.8(5)		
C6 - C5 - N1	115.3(5)		
C6 - C5 - C4	123.9(5)		
C5 -C6 -N2	115.3(5)		

Figure S2. ORTEP drawing of Pt(bpy)(bdtO₂)

، ^س ،

Table S11. Crystal and Intensity Collection Data for Pt(bpy)(bdtO₄)·H₂O

Formula: $PtC_{16}H_{12}N_2O_4S_2 \cdot H_2O$	Formula Weight: 573.50
Crystal Color: yellow	Habit: plate
Crystal Size: 0.2 x 0.5 x 1.0 mm	$\rho_{\text{calcd}} = 2.28 \text{ g cm}^{-3}$
Crystal System: monoclinic	Space group: $P2_1/c$ (no. 14)
a = 11.513(2) Å	
b = 7.103(1) Å	$\beta = 101.64(1)^{\circ}$
c = 20.865(3) Å	
$V = 1670.5(4) Å^3$	Z = 4
Lattice parameters: 25 reflections.	$11 \le \theta \le 13^{\circ}$
$\mu = 87.58 \text{ cm}^{-1}$	Absorption correction: Ψ scans
Enraf-Nonius Cad-4 diffractometer	ωscans
MoK α , $\lambda = 0.7107$ Å	Graphite monochromator
2 <i>θ</i> range: 2 - 50°	$0 \le h \le 13, -8 \le k \le 8, -24 \le l \le 24$
T = 293 K	
Number of reflections measured: 6449	Number of independent reflections: 2943
Number with $F_o^2 > 0$: 2151	Number with $F_o^2 > 3\sigma(F_o^2)$: 2775
Standard reflections: 3 every 150 min.	Variation: within counting statistics
GOF _{merge} : 1.34 for 2671 multiples	R_{merge} : 0.040 for 2199 duplicates
Number used in refinement: 2943	Criterion: All reflections used
Final R on F: 0.055 for 2775 reflections with	$F_{o}^{2} > 0$
Final R on F : 0.039 for 2151 reflections with	$F_o^2 > 3\sigma(F_o^2)$
Final weighted R_w on F_o^2 : 0.082	
Final GOF: 1.71 for 235 parameters and 2943	reflections
$(\Delta/\sigma)_{max}$ in final least squares cycle: < 0.005	
$\Delta \rho_{\text{max}}$: 1.3 e Å ⁻³ , $\Delta \rho_{\text{min}}$: -1.6 e Å ⁻³ in final di	fference map

Definitions:

þ

GOF = $\left(\sum w \left(F_o^2 - F_c^2\right)^2 / (n-p)\right)^{1/2}$ where *n* is the number of data and *p* is the number of parameters refined.

 $R = \sum |F_o - |F_c|| / \sum |F_o|; \ R_w = \left(\sum w \left(F_o^2 - F_c^2 \right)^2 / \sum w \left(F_o^2 \right)^2 \right)^{2}$

--

Table S12. Final Heavy Atom Parameters for

Pt(bpy)(bdtO₄)·H₂O

x,y,z and $U_{eq}{}^a imes 10^4$

Atom	\boldsymbol{x}	y	2	U_{eq}
\mathbf{Pt}	1275(.4)	21 3 4(.5)	1010(.2)	294(1)
S1	17 57(2)	2178(4)	2103(1)	41 2(6)
S2	3170(3)	1654(4)	987(1)	400(7)
01	1 586(7)	4043(12)	2366(3)	620(24)
O2	1 222(8)	6 76(13)	2398(4)	715(28)
O3	369 3 (7)	3204(11)	687(4)	633(23)
O4	3375(8)	-174(11)	70 2(4)	630(23)
N1	-510(7)	26 30(11)	957(4)	381(21)
N2	668(10)	2210(12)	3(4)	529(32)
C1	-1091(10)	27 35(17)	1458(5)	490(29)
C2	-2271(10)	3164(16)	1 372(5)	51 3(3 0)
C3	-2 925 (10)	34 92 (16)	765(6)	551(35)
C4	-2340(11)	3378(14)	241(5)	4 89(3 1)
C5	-1180(9)	2 932(14)	343(4)	340(22)
C6	-4 89(10)	2701(14)	-1 92(4)	410(29)
C7	-101 3(11)	2944(16)	-846(5)	5 39(3 1)
C8	-347(11)	26 66(16)	-1307(5)	538(32)
C9	868(12)	21 62(16)	-11 23(5)	54 5(3 1)
C10	1 291(9)	1941(14)	-463(5)	400(25)

Table S12. (Cont.)

-0 -

Atom	x	y	z	U_{eq}
C11	3 313 (10)	1764(13)	2 302 (5)	391(28)
C12	3916(10)	17 23(14)	2958(5)	446(28)
C13	51 24 (11)	1487(15)	3104(5)	491(31)
C14	5738(10)	1278(16)	2605(6)	517(32)
C15	51 52 (10)	1308(15)	1957(5)	4 54(28)
C16	3964(9)	1570(13)	1813(5)	355(25)
OW	4424(10)	1945(18)	9481(5)	1 253(4 1)

^a $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} [U_{ij}(a_{i}^{*}a_{j}^{*})(\vec{a}_{i} \cdot \vec{a}_{j})]$

• 3

Table S13. Assigned H Atom Parameters for $Pt(bpy)(bdtO_4) \cdot H_2O$

$x, y ext{ and } z imes 10^4$

Atom	$oldsymbol{x}$	y	z	В
H1	-661	2501	1 890	5.0
H2	-2637	3232	1741	5.0
H3	-3745	3787	699	5.0
H4	-2764	3617	-192	5.0
H7	-1823	3299	-969	5.0
H8	-698	2810	-1758	5.0
H9	1 356	1 99 0	-1435	5.0
H10	2095	1 565	-327	5.0
H12	3489	1 859	3300	5.0
H13	5535	1 468	3547	5.0
H14	6574	1113	2707	5.0
H15	5580	1145	1616	5.0

¥ : ٠

Table S14. Anisotropic Displacement Parameters for Pt(bpy)(bdtO₄)·H₂O

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pt	314(2)	338(2)	234(2)	-32(2)	64(1)	-10(2)
S1	403(15)	590(17)	244(11)	-24(15)	71(10)	3(13)
S2	382(16)	489(19)	336(13)	-15(13)	88(12)	-30(11)
O3	635(60)	752(63)	552(48)	-149(49)	212(42)	1 34(42)
04	619(62)	670(57)	602(51)	117(45)	1 29(44)	-258(41)
01	553(59)	812(63)	491(47)	128(47)	96(41)	-174(41)
O2	495(60)	1116(75)	521(51)	-156(53)	75(43)	213(47)
OW	1087(92)	2090(126)	626(60)	508(92)	278(60)	285(72)
N1	429(53)	366(55)	324(41)	-57(42)	1 6(36)	14(36)
N2	11 33(9 1)	281(46)	1 85(3 8)	-74(59)	160(48)	-3(37)
C1	426(74)	6 93(83)	363(53)	-71(66)	110(48)	-82(52)
C2	410(73)	619(84)	553(67)	-106(61)	202(55)	-121(58)
C3	325(70)	6 63(86)	604(75)	4(59)	-48(56)	-123(59)
C4	506(79)	428(75)	485(65)	-15(56)	-16(55)	28(48)
C5	345(59)	287(50)	377(51)	3(52)	45(42)	-43(46)
C6	614(78)	228(57)	338(51)	-45(56)	-25(49)	86(43)
C7	744(91)	455(63)	367(59)	-62(69)	-6(56)	87(51)
C8	629(83)	590(84)	351(56)	-1 39(6 7)	-7(54)	17(52)
C9	935(99)	464(64)	285(51)	-272(74)	237(57)	-63(50)
C10	374(62)	405(63)	420(56)	-40(55)	77(46)	-16(50)
C11	507(73)	280(67)	368(54)	-34(50)	45(49)	30(42)
C12	485(74)	478(76)	373(56)	-63(56)	82(50)	16(47)
C13	444(77)	469(71)	485(65)	-67(56)	-86(55)	7(50)
C14	391(74)	476(70)	645(77)	-7(58)	11(59)	20(58)
C15	470(77)	425(64)	486(64)	-52(56)	143(56)	-17(51)
C16	307(62)	336(62)	404(57)	-9(45)	31(46)	10(42)

 $U_{i,j}$ values have been multiplied by 10^4 The form of the displacement factor is: $\exp -2\pi^2 (U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}\ell^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}h\ell a^*c^* + 2U_{23}k\ell b^*c^*)$

Table S15. Complete Distances and Angles for

$Pt(bpy)(bdtO_4) \cdot H_2O$

	Distance(Å)		Distance(Å)
Pt -S1	2.235(3)	C7 –C8	1 .361(16)
Pt -S2	2.218(3)	C8 –C9	1.420(16)
Pt -N1	2.065(8)	C9 -C10	1.373(15)
Pt -N2	2.076(9)	C11 -C12	1.404(14)
S1 -01	1 .462(8)	C11 -C16	1.388(14)
S1 -O2	1 .430(9)	C12 –C13	1 .373(15)
S1 -C11	1.780(10)	C13 –C14	1.379(16)
S2 -O3	1.455(8)	C14 -C15	1 .383(16)
S2 -O4	1.467(9)	C15 –C16	1 .353(15)
S2 –C16	1.781(10)		
N1 –C1	1.352(13)		
N1 –C5	1.372(12)		
N2 –C6	1.357(14)		
N2 -C10	1 .333(1 4)		
C1 –C2	1.369(16)		
C2 –C3	1.357(16)		
C3 –C4	1 .397(16)		
C4 –C5	1 .348(15)		
C5 –C6	1.505(14)		
C6 –C7	1 .385(15)		

Table S15. (Cont.)

* ... *

		$Angle(^{\circ})$		$Angle(^{\circ})$
S1	-Pt -S2	88.9(1)	C16 –S2 –O3	10 5.3(5)
N1	-Pt -N2	79.3(3)	C16 –S2 –O4	1 05.6 (5)
N1	-Pt -S1	95.3(2)	C5 -N1 -C1	116.1(8)
N1	-Pt -S2	175.6(2)	C10 -N2 -C6	117.2(9)
N2	-Pt -S1	174.3(3)	C2 -C1 -N1	1 23.0(10)
N2	-Pt -S2	96.5(3)	C3 -C2 -C1	120.6(11)
Pt	-S1 -C11	105.4(3)	C4 -C3 -C2	11 7.2(11)
Pt	-S2 -C16	107.4(3)	C5 -C4 -C3	1 20.5 (10)
Pt	-N1 -C1	127.6(7)	C4 -C5 -N1	1 22.5 (9)
Pt	-N1 -C5	116.3(6)	C6 -C5 -N1	11 3.2(8)
\mathbf{Pt}	-N2 -C10	127.8(7)	C6 -C5 -C4	1 24.3 (9)
Pt	-N2 -C6	114.8(7)	C5 -C6 -N2	1 16.0(9)
Pt	-S1 -O1	111.8(3)	C7 -C6 -N2	1 22.3(10)
Pt	-S1 -O2	112.8(4)	C7 -C6 -C5	121.7(9)
\mathbf{Pt}	-S2 -O3	112.8(3)	C8 -C7 -C6	118.8(10)
Pt	-S2 -O4	112.6(3)	C9 -C8 -C7	1 20.7 (10)
02	-S1 -O1	11 4.3(5)	C10 -C9 -C8	115.6(10)
C1	1 –S1 –O1	105.5(5)	C9 -C10 -N2	125.5(10)
C1	1 –S1 –O2	106.1(5)	C12 –C11 –S1	1 20.5 (8)
04	4 -S2 -O3	112.4(5)	C16 -C11 -S1	120.8(8)

25

,

Table S15. (Cont.)

*

*

	$Angle(^{\circ})$
C16 –C11 –C12	118.6(9)
C13 –C12 –C11	119.9(10)
C14 –C13 –C12	119.8(10)
C15C14C13	1 20.8(11)
C16 –C15 –C14	119.4(10)
C11 -C16 -S2	117 .3(7)
C15 –C16 –S2	1 21.2(8)
C15 -C16 -C11	121.5(9)

et + k ⊮

ATTICITICATI

IETHICAT SOCIETA

<u>-</u>

AIII. CHEIII.

C C C

ד T א

Lager 1070

Commer Subbiementar Lage 70

Figure S3. ORTEP drawing of Pt(bpy)(bdtO₄)