
 

Hybridization of Guided Surface Acoustic Modes in
Unconsolidated Granular Media by a Resonant Metasurface

Antonio Palermo,1,5 Sebastian Krödel,2 Kathryn H. Matlack,2,3 Rachele Zaccherini,4 Vasilis K. Dertimanis,4

Eleni N. Chatzi,4 Alessandro Marzani,1,* and Chiara Daraio5,†
1Department of Civil, Chemical, Environmental and Materials Engineering-DICAM,

University of Bologna, Bologna 40136, Italy
2Department of Mechanical and Process Engineering, ETH Zürich, Zürich 8092, Switzerland

3Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801, USA

4Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland
5California Institute of Technology, Division of Engineering and Applied Science,

Pasadena, California 91125, USA

(Received 3 November 2017; revised manuscript received 1 April 2018; published 17 May 2018)

We investigate the interaction of guided surface acoustic modes (GSAMs) in unconsolidated granular
media with a metasurface, consisting of an array of vertical oscillators. We experimentally observe the
hybridization of the lowest-order GSAM at the metasurface resonance, and note the absence of mode
delocalization found in homogeneous media. Our numerical studies reveal how the stiffness gradient
induced by gravity in granular media causes a down-conversion of all the higher-order GSAMs, which
preserves the acoustic energy confinement. We anticipate these findings to have implications in the design
of seismic-wave protection devices in stratified soils.
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I. INTRODUCTION

Acoustic waves confined at the free surface of an elastic
medium are observed in multiple natural phenomena, such
as seismic surface waves released by an earthquake [1] or
ocean waves in deep water [2]. Surface acoustic waves
(SAWs) are also exploited in different technological appli-
cations, for nondestructive testing of materials and struc-
tures [3], as well as for the realization of delay lines, filters,
transducers, and converters in electronic components [4,5].
In homogenous media, the confinement mechanism of
sagittal polarized SAWs depends on the presence of a
stress-free interface, the surface, where bulk shear and
longitudinal modes couple to generate the elliptical particle
motion of Rayleigh waves [1]. When the free-stress surface
condition is perturbed by the introduction of an array of
local resonators, also referred as “metasurface” [6–9], the
wave confinement mechanism can be controlled. Highly
localized modes arise due to the coupling of Rayleigh
waves with the vertical oscillators at resonance. Conversely,
the complete SAWs’ delocalization is observed in a narrow
frequency region above the resonance, as a result of a
classic “avoided crossing” behavior between Rayleigh-like

solutions with opposite phases [10]. Within this frequency
range, Rayleigh waves are deflected away from the surface,
in the form of shear vertically polarized waves. The
Rayleigh-to-shear wave conversion has been predicted
and observed at microscales [10] and macroscales [11],
and its use has been proposed for applications in sensing
[12] and seismic waves deflection [13,14].
However, most natural and human-made materials are

not homogeneous. For these materials, localization can be
induced not only by the presence of a mechanically free
surface, but also by the inhomogeneous elastic properties.
In unconsolidated granular media under gravity load, the
shear G and the bulk B elastic moduli profiles exhibit a
power-law dependence on the compacting pressure
p ¼ ρgz, i.e., G, B ∝ pα, where ρ is the medium density,
g the gravitational constant, and z the considered depth.
This peculiar vertical stiffness profile induces a further
localization mechanism, which consists of the upward
bending of the acoustic waves towards the surface, com-
monly referred to as the “mirage” effect [15]. As a result,
elliptical sagittal polarized waves are guided between the
free surface and the increasingly stiffer material.
Experimental observations of such guided surface acoustic
modes (GSAMs) in granular media have shown uncommon
low propagation velocities (approximately 50 m=s),
ascribed to the soft near-surface layers confined at low
pressures close to the medium jamming transition [16]. The
same observations have been used to estimate the elastic
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power-law coefficients, which significantly deviate from
the classical prediction given from the Hertz contact theory.
The fitted coefficients have been employed in ad hoc
theoretical frameworks, to analytically predict the GSAM
dispersive properties [16,17] and in numerical simulations,
to replicate small-scale laboratory models for seismic-wave
propagation in granular media [18].
Despite the extensive investigation on the dynamics of

unconsolidated granular media [19], the interaction of
GSAMs with local resonances remains unexplored. In this
work, we aim at understanding (i) how GSAMs hybridize
with local resonances, and (ii) if a resonant metasurface can
induce energy delocalization, like in homogeneous media
[10,13,14].

II. RESULTS

A. Experimental investigation and dispersion analysis

We design an experimental setup to investigate sagittal
polarized guided surface acoustic modes (GSAMs) inter-
acting with surface resonances. The setup consists of a
wooden box of dimensions 2000 × 1500 × 1000 mm,
filled with a granular medium of silica microparticles,
up to 830 mm in height [see Fig. 1(a), and Supplemental
Material [20] for further details]. The microparticles are
sieved glass beads with a controlled diameter of 150 μm
and density of 1600 kg=m3. Similar setups have been used
to analyze the propagation of GSAMs [18,21] and to probe
the jamming transition of granular media [16]. We embed
subwavelength resonators [14] (height 24 mm, diameter
20 mm) below the surface of the granular medium. The
resonators consist of a rigid cylindrical shell and a soft
spring, both 3D printed in acrylonitrile butadiene styrene,
and a steel cylindrical mass [inset, Fig. 1(a)]. The steel
cylinder (height 12 mm, diameter 12 mm) is inserted in the
outer shell after the 3D printing process. The soft spring is
designed with a trusslike geometry, which allows tuning the
first resonator vertical frequency by changing the length
and angle of the truss elements [see Fig. S2(a) in the
Supplemental Material [20] ]. Higher-order vertical and
flexural resonant modes are neglected in the resonator
design process. We produce 100 resonators and arrange
them on the granular medium surface in a 20 × 5 rectan-
gular grid with a spacing of 24 mm in the x- and
y-directions [see Fig. 1(a)]. The resonators embedded in
the granular medium have a measured first vertical reso-
nance frequency fr ¼ 410 Hz [see Fig. S2(b) in
Supplemental Material [20] ]. We remark that the
GSAM-resonator coupling is independent from the par-
ticular choice of the lattice arrangement, i.e., a rectangular
grid, as long as the subwavelength regime of the resonators
is ensured.
An 8-mm-diameter metallic rod is attached to an

electromagnetic shaker and buried in the granular medium
to excite the GSAMs. The shaker is driven by a waveform

generator, which produces a Ricker waveform centered at
500 Hz. We measure the surface velocity field generated by
the point source using a laser-Doppler vibrometer mounted
on a scanning stage.
We perform point measurements on the surface of the

granular medium with and without resonators, and record
the wave field across the symmetry axis of the box at
constant steps Δx ¼ 6.6 mm, starting 100 mm away from
the source for an overall length of 850 mm. All measure-
ments are carried out with small-amplitude excitations to
generate linear GSAMs, as in Ref. [16]. For the free-surface
conditions (without resonators), two coherent and distinct
wave trains are recognized [Fig. 1(b)]: the first is a high-
frequency (approximately 700–800 Hz) quasicompres-
sional wave (P) traveling at approximately 150 m=s (see
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FIG. 1. Experimental characterization of GSAMs interacting
with surface resonances. (a) Schematic of the experimental setup.
(b) Seismograph of a Ricker pulse propagating in the granular
medium. (c) Dispersion curves of low-order GSAMs traveling in
the granular medium: the gray color map is the 2D Fourier-
transform magnitude of the experimental seismograph, while the
blue curves are the lowest-order modes (N1, N2) calculated using
the Bloch-FE numerical model. (d) Seismograph of a Ricker
pulse propagating through the surface resonances embedded in
the granular medium. (e) Dispersion curves of low-order GSAMs
interacting with surface resonances: the gray color map is the 2D
Fourier-transform magnitude of the experimental seismograph,
while the red curves are the lowest-order modes (N1−h, N2−1)
calculated using the numerical model. Color maps are scaled with
respect to their maximum value.
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Supplemental Material [20]); the second event is a packet
of sagittal compressional-shear vertical (P-SV) waves,
spread in the frequency range between 200–650 Hz with
low phase velocities between 35–90 m=s.
We restrict our analysis to the dynamics of these P-SV

waves, which can be described using the GSAM theory
developed in Ref. [17]. In the GSAM framework, the
granular medium is modeled as a continuous medium.
The bulk shear cSðzÞ and longitudinal cSðzÞ speed profiles
are modeled with a power-law dependency on the depth
cS;LðzÞ ¼ γS;LðρgzÞαS;L . In this medium, the governing equa-
tions for the displacementU ¼ fuxðzÞ; uzðzÞgeiðωt−kxÞ in the
sagittal plane are

½c2SðzÞu0x�0 þ ½ðω=kÞ2 − c2LðzÞ�ux
¼ ifc2LðzÞ − 2c2SðzÞu0z þ ½c2SðzÞuz�0g;

½c2LðzÞu0z�0 þ ½ðω=kÞ2 − c2SðzÞ�uz
¼ i(c2SðzÞu0x − f½c2LðzÞ−2c2SðzÞ�uzg0); ð1Þ

where ω denotes the wave angular frequency, k the wave
number along the direction of wave propagation, i the
imaginaryunit, and the prime indicates derivativewith respect
to the z coordinate. The GSAM characteristic equation is
analytically obtained by combining the governing Eqs. (1)
with the free-stress boundary conditions [σzzð0Þ ¼ 0,
σxzð0Þ ¼ 0] and the localization condition Uðz → ∞Þ ¼ 0.
In contrast to Ref. [17], we numerically implement and

solve the characteristic equation by modeling a portion of
the granular medium with a Bloch wave–finite element
(FE) approach. We consider a 2D FE model of the unit cell,
developed in COMSOL Multiphysics

©, and confine our analysis
to vertically polarized surface waves by modeling a vertical
stripe of the granular medium in plane-strain conditions.
Within the FE framework, the Bloch form wave solution is
assumed by imposing periodic Bloch-Floquet boundary
conditions (BCs) on the unit cell waveguide, along the
direction of wave propagation. The granular medium is
modeled as a linear elastic continuum, assuming the power-
law stiffness profile cS;LðzÞ ¼ γS;LðρgzÞαS;L reported in
Ref. [17]. Since the analyzed medium is homogenous
along the wave-propagation direction, we can arbitrarily
set the width d of the unit cell to map the dispersive
properties in the desired wave-number range k ¼
½0 − ðπ=dÞ�. We set d ¼ 0.012 m to span a wave-number
range up to kmax ¼ 260 rad=m. The unit cell has a height
h ¼ 3 m with perfectly matched layers (PMLs) at the
bottom region to avoid wave reflection and clamped
BCs at the bottom edge [see Fig. 2(a)]. Such dimensions
ensure the correct representation of a semi-infinite space
domain (and the related localization condition
Uðz → ∞Þ ¼ 0) in the frequency range of interest and
avoid the occurrence of platelike flexural modes.
The dispersion curves for the first two slowest P-SV

waves,N1 andN2, calculated using our numerical approach
agree well the experimental dispersion curves obtained

from a 2D Fourier transform of the seismograph data [see
Fig. 1(c)]. For the calculation of the dispersion curves, we
assumed the power-law parameters γS ¼ 6.42, γL ¼ 14.4,
αS ¼ 0.31, αL ¼ 0.31. The parameters are approximated
from the experimental estimates given in Ref. [16] (i.e.,
γexps ¼6.42�0.13, γexpL ¼14.4�0.4, αexpS ¼0.316�0.006,
αexpL ¼ 0.31� 0.01) for the same material. Here, by assum-
ing αS ¼ αL we avoid the introduction of a characteristic
spatial scale in the system [16].
The GSAM framework [17] predicts an infinite number

of confined surface modes, whose order Ni coincides with
the number of zeros in their vertical displacement profile
along the depth. As a result, the mode order corresponds
also to the number of “phases” in the displacement depth
profile. In other words, for the first mode (N1), the particle
displacements are in phase at all depths; conversely, the
depth displacement profile presents two alternating phases
for the second mode (N2), three phases for the third mode
(N3), and so forth [17].
However, among the plethora of modes existing in an

unconsolidated medium, only the lowest-order ones can
strongly couple to the resonators due to their significant
vertical displacement component at the surface. Among
these, the first-order mode (N1) converges to a Rayleigh
wave solution when the inhomogeneous velocity profile
accounts for a significant granular adhesion [17].
The seismograph obtained when resonators are

embedded near the surface [Fig. 1(d)] demonstrates the
resonance excitation induced by the train of P-SV waves,
which leads to a clear flat branch that asymptotically
approaches the resonator’s frequency fr in the 2D
Fourier-transformed domain [Fig. 1(e)]. This mode is a
result of the hybridization between the first-order P-SV
waves and the resonators, which oscillate in phase with the
medium and progressively confine the energy to the sur-
face. We remark that at the resonance frequency fr, the
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FIG. 2. Schematic of the unit cell models for the Bloch-FE
approach. (a) Unit cell model for the granular medium and (b) for
the granular medium with surface resonators (d ¼ 0.012 m to
span a wave-number range up to kmax ¼ 260 rad=m).
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smallest wavelength of P-SV waves is at least 5 times
larger than the resonator spacing, thus excluding any
relation with Bragg-scattering effects.
To predict the dispersive properties of this hybrid mode,

we directly couple the GSAM governing equation [Eq. (1)]
with the resonator dynamics, using the Bloch-wave-FE
approach. The equation of motion for a resonator of mass
m and stiffnessKv, buried near the surface at a depth hres can
be written as mðZ̈ þ üz;hresÞ þ KvZ ¼ 0, where uz;hres is the
displacement of the granular medium at the depth hres, Z is
thevertical displacement of the oscillatormass relative to the
granular medium, and the overdot indicates the time
derivative. Each resonator exerts a dynamic stress on the
granular medium σzz;hres ¼ ðKv=AÞ½ω2=ðωr

2 − ω2Þ�uz;hres ,
σxz;hres ¼ 0, with ωr ¼ 2πfr and A the surface area over
which the resonator stress is considered distributed uni-
formly (24 × 24 mm2 in this case). Such dynamic stress can
be seen as a boundary condition at surface depth hres. We
remark that similar resonant surface conditions have been
successfully used to describe the hybridization of Rayleigh
waves with resonances at a different length scale [10,14].
Additionally, at the depthhres, the unconsolidatedmedium is
subjected to a pressure phres ¼ ρghres, which acts as an
adhesive force between the grains, ensuring nonzero elastic
properties for the granular medium. Within the FE frame-
work, the resonator dynamic is modeled bymeans of a truss-
mass point element [see Fig. S2(b) in SupplementalMaterial
[20] ], of mass meq ¼ ðm=AÞd ðper unitary thicknessÞ and
resonance frequency fr. The truss-mass resonator exerts a
uniform dynamic vertical stress σzz;hres over the length d
equivalent to the uniform stress of a 3D resonator of massm
acting on its reference area A [see Fig. 2(b)].
The hybridized (N1−h)mode, calculated usingour numeri-

cal model, is in excellent agreement with the experimental
data [Fig. 1(e)]. We observe that the dispersion of this
confined mode is akin to the lower branch of Rayleigh
waves hybridized by surface resonances [10,14]. For
Rayleigh waves, the lower branch is accompanied by a
repelling upper branch, which leads to an avoided crossing
behavior and a related surface-to-shear wave-conversion
phenomenon above the resonance frequency.
In our experiments, higher-frequency P-SV modes are

weakly excited and most of the high-frequency energy is
transported in the form of quasicompressional (P) waves.
Moreover, large surface velocities measured at the reso-
nance frequency saturate the experimental f − k spectrum,
rendering the investigation of higher-frequency solutions
difficult. To gain insight into the propagation of higher-
frequency GSAMs and into the possible wave-conversion
phenomena around the resonance frequency, we perform
FE time-transient simulations.

B. Time-transient numerical simulations

Direct simulation of the experimental setup agrees with
the measurement data (see Supplemental Material [20]).

However, due to the finite dimensions of the box, such
simulation does not fully disclose the GSAMs high-
frequency hybridization. Thus, we employ a larger 2D FE
model to obtain accurate numerical predictions of such high-
frequency wave-conversion phenomena. We model a 2D
strip of the granular medium in plane-strain conditions,
assuming the previously considered power-law elastic pro-
files andmodeling the resonators as truss-pointmasseswith a
single longitudinal resonance [see Fig. 3(a)]. This model is
based on the unit cell description used for the dispersion
relation calculation. Low-reflective-boundary (LRB) con-
ditions are employed to minimize boundary reflections. A
point source driven by a Ricker pulse placed at sufficient
distance from the model boundaries generates the surface
waves. In accordance with the experimental evidence, the
source mainly excites the lower-order GSAMs (N1 and N2),
which spatially separate due to the different wave speeds [see
Fig. 3(b)]. Once the train of GSAMs reaches the resonators,
part of the wave energy is reflected [mode RN1 in Fig. 3(c)],
mainly belonging to the N1 mode. This is highlighted
by the 2D Fourier transform of the surface vertical displace-
ment wave field of the reflected signal, shown in
Fig. 4(a). Indeed, the hybridization phenomenon introduces
a phase shift of π on the incident N1 mode causing the
reflection of the wave field around the resonant frequency.
Within the surface resonant region, the hybridized mode

(N1−h), slowed down by the surface resonances, is pre-
ceded by a second mode (N2–1) which travels almost
undisturbed [Fig. 3(c)]. The mode N1−h gets confined to
the surface but preserves the single-zero depth profile (i.e.,
the single-phase profile) of a N1 mode across the different
frequency ranges. This is shown by the mode shapes
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extracted from the Bloch-FE dispersion relation at different
frequency points [see Fig. 5(a)]. Conversely, the mode N2–1

presents a displacement profile that changes across the
frequency spectrum. In the low frequency range, the mode
profile presents two zeros (i.e., two alternating displace-
ment phases). The position of the uppermost zero is
progressively shifted towards the surface, for frequencies
approaching the antiresonance (far ¼ 460 Hz) [see top
inset Fig. 5(a)]. At the antiresonance, the surface displace-
ment is zero while for higher frequencies the depth profile
of the N2–1 mode no longer presents two distinct displace-
ment phases but reduces to the single-phase profile of a first
order (N1-like) GSAM. Indeed, the out-of-phase motion
gets confined to the surface resonators, as evidenced in the
bottom inset of Fig. 5(a).

In addition, we observe a clear gap in the f − k spectrum
at the antiresonance frequency [Fig. 4(b)]. This suggests
that all the GSAMs have a vanishing surface displacement
at the antiresonance. In fact, we observe an analogous
change of the displacement profile across the antiresonance
frequencies for all the analyzed higher-order GSAMs
modes, N3–2, N4–3, N5–4. All these modes present the
expected null surface displacement at the antiresonance
frequency [see Fig. 5(b)] with the “missing” out-of-phase
motion confined in the resonators for higher frequencies
[see bottom inset of Fig. 5(a)]. We concisely label this
phenomenon “down-conversion” of the higher-order
GSAM, since the depth profile of each ith mode loses
one of its phases across the antiresonance and is converted
into the profile of the related ith − 1 mode.
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In addition, we also observe a significant trace associated
with a peculiar higher-order mode (HOM) lying between the
resonance and antiresonance frequency [inset, Fig. 4(b)]. The
mode stems from the progressive coupling of multiple
higher-order GSAMs, specifically the N9–8 to N6–5, with
the surface resonances [Fig. 5(b) inset]. The mode presents a
depth profile maximized at the surface [Fig. 5(c)] and
propagates with a group velocity significantly lower than
the surroundingHOMs. Similar dispersive properties are also
observed for the upper repelling branch of Rayleighwaves in
homogenousmedia interactingwith surface resonances [10].
However, in the homogenous media, the high-frequency
branch gets progressively delocalized from the surface for
frequencies approaching the resonance. The surface wave
delocalization stems from the increasing phase velocity cRh
of the hybridized Rayleigh modes, which progressively
approaches the elastic medium shear velocity cS. When
the condition cRh ¼ cS is reached, the hybrid-Rayleigh
waves are deflected away from the surface, in the form of
shear vertically polarized waves [10].
In the unconsolidated granular medium, the formation of

shear waves leaking in the bulk is prevented by the
continuous variation of the shear cS and longitudinal cL
velocity profile, which in turn causes the coupling between
shear and compressional waves at each point of the inho-
mogeneous media [17]. The absence of energy leakage is
confirmed by the f − k spectrum of the displacement field
recovered after the resonant region, which does not show any
significant energy gap above the resonant frequency [see
Fig. S4(b) in the Supplemental Material [20] ].

III. CONCLUSIONS

In conclusion, we describe numerically and experimen-
tally how sagittal GSAMs interact with a metasurface of
vertical oscillators in an unconsolidated granular medium.
Resonant boundary conditions lead to the existence of two
strongly hybridized modes, which are akin to the repelling
hybrid Rayleigh waves. However, the inhomogeneous
profile of the granular media ensures that the wave energy
remains channeled below the resonant boundary, even at
the antiresonance, where the surface displacement is
vanishing.
Since these results do not strictly depend on the granular

nature of the medium, one can conclude that similar
phenomena can be observed in any natural or artificial
material with an inhomogeneous power-law elastic profile.
In particular, the design of SAW devices on layered
functionally graded materials can benefit from the knowl-
edge of the dispersive properties of metasurfaces on
inhomogeneous materials. In addition, since stratified soils
generally present inhomogeneous profiles at the seismic
scale, the design of large-scale metadevices for seismic
isolation purposes [13,14,22,23] should consider the effect
of material inhomogeneity. Although we recognize that the
power-law stiffness profile of a granular medium does not

necessarily represent all inhomogeneous soils, we still
remark its relevance for the seismic-scale scenario, where
similar depth dependencies are commonly adopted [24,25].
In the future, large-scale experiments would be helpful to
assess the effectiveness of resonant elements in isolating
surface seismic waves.

ACKNOWLEDGMENTS

We acknowledge Viktor Thöni for the help in the
construction of the experimental setup and for the initial
measurements of the GSAMs velocities. We thank Virginia
von Streng for the help in designing the 3D printed
resonators and Isotta Carpi for the help in the preliminary
numerical models. This work was partially supported by
the Swiss National Science Foundation (Grant No. 164375)
to C. D., by the ETH Research Grant (49 17-1) to R. Z., and
an ETH Postdoctoral Fellowship to K. H. M.

[1] K. F. Graff, Wave Motion in Elastic Solids (Dover
Publications, The Clarendon Press, Oxford, 1975).

[2] S. R. Massel, Ocean Surface Waves: Their Physics and
Prediction (World Scientific Publishing, Singapore, 1996).

[3] G. Kim, C.W. In, J. Y. Kim, K. E. Kurtis, and L. J. Jacobs,
Air-coupled detection of nonlinear Rayleigh surface waves
in concrete—Application to microcracking detection,
NDT&E Int. 67, 64 (2014).

[4] J. D. Maines and E. G. S. Paige, Surface-acoustic-wave
devices for signal processing applications, Proc. IEEE 64,
639 (1976).

[5] C. Campbell, Surface Acoustic Wave Devices and Their
Signal Processing Applications (Academic Press, Boston,
1989).

[6] A. A. Maznev and V. E. Gusev, Waveguiding by a
locally resonant metasurface, Phys. Rev. B 92, 115422
(2015).

[7] G. Ma, M. Yang, S. Xiao, Z. Yang, and P. Sheng, Acoustic
metasurface with hybrid resonances, Nat. Mater. 13, 873
(2014).

[8] A. V. Kildishev, A. Boltasseva, and V. M. Shalaev,
Planar photonics with metasurfaces, Science 339,
1232009 (2013).

[9] D. J. Colquitt, A. Colombi, R. V. Craster, P. Roux,
and S. R. L. Guenneau, Seismic metasurfaces: Sub-
wavelength resonators and Rayleigh wave interaction,
J. Mech. Phys. Solids 99, 379 (2017).

[10] N. Boechler, J. K. Eliason, A. Kumar, A. A. Maznev, K. A.
Nelson, and N. Fang, Interaction of a Contact Resonance of
Microspheres with Surface Acoustic Waves, Phys. Rev.
Lett. 111, 036103 (2013).

[11] A. Colombi, P. Roux, S. Guenneau, P. Gueguen, and R. V.
Craster, Forests as a natural seismic metamaterial: Rayleigh
wave bandgaps induced by local resonances, Sci. Rep. 6,
19238 (2016).

[12] A. Colombi, V. Ageeva, R. J. Smith, A. Clare, R. Patel,
M. Clark, D. Colquitt, P. Roux, S. Guenneau, and R. V.
Craster, Enhanced sensing and conversion of ultrasonic

ANTONIO PALERMO et al. PHYS. REV. APPLIED 9, 054026 (2018)

054026-6

https://doi.org/10.1016/j.ndteint.2014.07.004
https://doi.org/10.1109/PROC.1976.10189
https://doi.org/10.1109/PROC.1976.10189
https://doi.org/10.1103/PhysRevB.92.115422
https://doi.org/10.1103/PhysRevB.92.115422
https://doi.org/10.1038/nmat3994
https://doi.org/10.1038/nmat3994
https://doi.org/10.1126/science.1232009
https://doi.org/10.1126/science.1232009
https://doi.org/10.1016/j.jmps.2016.12.004
https://doi.org/10.1103/PhysRevLett.111.036103
https://doi.org/10.1103/PhysRevLett.111.036103
https://doi.org/10.1038/srep19238
https://doi.org/10.1038/srep19238


Rayleigh waves by elastic metasurfaces, Sci. Rep. 7, 6750
(2017).

[13] A. Colombi, D. Colquitt, P. Roux, S. Guenneau, and R. V.
Craster, A seismic metamaterial: The resonant metawedge,
Sci. Rep. 6, 27717 (2016).

[14] A. Palermo, S. Krödel, A. Marzani, and C. Daraio,
Engineered metabarrier as shield from seismic surface
waves, Sci. Rep. 6, 39356 (2016).

[15] C. H. Liu and S. R. Nagel, Sound in Sand, Phys. Rev. Lett.
68, 2301 (1992).

[16] X. Jacob, V. Aleshin, V. Tournat, P. Leclaire, W. Lauriks,
and V. E. Gusev, Acoustic Probing of the Jamming
Transition in an Unconsolidated Granular Medium, Phys.
Rev. Lett. 100, 158003 (2008).

[17] V. Aleshin, V. Gusev, and V. Tournat, Acoustic modes
propagating along the free surface of granular media,
J. Acoust. Soc. Am. 121, 2600 (2007).

[18] L. Bodet, A. Dhemaied, R. Martin, R. Mourgues, F. Rejiba,
and V. Tournat, Small-scale physical modeling of seismic-
wave propagation using unconsolidated granular media,
Geophysics 79, T323 (2014).

[19] V. Tournat and V. E. Gusev, Acoustics of unconsolidated
“Model” granular media: An Overview of recent results and
several open problems, Acta Acust. Acust. 96, 208 (2010).

[20] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevApplied.9.054026 for de-
tails on the experimental setup, 3D-printed resonators
design, and finite-element models.

[21] V. E. Gusev, V. Aleshin, and V. Tournat, Acoustic Waves in
an Elastic Channel near the Free Surface of Granular Media,
Phys. Rev. Lett. 96, 214301 (2006).
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