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Highlights

• Methods to enforce scalar boundedness in incompressible-flow simulations are proposed.
• Mixing metrics sensitive to the additional numerical dissipation are identified.
• Numerical-dissipation effects on mixing in large-eddy simulations are assessed.
• Performance of the proposed methods is examined for the first time by mixing metrics.
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Abstract

Numerical schemes for scalar transport and mixing in turbulent flows must be high-order accurate, and
observe conservation and boundedness constraints. Discretization accuracy can be evaluated from the trun-
cation error, and assessed by its dispersion and dissipation properties. Dispersion errors can cause violation
of physical scalar bounds, whereas numerical dissipation is key to mitigating those violations. Numerical
dissipation primarily alters the energy at small scales that are critical to turbulent mixing. Influence of ad-
ditional dissipation on scalar mixing in large-eddy simulations (LES) of incompressible temporally evolving
shear flow is examined in terms of the resolved passive-scalar field, Z̄. Scalar fields in flows with different
mixing behavior, exhibiting both uniform and non-uniform mixed-fluid composition across a shear layer, are
compared for different grid resolutions, subgrid-scale models, and scalar-convection schemes. Scalar mixing
is assessed based on resolved passive scalar probability density function (PDF), variance, and spectra. The
numerical-dissipation influence on mixing is found to depend on the nature of the flow. Mixing metrics
sensitive to numerical dissipation are applied to examine the performance of limiting methods employed
to mitigate unphysical scalar excursions. Two approaches, using a linear-scaling limiter for finite-volume
schemes and a monotonicity-preserving limiter for finite-difference schemes, are studied. Their performance
with respect to accuracy, conservation, and boundedness is discussed.

Keywords:
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1. Introduction

Passive or active scalar transport and mixing by turbulent flow is important in numerous engineering and
scientific applications (e.g., [1, 2, 3] and references therein). Grid-resolution requirements and the resulting
computational cost of simulations of high Reynolds- and Schmidt-number flows, where a wide range of spatial
and temporal scales determine scalar mixing, place a direct calculation of all scales out of reach. Moreover,
for high Schmidt numbers (Sc), the Batchelor scale (ηB � η Sc−

1
2 ) is smaller than the Kolmogorov scale (η),

and a finer grid is required to fully resolve the scalar field than the velocity field. Large-eddy simulations
(LES) lower the computational cost by modeling dynamic effects, on the resolved flow field, of spatial scales
smaller than a cutoff wavenumber, while directly calculating the larger scales of motions [4, 5]. However,
such modeling introduces subgrid-model errors in addition to numerical-discretization errors. Model errors
are difficult to quantify without a corresponding direct numerical simulation (DNS) solution, which is usually
out of reach for practical problems of engineering interest. Therefore, analyses of the interaction between the
model and numerical errors are typically restricted to canonical flows at low to moderate Reynolds number
[6, 7, 8, 9]. Several studies have examined the role of the filter-grid ratio Δ/Δx [8, 10, 11, 12], where Δ is
the filter width and Δx is the grid spacing, and the discretization of the non-linear term [13, 14] in LES to
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keep numerical errors smaller than subgrid-scale (SGS) model contributions. These references and others
(e.g. [15, 16]) study effects of LES model and numerical errors on the velocity field. In this work, effects
of numerical-dissipation errors on a convected passive-scalar field, specifically on scalar boundedness and
resolved and subgrid scalar-mixing estimates, are examined.

For uniform-density and uniform-diffusivity flow, the passive-scalar field, Z, is governed by the advection-
diffusion equation

∂Z

∂t
+ uj

∂Z

∂xj
= D∂2Z

∂x2
j

, (1)

where uj is the velocity and D denotes the diffusivity. Solutions to Eq. (1) obey the maximum principle,
i.e., solution extrema can only occur at the (spatial or temporal) boundary, bounding Z by its initial and
boundary values.

In practice, numerical solutions to Eq. (1) obtained from a high-order finite-difference/-volume method
incur dispersion errors that may result in violations of the maximum principle. The high-wavenumber
content of the solution is more susceptible to dispersion (phase-speed) errors, which are of concern to LES
since such calculations are, by definition, under-resolved with higher energies at grid scale than if the flow
were fully resolved.

If the SGS model does not provide adequate dissipation for a sufficiently smooth scalar field, dispersive
oscillations can produce unphysical scalar excursions [17]. These excursions are commonly mitigated using
upwind schemes [18, 19], or bound-preserving limiters [20, 21], both of which introduce artificial dissipation
and can lower the accuracy of numerical solutions.

In this study, our aim is two-fold: (1) Examine the effect of numerical dissipation on mixed-fluid compo-
sition and scalar fluctuations in different mixing regimes of turbulent shear flows to identify flow statistics
sensitive to additional dissipation. Mixed-fluid composition is assessed from scalar PDFs whereas scalar
fluctuations from their second central moment, the variance. (2) Use flow statistics sensitive to additional
dissipation to assess the numerical dissipation introduced by two limiting procedures, using the linear-scaling
limiter of [22, 23] and the monotonicity-preserving limiter of [24], to enforce scalar boundedness.

From among the desirable properties of high-order accuracy, conservation, and boundedness, numerical
schemes generally satisfy the former two properties but do not strictly impose the third. To enforce scalar
boundedness, commonly-used approaches compromise either accuracy, for example with bound-preserving
low-order schemes [18, 19, 21], or conservation, with semi-Lagrangian schemes employing bounded interpo-
lation [20]. In this work, limiting approaches for incompressible-flow simulations that ensure scalar bound-
edness and conservation while preserving uniform high-order accuracy are discussed.

Liu & Osher [22] developed a linear-scaling limiter for scalar-conservation laws that was adapted to ensure
boundedness with uniform high-order accuracy by Zhang & Shu [23] for finite-volume and discontinuous-
Galerkin discretizations. The limiter was used in combination with a first-order scheme by Subbareddy
et al. [21] to mitigate scalar excursions in compressible-flow simulations with finite-volume schemes. For
incompressible-flow computations, a velocity reconstruction consistent with the incompressibility condition
ensures boundedness without the need of incorporating a low-order scheme, thus ensuring uniform high-order
accuracy. The reconstructions are shown for a velocity field calculated from the non-dissipative schemes of
Morinishi et al. [25]. However, the limiting approach of [22, 23] cannot be applied to finite-difference
schemes, which led us to explore the application of the monotonicity-preserving limiter of Suresh & Huynh
[24] to enforce scalar boundedness with finite-difference schemes. Numerical dissipation introduced by each
methodology is assessed based on scalar-mixing estimates in a canonical turbulent shear flow.

In Section 2.1, the LES governing equations and the SGS models used in this study are discussed.
The evolution of scalar fields with initial conditions leading to different mixing behavior in the temporally-
evolving shear flow is discussed in Section 2.2. Limiting approaches to mitigate unphysical scalar excursions
in incompressible-flow simulations are discussed in Section 3. Several convection schemes with different
dissipation and boundedness properties are examined and listed in Section 4.1 along with their global
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scalar-excursion statistics. The effect of numerical-dissipation errors on scalar-mixing estimates is examined
in Section 4.2. Scalar boundedness and numerical dissipation introduced by the limiting methodologies of
Section 3 is assessed in Section 4.3.

2. Flow description

2.1. Governing equations and SGS models

For LES, the conservation equations are assumed to be spatially filtered using a kernel G(x; Δ), where
Δ is the filter width, and a filtered (or resolved) quantity f̄(x, t) is obtained by convolution of f(x, t)

with G(x; Δ) [26]. An explicit convolution calculation is computationally expensive [11] and, in practice,
the computational grid typically serves as the spatial filter, which with high-order schemes provides a cost-
effective means for a desired accuracy [27]. The filtered conservation of mass, momentum, and passive-scalar
equation for a uniform-density fluid are given by

∂ūj

∂xj
= 0, (2a)

∂ūi

∂t
+

∂ūiūj

∂xj
= − ∂p

∂xi
+ ν

∂2ūi

∂x2
i

− ∂τij
∂xj

, (2b)

∂Z̄

∂t
+

∂ūjZ̄

∂xj
=

ν

Sc

∂2Z̄

∂x2
j

− ∂qj
∂xj

, (2c)

where ν is the kinematic viscosity and Sc denotes the Schmidt number with a scalar diffusivity D ≡ ν/Sc.
The SGS stress tensor τij = uiuj − ūiūj in the momentum equation and the SGS scalar flux qj = ujZ− ūjZ̄

in the scalar-transport equation represent the dynamic effects of the subgrid scales of motion on the resolved
flow field. They are closed in the present study using two SGS models, the stretched-vortex model and the
dynamic-Smagorinsky model, to demonstrate that the results are generally independent of such a choice.

In the stretched-vortex model [28, 29], the SGS stress and scalar flux are given by

τij =
(
δij − eνi e

ν
j

)
K, (3)

qj = −1

2
ΔK1/2

(
δij − eνi e

ν
j

) ∂Z̄

∂xi
. (4)

K is the subgrid kinetic energy, δij is the Kronecker’s delta, and eνi is a unit vector aligned with the subgrid
vortex. Readers are referred to [17] for further details on the implementation of the stretched-vortex model.

The choice of evi as the most extensional unit eigenvector of the resolved strain-rate tensor, S̄ij =

(∂ūi/∂xj + ∂ūj/∂xi) /2, implies a positive SGS kinetic-energy dissipation rate, ε = −τijS̄ij [17]. The SGS
scalar-variance dissipation rate, on the other hand,

εsub = −qj
∂Z̄

∂xj
(5)

using (4) is positive for any choice of unit vector evi since

(
∂Z̄

∂xi

)2

≥
(
evi

∂Z̄

∂xi

)(
evj

∂Z̄

∂xj

)
.

The stretched-vortex model with evi the most extensional unit eigenvector of S̄ij , therefore, prevents backscat-
ter and the action of SGS terms of Eqs. (2b) and (2c) on the resolved velocity and scalar field, respectively,
is purely diffusive. The filtered scalar value Z̄ obtained from integrating (2c) is, therefore, bounded similarly
as Z obtained from Eq. (1), for a divergence-free velocity field (2a).
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The SGS scalar variance, σ2
sub, in the stretched-vortex model can be estimated from (e.g., [30, 31])

σ2
sub = 2

∞∫
π/Δ

Es(k) dk, (6)

where Es(k) denotes the scalar spectrum. For the evolution of a passive scalar mixed by a stretched-vortex
velocity field, the scalar spectrum, derived in Pullin & Lundgren [32], is given by

Es(k) = Ks

⎧⎨
⎩k−5/3exp

(
− (4ν + 2D)k2

3
∣∣S̄v

∣∣
)

+
8

5π

(
Γ

π
∣∣S̄v

∣∣
)1/3

k−1exp

(
− 2Dk2

3
∣∣S̄v

∣∣
)⎫⎬
⎭ , (7)

where S̄v ≡ − (
δij − evi e

v
j

)
∂ūi/∂xj is the magnitude of the strain rate aligned with the subgrid vortex axis

and Γ denotes the subgrid vortex circulation that determines the relative magnitude of the k−1 Batchelor
spectrum and k−5/3 Obukov-Corrsin spectrum components in (7). Γ = 1000ν is recommended in [30, 31, 32]
for the subgrid continuation of the scalar spectrum. The prefactor Ks is calculated from the local spherically-
averaged second-order scalar structure function F̄ s

2 ,

Ks =
F̄ s
2

AΔ2/3 +B
(
ν/

∣∣S̄v

∣∣)1/3 , F̄ s
2 =

1

6

3∑
j=1

((
δZ̄+

)2
+

(
δZ̄−

)2)
j
, (8)

where B = 4× (8/5π) (Γ/πν)
1/3 ∫ π

0
s−1 (1− sin s/s) ds ≈ 9.01726.

Results from a dynamic eddy-viscosity SGS model [33] are also discussed. The SGS stress and scalar
flux in an eddy-viscosity closure are given by

τij − 1

3
δijτkk = −2νTS̄ij = −2CΔ2

∣∣S̄∣∣ S̄ij , (9)

qj = − νT
ScT

∂Z̄

∂xj
, (10)

where
∣∣S̄∣∣ =

(
2S̄ijS̄ij

)1/2. The coefficients C and ScT are determined from the Lagrangian averaging
procedure of [34], which ensures that the coefficients are non-negative and there is no backscatter. The
filtered scalar value Z̄ obtained from integrating (2c) should, therefore, also be bounded by initial/boundary
values for a divergence-free velocity field.

2.2. Initial conditions and flow characteristics

The same flow configuration is used as in [17], with a cubic domain of length L = 4πm and periodic
boundary conditions in all three directions. Cartesian coordinates (x, y, z) denote the streamwise, spanwise,
and cross-stream directions, respectively, and (u1, u2, u3)≡(u, v, w) denote the corresponding velocity
components. The kinematic viscosity, ν, is set to 1.7 × 10−5 m2/s with a Schmidt number of unity, i.e.,
Sc ≡ ν/D = 1, approximating gas-phase diffusion, are assumed in all simulations. The initial velocity
components are given by

ūi(x, y, z) = u′i(x, y, z)−
∂p(x, y, z)

∂xi
Δt, (11)

where p is a Lagrange multiplier that imposes the divergence-free constraint, Δt denotes the time step, and

u′(x, y, z) = f(z) + a(z) [sin 2k0x+ 0.01 cos 20y + r1(x, y, z)] , (12a)

v′(x, y, z) = a(z) [cos 2k0x+ 0.01 sin 20y + r2(x, y, z)] , (12b)

w′(x, y, z) = a(z) [sin k0x+ 0.01cos 40y + r3(x, y, z)] . (12c)
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The mean initial profile

f(z) = tanh (40 (modulo(z, 4π)− 2π))− tanh (40 (modulo(z, 4π)− 4π))− tanh (40modulo(z, 4π))

provides an alternating free-stream velocity of u = ±1 m/s and an initial momentum thickness of θ0 = 0.0125

m, calculated from

θ =

3L/4∫
L/4

[
1

4
−

( 〈ū〉
ΔU

)2
]
dz,

where ΔU is the freestream velocity difference across the shear layer and angle brackets denote a horizontal
average. The square brackets in (12a)–(12c) provide the initial perturbations to the velocity, confined to the
initial mixing layer by

a(z) = 0.1 exp[−100(modulo(z + π, 2π)− π)2].

The ri are random numbers in [−0.5, 0.5]. The initial condition for the passive scalar is

Z̄(x, y, z) = (1 + f(z)) /2, (13)

which maps it to Z ∈ [0, 1]. No perturbations are added to the initial scalar field.
To study the effects of numerical dissipation on flows with different mixing characteristics, we choose

an initial-velocity streamwise-perturbation wavenumber, k0, in (12) that yields different flow regimes and
mixed-fluid compositions across the shear layer. The role of initial disturbances in the evolution of mixing
layers is discussed in [35, 36, 37, 38, 39], for example.

Mixed-fluid composition can be assessed from scalar PDFs. Figures 1 and 2 show scalar isosurfaces and
PDFs at different times for k0 = 1 and 2 m−1, respectively. The entrainment of freestream fluid develops
a near-uniform mixed-fluid composition within the shear layer in early stages, as shown in Figures 1(b)
and 2(b), while the flow exhibits large-scale two-dimensional organization. It transitions to a non-uniform
composition by t = 20 s for k0 = 2 m−1, as evident from Figure 2(c), while the scalar field for k0 = 1m−1

retains the near-uniform composition as late as t = 20 s.
Changes to mixed-fluid composition in time can be determined from the scalar variance about the global

mixed-fluid mean concentration,

�
Z̄

�
=

1−ζ∫
ζ

Z P(Z) dZ, (14)

with a global scalar variance given by

σ2
global =

1−ζ∫
ζ

(Z − �
Z̄

�)2 P(Z) dZ, (15)

where P(Z) is the resolved-scalar PDF of the mixed fluid. A value of ζ = 1/50 is used as a threshold
between mixed and unmixed fluid. A non-uniform composition with spatially varying most-probable scalar
concentration will have higher deviations about the global mean,

�
Z̄

� ≈ 1/2, than a uniform composition.
As a result, the scalar variance, σ2

global, can exhibit a minimum, as shown in Figure 3 for the scalar field
that develops from each initial perturbation considered. A minimum in variance indicates high mixedness.

The time scale τ = 1/(k0ΔU) scales different flow stages, independent of the choice of k0, as shown
in Figure 3(b). The non-dimensional times of minimum variance are similar for shear flows with different
initializations that produce mixing regimes with both a near-uniform and non-uniform mixed-fluid compo-
sition, as evident in Figures 1 and 2. This allows a study of the numerical-dissipation influence on mixing as
well as the time of transition between the two mixing regimes. For analysis in Section 4, we consider only
flows from k0 = 2m−1 or k0L = 8π. Other perturbation choices for k0 yield similar results and conclusions.
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(a)

(b)

(c)

Figure 1: Scalar isosurfaces (left column) and resolved-scalar PDF (right column) at (a) t = 5 s (t/τ = 10), (b) t = 10 s
(t/τ = 20) and (c) t = 20 s (t/τ = 40) from the initial condition with k0 = 1m−1 (k0L = 4π) in Eq. (12).
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(a)

(b)

(c)

Figure 2: Scalar isosurfaces (left column) and resolved-scalar PDF (right column) at (a) t = 3 s (t/τ = 12), (b) t = 5 s (t/τ = 20)
and (c) t = 20 s (t/τ = 80) from the initial condition with k0 = 2m−1 (k0L = 8π) in Eq. (12).
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Figure 3: Resolved global scalar variance for different streamwise wavenumber of initial perturbation plotted against (a)
dimensional, and (b) scaled time.

3. Methods to mitigate unphysical scalar excursions

In applications, especially involving active scalars, scalar transport must observe strict physical bounds.
For example, the transport of absolute temperature or specific humidity in weather prediction must yield
non-negative values, or values that do not exceed thermodynamic bounds, at all times. Similarly, species
mass fractions in reacting flows or pollutant concentrations in environmental flows must be in the range
[0, 1] at all times.

Non-dissipative schemes tend to violate physical scalar bounds because of dispersive errors [17], whereas
low-order upwind schemes can be effective in restricting such violations. Flux-limited [40] or flux-corrected-
transport (FCT) [41] methods provide a framework to combine the two schemes, where the contribution
from each is determined based on the smoothness of the solution by a limiter. An example of the flux-
limited scheme that ensures monotonicity and thus boundedness, uses the Lax-Wendroff and the first-order
upwind scheme with a total-variation diminishing (TVD) limiter [42, Chapter 16]. It is used in Section 4 to
examine the numerical-dissipation influence on scalar boundedness and mixing estimates. Hybrid schemes
of similar kind and of high-order accuracy have been extensively used for shock-dominated turbulent flows
[43, 44, 45, 46], but these schemes are not TVD and do not strictly enforce boundedness or monotonicity.

A TVD scheme where the total variation is measured from grid values degenerates to first-order accuracy
near smooth extrema [47], therefore for a derivation of non-oscillatory high-order schemes, the TVD condition
is relaxed by a total-variation bounded (TVB) or a non-oscillatory condition [22, 48, 49]. In Sections 3.1
and 3.2, we discuss two limiting procedures based on the idea of non-oscillatory bounded and monotonic
flux reconstructions, respectively, that ensure scalar boundedness without loss of accuracy. The first uses
the maximum-principle-satisfying approach of Zhang & Shu [23] for finite-volume schemes and the second
applies the monotonicity-preserving approach of Suresh & Huynh [24] to finite-difference schemes. The
implementation and additional conditions for scalar boundedness on staggered grid are provided below.

To discuss limiting procedures, it is sufficient to consider the inviscid scalar equation,
∂Z

∂t
+

∂fk
∂xk

= 0, (16)

with the incompressibility condition ∂uk/∂xk = 0 and a convective flux fk = ukZ. The viscous and SGS
terms of Eq. (2c) can be ignored provided their numerical discretization retains the physically diffusive
character that respects the maximum principle. The overbar denoting resolved quantities in (2c) is dropped
in (16) to simplify notation, and reserved to denote cell averages in this section.
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3.1. Bounded finite-volume scheme

For simplicity, consider a cell Cij in a two-dimensional Cartesian grid, as shown in Figure 4. The extension
to three-dimensions follows a similar approach. A staggered-grid arrangement, with scalar values stored at
the cell center and velocity components at cell edges (faces in 3D), is used for all calculations. Integrating
Eq. (16) over the cell Cij and application of the divergence theorem yields an equation for cell averages. A
finite-volume semi-discretization of the equation is given by

dZ̄ij

dt
= − 1

Δx

(
fi+ 1

2 ,j
− fi− 1

2 ,j

)
− 1

Δy

(
gi,j+ 1

2
− gi,j− 1

2

)
, (17)

where Z̄ij(t) is an approximation to the (i, j)-cell average of Z(x, y, t),

Z̄ij ≈ 1

ΔxΔy

y
j+1

2∫
y
j− 1

2

x
i+1

2∫
x
i− 1

2

Z(x, y, t) dx dy, (18)

and flux approximations, using fk = ukZ, are described by

fi+ 1
2 ,j

≈ 1

Δy

y
j+1

2∫
y
j− 1

2

f1

(
Z(xi+ 1

2
, y, t), u(xi+ 1

2
, y, t)

)
dy, (19)

gi,j+ 1
2
≈ 1

Δx

x
i+1

2∫
x
i− 1

2

f2

(
Z(x, yj+ 1

2
, t), v(x, yj+ 1

2
, t)

)
dx. (20)

Following [23], assume a polynomial pij(x, y) of degree k in x and y that approximates the scalar field in
cell Cij with cell average

Z̄ij =
1

ΔxΔy

y
j+1

2∫
y
j− 1

2

x
i+1

2∫
x
i− 1

2

pij(x, y) dx dy =

n∑
a=1

n∑
b=1

wawb pij (x̂a, ŷb) , (21)

where x̂a and ŷb denote the quadrature points in the x- and y-direction, respectively, and wa and wb are
the corresponding quadrature weights. In this study, the Gauss-Legendre quadrature is used, and hence
the last equality in (21) assumes 2n − 1 ≥ k, i.e., the quadrature rule in (21) is exact for polynomials of
degree up to 2n− 1 in x and y. A multi-dimensional polynomial, pij(x, y), that satisfies (21) is available for
schemes that construct such a polynomial to advance the solution, such as the finite-volume WENO scheme
of Dumbser et al. [50]. However, for schemes that perform a split dimension-by-dimension reconstruction,
such as the finite-volume WENO scheme of Liu et al. [51], the polynomial needs to be constructed anew.
In Sections 4.1 and 4.3, we discuss results from both WENO schemes, where a polynomial-reconstruction
procedure similar to [23, Section 3.3] is used for the scheme of Liu et al. [51].

To enforce scalar boundedness, the polynomial is processed by the linear-scaling limiter of [22, 23],

p̃ij(x, y) = θ
(
pij(x, y)− Z̄ij

)
+ Z̄ij , θ = min

{ ∣∣M − Z̄ij

∣∣∣∣Mij − Z̄ij

∣∣ ,
∣∣m− Z̄ij

∣∣∣∣mij − Z̄ij

∣∣ , 1
}
, (22)

where Mij = max
(x,y)∈Sij

pij(x, y) and mij = min
(x,y)∈Sij

pij(x, y). Sij denotes the set of quadrature and cell-edge

points given by

Sij = Sx
i ⊗ Sy

j , Sx
i =

{
xi− 1

2
, x̂1, · · · , x̂n, xi+ 1

2

}
, Sy

j =
{
yj− 1

2
, ŷ1, · · · , ŷn, yj+ 1

2

}
,

where ⊗ denotes a tensor product, which yields Sx
i ⊗ Sy

j =
{
(x, y) : x ∈ Sx

i , y ∈ Sy
j

}
. M and m denote the

physical upper and lower bound of scalar values. For the initial scalar field (13), M = 1 and m = 0.
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The fluxes fi+ 1
2 ,j

and gi,j+ 1
2
, given by (19) and (20), are calculated from

fi+ 1
2 ,j

=

n∑
b=1

wbf̂
(
ZL
i+ 1

2 ,b
, ZR

i+ 1
2 ,b

, ui+ 1
2 ,b

)
, gi,j+ 1

2
=

n∑
a=1

waf̂
(
ZL
a,j+ 1

2
, ZR

a,j+ 1
2
, va,j+ 1

2

)
, (23)

where ZL
i+ 1

2 ,b
and ZR

i+ 1
2 ,b

are approximations to Z(xi+ 1
2 ,
ŷb, t) in cells Cij and Ci+1,j , respectively, and similarly

ZL
a,j+ 1

2

and ZR
a,j+ 1

2

are approximations to Z(x̂a, yj+ 1
2
, t) in cells Cij and Ci,j+1, respectively. They are

obtained, using the limited polynomial (22), from

ZL
i+ 1

2 ,b
= p̃ij(xi+ 1

2
, ŷb), ZR

i+ 1
2 ,b

= p̃i+1,j(xi+ 1
2
, ŷb),

ZL
a,j+ 1

2
= p̃ij(x̂a, yj+ 1

2
), ZR

i+ 1
2 ,b

= p̃i,j+1(x̂a, yj+ 1
2
).

To simplify implementation in an existing solver, the velocity field calculated from the momentum equations,
stored at the cell edges, is used in (23). No reconstructions are performed for the velocity components. If
the velocity components are not available at quadrature points, e.g., when finite-difference approximations
are used for the spatial derivatives of momentum equations, as is the case for results shown in Section 4,
ui+ 1

2 ,b
= ui+ 1

2 ,j
and va,j+ 1

2
= vi,j+ 1

2
is assumed, which does not influence the accuracy of (23). We use the

upwind flux for f̂ , given by

f̂(ZL, ZR, u) =
1

2

[
u
(
ZR + ZL

)− |u| (ZR − ZL
)]

. (24)

If the computed velocity field, u, and the constructed cell-interface scalar values, ZL and ZR, are of the
same order of accuracy, then the flux f̂(ZL, ZR, u) preserves that accuracy.

For discretization (17) to ensure scalar boundedness with fluxes given by (23), a proof similar to [23,
Theorem 4.3] shows that the computed velocity field must exactly satisfy

ui+ 1
2 ,j

− ui− 1
2 ,j

Δx
+

vi,j+ 1
2
− vi,j− 1

2

Δy
= 0. (25)

The incompressible-flow simulations discussed in this paper, calculate the divergence of the velocity in the
pressure-Poisson equation on a staggered grid using the derivative approximations

∂φ

∂x
≈

φi+ 1
2 ,j

− φi− 1
2 ,j

Δx
, (26a)

∂φ

∂x
≈ 9

8

(
φi+ 1

2 ,j
− φi− 1

2 ,j

Δx

)
− 1

8

(
φi+ 3

2 ,j
− φi− 3

2 ,j

3Δx

)
, (26b)

∂φ

∂x
≈ 150

128

(
φi+ 1

2 ,j
− φi− 1

2 ,j

Δx

)
− 25

128

(
φi+ 3

2 ,j
− φi− 3

2 ,j

3Δx

)
+

3

128

(
φi+ 5

2 ,j
− φi− 5

2 ,j

5Δx

)
, (26c)

for second-, fourth- and sixth-order accuracy, respectively. (26a) automatically satisfies (25) but for the
fourth- and the sixth-order stencils, ui+ 1

2 ,j
in (17) must be reconstructed as, respectively,

ui+ 1
2 ,j

=
13

12
ui+ 1

2 ,j
− 1

12

(
ui+ 3

2 ,j
+ ui− 1

2 ,j

2

)
,

ui+ 1
2 ,j

=
1067

960
ui+ 1

2 ,j
− 29

240

(
ui+ 3

2 ,j
+ ui− 1

2 ,j

2

)
+

3

320

(
ui+ 5

2 ,j
+ ui− 3

2 ,j

2

)
,

with a similar reconstruction for vi,j+ 1
2

to ensure that (25) holds exactly and that scalar boundedness is
enforced with uniform high-order accuracy.

The CFL condition for scalar boundedness in the two-dimensional case discussed above is given by (see
[23])

max

(
|u| Δt

Δx
+ |v| Δt

Δy

)
≤ min

a=1,···n
wa.
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For n = 3 and 4, where n is the number of quadrature points, the Gauss-Legendre quadrature yields a CFL
number of 0.28 and 0.17, respectively. In practice, a CFL number up to 0.3 provides bounded results for
multiple test problems that were examined with both values of n. Numerical results discussed in Section
4.3 use n = 3 for the WENO scheme of Liu et al. [51] and n = 4 for the WENO scheme of Dumbser et al.
[50] with a CFL number of 0.3 for both.

Figure 4: Cell Cij = [xj− 1
2
, xj+ 1

2
] × [yj− 1

2
, yj+ 1

2
] in a two-dimensional staggered-grid configuration. Scalar values are stored

at the cell center and velocity components at the cell edges (faces in 3D).

3.2. Bounded finite-difference scheme

In Suresh & Huynh [24], monotonicity-preserving bounds are derived for cell-interface values of a finite-
difference discretization of Eq. (16) to enforce monotonicity, and thus scalar boundedness. Consider a
semi-discretization for a two-dimensional flow, on a staggered-grid configuration as shown in Figure 4,

dZij

dt
= − 1

Δx

(
ui+ 1

2 ,j
Zi+ 1

2 ,j
− ui− 1

2 ,j
Zi− 1

2 ,j

)
− 1

Δy

(
vi,j+ 1

2
Zi,j+ 1

2
− vi,j− 1

2
Zi,j− 1

2

)
, (27)

where the cell-interface scalar values, Zi+ 1
2 ,j

and Zi,j+ 1
2
, are computed from any high-order accurate con-

struction, e.g., the centered construction of Morinishi et al. [25], the WENO construction of Jiang & Shu
[52], etc. These constructions lead to violations of physical scalar bounds, as discussed in Section 4.1. In
[24], Suresh & Huynh propose a limiter for reconstruction of cell-interface values to preserve monotonicity,
without loss of accuracy, if the solution is monotonic at the current time, where monotonicity is measured
on a stencil width. The (monotonicity-preserving) limiter is given by

Zi+ 1
2 ,j

= median (Zi+ 1
2 ,j

, Zmin
i+ 1

2 ,j
, Zmax

i+ 1
2 ,j

), (28)

where Zi+ 1
2 ,j

on the LHS is the reconstructed value, whereas that on the RHS is from any construction
(that may violate monotonicity). Zmin

i+ 1
2 ,j

and Zmax
i+ 1

2 ,j
are obtained from

Zmin
i+ 1

2 ,j
= max

[
min

(
Zij , Zi+1,j , Z

MD
i+ 1

2 ,j

)
, min

(
Zij , Z

UL
i+ 1

2 ,j
, ZLC

i+ 1
2 ,j

)]
,

Zmax
i+ 1

2 ,j
= min

[
max

(
Zij , Zi+1,j , Z

MD
i+ 1

2 ,j

)
, max

(
Zij , Z

UL
i+ 1

2 ,j
, ZLC

i+ 1
2 ,j

)]
,

where the upper-limit (UL), median (MD) and large-curvature (LC) allowance are given by

ZUL
i+ 1

2 ,j
= Zij + α (Zij − Zi−1,j) , (29a)

ZMD
i+ 1

2 ,j
=

1

2
(Zij + Zi+1,j)− 1

2
dM4
i+ 1

2 ,j
, (29b)

ZLC
i+ 1

2 ,j
= Zij +

1

2
(Zij − Zi−1,j) +

4

3
dM4
i− 1

2 ,j
. (29c)
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dM4
i+ 1

2 ,j
denotes a measure of the curvature defined as

dM4
i+ 1

2 ,j
= minmod(4dij − di+1,j , 4di+1,j − dij , dij , di+1,j),

dij = Zi+1,j − 2Zij + Zi−1,j .

The parameter α in (29a) determines the CFL number, which must be less than 1/(1+α) for boundedness.
We use α = 2, i.e., a CFL number of 0.33, for the results discussed in Section 4.3. Eq. (28) provides the
reconstruction for Zi+ 1

2 ,j
. A similar reconstruction is performed in the j−direction for Zi,j+ 1

2
, following a

dimension-by-dimension approach. Extension to three dimensions follows a similar approach.
The initial scalar field given by Eq. (13) is monotonic and, therefore, preserves monotonicity in the

vicinity of global bounds, i.e., for 0 ≤ Z̄ ≤ ζ and 1− ζ ≤ Z̄ ≤ 1, eliminates unphysical scalar excursions. In
Section 4.3, we use ζ = 0.05. The limiter (28) can be applied to cell-interface values constructed from any
finite-difference scheme, which provides great flexibility in the choice of numerical discretization. Moreover,
the approach dynamically checks for monotonicity violations, and does not require a correction step as used
in [18].

4. Numerical results

The turbulent shear flow described in Section 2.2 provides a suitable test problem to examine the per-
formance of limiting methods discussed in the previous section. The flow is simple enough to enable a
comparative analysis between different numerical schemes. At the same time, it captures regions and mix-
ing regimes encountered in more complicated flows. Moreover, the choice of different initial perturbations
generates flows with both near-uniform and non-uniform mixed-fluid composition, which allows an assess-
ment of the effect of numerical-dissipation errors in different mixing regimes. For the results and analyses
in this section, an initial perturbation of k0L = 8π in (12) is used. Results from other perturbation choices
were similar.

The LES equations (2) are solved on an Arakawa C (staggered) grid [53] with N grid points in each
direction. The modified pressure, p′, in (2b) is obtained by solving the pressure-Poisson equation, using
discrete Fourier transforms, to satisfy the incompressibility divergence-free condition [54]. Time-integration
is performed using the third-order TVD Runge-Kutta method of Shu & Osher [48]. The LES code with
the stretched-vortex model was successfully used in [55, 56, 57] and similar dynamic-Smagorinsky model
implementations were used in [58, 59, 60], where they have been tested and validated.

4.1. Unphysical scalar excursions and scalar spectra

The limiting approach described in Sections 3.1 and 3.2 can be applied to any finite-volume and finite-
difference scheme, respectively, to enforce scalar boundedness. As a result, the dissipation error of limited
methods will at best be similar to those of the underlying scheme. Therefore, before evaluating the per-
formance of limiters, we examine the dispersion and dissipation properties of some of the commonly used
numerical schemes for turbulent flow computation of the scalar field.

For smooth flows, the fully-conservative centered schemes [25] are preferred because of their non-dissipative
character and low aliasing errors [61, 62]. For flows with strong gradients, centered schemes can cause sig-
nificant dispersion errors. Therefore, upwind methods, such as QUICK [63], or non-oscillatory methods,
such as weighted essentially non-oscillatory (WENO) schemes [51, 52], or hybrid approaches [43, 44, 45] are
preferred. Table 1 shows the numerical schemes, and corresponding references, considered here for analysis.

WENO4 denotes the r = 3 (4th-order) finite-volume scheme of Liu et al. [51]. WENO5 is the r = 3

(5th-order) finite-difference scheme of Jiang & Shu [52]. WENO(D) denotes the M = 4 (5th-order) finite-
volume scheme of Dumbser et al. [50], which differs from Liu et al. [51] by using Legendre polynomials
as the reconstruction basis. TVD denotes a flux-limited scheme using the Lax-Wendroff and the first-order
upwind scheme with a TVD limiter [42, 64].
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To analyze unphysical scalar excursions that arise from errors in discretization of the scalar-convection
term [17], only the discretization of the scalar-convection term is changed. In all cases, the fully-conservative
fourth-order scheme of Morinishi et al. [25] is used to discretize the momentum-convection term. The
corresponding fourth-order accurate approximation of the pressure-Poisson equation is solved by utilizing a
Fourier expansion of the difference equation, similar to [54], resulting in a direct solution of the linear system
of equations. The resolved viscous and SGS-model terms are discretized using the second-order centered
approximations. The stretched-vortex SGS model is used with a filter width of the grid size, i.e., Δ = Δx.

Symbol Scalar-convection scheme
4th 4th-order fully conservative (Morinishi et al. [25])

QUICK QUICK (Leonard [63])
WENO(D) 5th-order Legendre polynomial WENO (Dumbser et al. [50])
WENO5 5th-order flux-based WENO (Jiang & Shu [52])
WENO4 4th-order cell-averaged WENO (Liu et al. [51])

TVD TVD flux-limited (Van Leer [64])

Table 1: Summary of scalar-convection schemes used for comparative study. Symbol denotes the label used in figures and
tables.

Table 2 and Figure 5 summarize the global scalar-excursion statistics, i.e., overshoots and undershoots,
from the schemes listed in Table 1 for the shear-flow LES using the stretched-vortex SGS model. Table 2
shows the volume fractions (scaled by the factors in the Multiplier column) of threshold violation given in
Column 1. For example, 2.009 × 10−2 is the volume fraction of scalar values Z̄ > 1.01 at t/τ = 80 when
the fully-conservative fourth-order scheme (4th) is used for the discretization of the scalar-convection term.
First five rows show overshoots and bottom five undershoots. The numerical schemes are arranged, from
left to right, in descending order of degree of threshold violation from them. Figure 5 shows the maximum
and minimum scalar value from different schemes with time.

Statistics from the dynamic-Smagorinsky SGS model, omitted for brevity, show a similar trend for
different schemes but exhibit higher overshoots/undershoots in each case. The higher unphysical excursions
could be attributed to lower diffusion from the dynamic-Smagorinsky SGS model, as also evident in the
scalar-variance minima comparison in Figures 8(a) and (b).

WENO schemes ensure essentially non-oscillatory solutions by assigning more weight to the smoothest
stencil among a choice of upwind, centered, and downwind stencils. However, this approach tends to
excessively diffuse important flow features in turbulent flow simulations with smooth flow fields, such as
the mixing layer discussed here. A straightforward step to reduce the amount of artificial diffusion, in such
cases, is to substitute the smoothness-based stencil weights by the optimal weights. In Appendix B, we
provide results from the use of optimal weights for each WENO scheme discussed above, denoting them by
a suffix “-opt”. The optimal WENO schemes are better suited for the mixing-layer simulation discussed here
and are used in Section 4.3 to assess dissipation introduced by the limiting methods of Section 3.

The extent of scalar overshoots and undershoots from these methods provides a measure of the corre-
sponding dispersion error, which can be assessed by a modified-wavenumber or phase-speed plot. Linear
schemes, such as the fully-conservative schemes of Morinishi et al. [25], allow Fourier analysis to determine
an explicit expression for modified wavenumber [65]. But such an approach cannot be applied to WENO
and flux-limited schemes because of their nonlinearity owing to the solution-dependent stencil weights and
the limiter, respectively. An approximate dispersion relation that accounts for the leading-order non-linear
effect in these schemes is discussed in [66]. The scalar-excursion statistics provide a qualitative representa-
tion of dispersion errors regardless of the linearity of the numerical scheme. Among the schemes of different
order-of-accuracy from Morinishi et al. [25], dispersion errors from the second-order method are largest, and
so are the corresponding scalar overshoots and undershoots [17]. The solutions from WENO schemes show
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overshoots of the same order as the QUICK scheme, but relatively small undershoots. This asymmetry is
a result of the oscillatory velocity field, calculated using the fourth-order scheme of Morinishi et al. [25] in
all cases, and the essentially non-oscillatory reconstruction of the scalar field that constitutes the convective
flux, fj = ūjZ̄, such that for Z̄ ≈ 1, the flux fj = ūjZ̄ ≈ ūj is oscillatory, whereas for Z̄ ≈ 0, the flux
fj ≈ 0 is essentially non-oscillatory. Therefore, unphysical excursions near Z̄ = 0, i.e., undershoots, are
small. This is further confirmed by the observation that if an initial scalar value range of Z̄ ∈ [−1, 1] is
used in place of Z̄ ∈ [0, 1], unphysical excursions are symmetric, i.e., overshoots and undershoots are of
comparable magnitude. Appendix A discusses the implementation of WENO schemes, used in this study,
on a staggered-grid configuration.

Scalar value
Volume fraction

Multiplier
Scalar-convection scheme

4th QUICK WENO(D) WENO5 WENO4 TVD

> 1.01 10−2 2.009 0.803 0.738 0.299 0.192 0
> 1.02 10−2 1.074 0.386 0.180 0.038 0.024 0
> 1.05 10−3 2.308 0.344 0.035 0.003 0.003 0
> 1.1 10−4 2.709 0.012 0.0006 0 0 0
> 1.2 10−6 5.782 0 0 0 0 0

< -0.01 10−2 2.147 0.781 0.0001 0 0 0
< -0.02 10−2 1.182 0.373 0 0 0 0
< -0.05 10−3 2.583 0.227 0 0 0 0
< -0.1 10−4 2.629 0 0 0 0 0
< -0.2 10−6 2.921 0 0 0 0 0

Table 2: Global scalar-excursion statistics at t/τ = 80 from different numerical schemes applied to the scalar-convection term
using N = 256 and the stretched-vortex SGS model.
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Figure 5: Global scalar excursion in simulations using different numerical schemes and N = 256 with the stretched-vortex SGS
model. (a) Maximum overshoot, (b) Maximum undershoot.

The dissipation error of the schemes can be assessed from scalar spectra. Figure 6 shows one-dimensional
resolved scalar and scalar-gradient spectra along the streamwise direction on the mixing layer mid-plane at
t/τ = 80 from different schemes, indicating a span of almost two decades with close to k−5/3 scaling for this
flow with Reδ � 5×105, as shown in the next section. The difference in area under the scalar spectra between
any two schemes measures the scalar variance lost to numerical dissipation from the more dissipative scheme.
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As discussed in [17], the fully-conservative centered schemes of Morinishi et al. [25] are least dissipative,
whereas the flux-limited TVD scheme is most dissipative. QUICK and WENO schemes, interestingly, do not
follow the same order in Figure 6 as Figure 5. The QUICK scheme causes relatively higher scalar excursions
than the WENO schemes and, at the same time, is more dissipative than the WENO(D) scheme and equally
as dissipative as the WENO4 and WENO5 schemes. It suggests that the dispersion and dissipation errors
from the WENO schemes are smaller than the QUICK scheme.
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Figure 6: One-dimensional spectra along the streamwise direction on the mid-plane of mixing layer at t/τ = 80 using N = 256

and the stretched-vortex SGS model. (a) Scalar spectra, EZZ , (b) scalar-gradient spectra k2xEzz .

4.2. Scalar mixing and numerical-dissipation effects

Turbulent mixing in LES occurs mostly at subgrid scales, which are sensitive to numerical dissipation
that may be incurred in mitigation of unphysical scalar excursions. The effects of numerical dissipation on
passive-scalar mixing and consistency of LES mixing statistics with respect to grid refinement are examined
in this section. From the numerical schemes discussed in Section 4.1, we consider the fourth-order non-
dissipative scheme of Morinishi et al. [25] and the flux-limited TVD scheme [64] that show contrasting
behavior with respect to unphysical scalar excursions. The former produces significant scalar excursions
because of dispersion errors. The latter suppresses all excursions because of its TVD character, but is very
dissipative and reduces to first-order accuracy near local extrema. The grid-resolution influence is examined
by performing simulations with N = 256 and 512, with coarse-grid simulations initialized by spectrally
filtering and interpolating the solution of fine-grid simulation at t/τ = 32 to facilitate comparisons.

4.2.1. Shear-layer width
The shear-layer width based on scalar concentration, denoted δZ , is defined here as the 1% scalar mean

profile thickness, i.e., 0.01 ≤ 〈
Z̄
〉 ≤ 0.99, where 〈•〉 denotes a horizontal average. Similarly, the width based

on streamwise velocity, denoted δu, is defined as the mean streamwise velocity profile thickness corresponding
to −0.49 ≤ 〈ū〉 /ΔU ≤ 0.49. Figure 7 compares the growth of shear-layer width and the corresponding
Reynolds number, Reδ, with time between the fourth-order non-dissipative and the flux-limited TVD scheme
with N = 256 and 512. The velocity field in each case is calculated using the fourth-order non-dissipative
scheme and is not influenced by the passive-scalar field. Figure 7(a) shows the results from the stretched-
vortex SGS model and Figure 7(b) from the dynamic-Smagorinsky model. The growth of the shear-layer
width is seen to be nearly insensitive to numerical dissipation as well as to grid resolution, for both SGS
models. By t/τ = 80, the flow attains a Reynolds number, Reδ, in excess of 5× 105. To further understand
the role of numerical dissipation, scalar-mixing estimates are examined in the next section.
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Figure 7: Evolution of shear-layer width and Reδ from LES using different numerical schemes, grid resolutions, and (a) the
stretched-vortex model, (b) the dynamic-Smagorinsky model.

4.2.2. Resolved scalar PDF and variance
Figure 3 represents the time evolution of the resolved variance of mixed-fluid composition in the shear flow

investigated. It can be used to examine effects of numerical dissipation on scalar mixing at different stages of
the shear-flow development. Figures 8(a) and (b) show the resolved scalar variance from fourth-order non-
dissipative and TVD scheme at two grid resolutions, using the stretched-vortex and the dynamic Smagorinsky
SGS model, respectively. As discussed in Section 2.2, the time of minimum variance (t/τ ≈ 25) corresponds
to a state of (local) maximum mixedness, characterized by a near-uniform mixed-fluid composition. At
times before the minimum variance, t/τ � 25, scalar mixing generates a mixed-fluid concentration close to
the global mean of 1/2 across the shear layer width, as shown in Figures 1(b) and 2(b), therefore, from Eq.
(15) with

�
Z̄

� ≈ 1/2, scalar variance decreases locally with time. After the minimum variance, for t/τ � 25,
the evolution to a less-uniform mixed-fluid composition leads to an increase in variance.

The TVD scheme artificially enhances mixing at all times compared to the non-dissipative scheme. The
numerical-dissipation influence, as shown in Figures 8(a) and (b), is more pronounced at early times, before
the scalar-variance minimum. Higher mixing at early times, t/τ < 25, generates mixed-fluid with scalar
concentration clustered around 1/2, which leads to a lower scalar variance from the TVD scheme with
both SGS models. After the scalar-variance minimum, as the shear-layer width grows with time and the
mixed-fluid composition becomes non-uniform, higher mixing generates a concentration close to 1/2 around
the mid-plane and intermediate concentrations farther from 1/2 near the shear-layer edges. Concentrations
close to 1/2 lower the global scalar variance whereas those farther from 1/2 increase it. At late times, the
global scalar variance, therefore, is determined by the extent of mixing at the mid-plane versus that at the
shear-layer edges. The stretched-vortex SGS model tends to homogenize the fluid at the mid-plane faster
than the dynamic-Smagorinsky model and, therefore, the scalar-variance minimum is lower and the scalar
variance from TVD scheme is higher at late times in Figure 8(a). Coarse-grid simulations, initialized at
t/τ = 32, predict higher resolved global variance with both SGS models.
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Figure 8: Resolved scalar variance comparison between the non-dissipative fourth-order and the TVD scheme using (a) the
stretched-vortex SGS model, (b) the dynamic-Smagorinsky SGS model. Parentheses in legend label the number of grid points
in each direction, N .

Mean and scalar variance calculated from (14) and (15), respectively, take the mixed fluid across the
shear-layer width into account. As a result, the mean remains nearly constant, i.e.,

�
Z̄

� ≈ 1/2 at all times,
and Figure 8 shows the deviation of the mixed-fluid concentration about this (global) mean. An alternative
estimate of scalar variance, σ2

local, can be obtained by replacing
�
Z̄

�
in (15) by the local or spatially-varying

mean,
〈
Z̄
〉
, shown in Figure 9 for the scalar field at t/τ = 80. σ2

local represents local scalar fluctuations
or physical stirring/mixing of fluid elements. Figure 10 shows σ2

local at a time before (t/τ = 16) and after
(t/τ = 80) the minimum scalar variance in Figure 8. A flow time of t/τ = 16 occurs after the initial Kelvin-
Helmholtz rollup with dominant two-dimensional structures and near-uniform mixed-fluid composition, as
shown in Figures 2(a)-2(b), whereas the flow field at t/τ = 80 is highly three-dimensional, characterized by
a less-uniform mixed-fluid composition, as shown in Figure 2(c). Figure 11 shows the mid-plane scalar PDF
at those times. As expected, the probability of finding mixed-fluid at the mid-plane is higher with the TVD
scheme at t/τ = 16 because of its numerical diffusivity, but once the fluid around the mid-plane is mixed,
numerical (or molecular) diffusivity plays a negligible role in the mixed-fluid composition evolution and both
schemes yield similar behavior at t/τ = 80. Figures 9, 10, and 11 show results from the stretched-vortex
SGS model. Similar results from the dynamic-Smagorinsky SGS model are omitted for brevity.

Accurate estimates of mixed-fluid composition are critical in reacting-flow simulations, since errors will
yield incorrect predictions of product formation and heat release [67]. A method to estimate the numerical-
dissipation influence on heat release in such flows, obviating solution of the reacting-flow equations, is
proposed in Appendix C.

4.2.3. Subgrid scalar variance and dissipation
The previous section discusses the resolved scalar variance and the numerical-dissipation influence on it.
The stretched-vortex SGS model allows an estimate of subgrid contributions to the total scalar variance and
dissipation (see Section 2.1), which enables a comparison between the subgrid contributions and numerical-
dissipation errors.
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Figure 9: Local mean,
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Z̄
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, of the scalar concentration across the shear-layer width at t/τ = 80 using the stretched-vortex SGS

model. Parentheses in legend denote the number of grid points in each direction, N .
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Figure 10: Comparison of resolved local scalar variance between the solution from the fourth-order non-dissipative and the
TVD scheme at (a) t/τ = 16, (b) t/τ = 80 using the stretched-vortex SGS model. Legend same as in Figure 11.
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Figure 11: Comparison of the resolved mid-plane scalar PDF at (a) t/τ = 16, (b) t/τ = 80 using the stretched-vortex SGS
model. Parentheses in legend denote the number of grid points in each direction, N .
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Total scalar variance, following [31, Eq. (4.4)], can be estimated from

σ2
tot =

δZ/2∫
−δZ/2

〈
Z ′2

〉
dz, (30)

where, with mild assumptions,
〈
Z ′2

〉 ≈ 〈
Z̄ ′2

〉
+

〈
σ2
sub

〉
. Z̄ ′ = Z̄ − 〈

Z̄
〉

is the resolved scalar fluctuation such
that

〈
Z̄ ′2

〉
= σ2

local, shown in Figure 10, and σ2
sub is estimated from Eq. (6).

Similarly, total scalar dissipation can be estimated from

εtot =

δZ/2∫
−δZ/2

〈εs〉 dz, (31)

where εs = D (
∂Z̄/∂xj

)2
+ εsub. Subgrid scalar dissipation in each cell, εsub, is estimated by Eq. (5), such

that εsgs =
∫ δZ/2

−δZ/2
〈εsub〉 dz and, similarly, σ2

sgs =
∫ δZ/2

−δZ/2

〈
σ2
sub

〉
dz.

Figure 12 shows the total scalar variance and dissipation, denoted Total, as well as the subgrid contribu-
tion to these quantities, denoted SGS, for solutions from the non-dissipative fourth-order and the dissipative
TVD scheme for N = 256 and 512. The initial resolved scalar field, (13), is unperturbed and, therefore,
the subgrid variance accounts for all the variance at initial time in Figure 12(a). Subgrid variance from
the non-dissipative scheme accounts for around 15% of the total variance in the development stage of flow
and around 6% − 8% of the total variance at late times, whereas, subgrid variance from the TVD scheme
accounts for only 5% in the development stage and around 2% − 3% at late times. The y-axis in Figure
12(a) is logarithmic to highlight the difference of subgrid contributions from the two schemes.

The difference in total variance between the two schemes, i.e., the error attributable to numerical dissipa-
tion, decreases with time but exceeds the subgrid contribution from either scheme at all times. As expected,
the subgrid variance on the coarser grid is higher and the total variance is roughly the same for the two grid
resolutions. The subgrid contribution to the total scalar dissipation, shown in Figure 12(b), accounts for
roughly all the dissipation at both grid resolutions. Total scalar dissipation calculated from the solution of
the TVD scheme is roughly half of that from the non-dissipative scheme. The difference is a consequence of
higher spatial fluctuations in the scalar field from the non-dissipative scheme, as discussed in Appendix D,
which results in higher SGS dissipation (proportional to the square of scalar gradients).
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Figure 12: (a) Total (σ2
tot/δZ) and subgrid (σ2

sgs/δZ) scalar variance, (b) Total (εtot) and subgrid (εsgs) dissipation from the
fourth-order non-dissipative and the TVD scheme for the scalar-convection term discretization. N denotes the number of grid
points in each direction. Legend is the same for both plots.
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4.3. Bounded-scheme results

Section 3 discusses approaches to mitigate unphysical scalar excursions with finite-volume and finite-difference
schemes. The linear-scaling limiter of [22, 23] is used for finite-volume schemes, whereas the monotonicity-
preserving limiter of [24] for finite-difference schemes. In this section, we analyze results from the application
of the bounded finite-volume approach of Section 3.1 to WENO(D)-opt and WENO4-opt schemes (see Ap-
pendix B) and the bounded finite-difference approach of Section 3.2 to the fourth-order non-dissipative
scheme of [25]. We choose the three schemes because of their low dissipation errors. However, any other
numerical scheme as discussed in Section 3 could also be used.

Prefixes “L-” and “MP-” denote schemes with the linear-scaling and the monotonicity-preserving limiter,
respectively. N = 256 is used for all simulations. Global scalar-excursion statistics from the schemes with
and without limiters are shown in Table 3 and Figure 13. Table 3 shows the volume fractions (scaled
by the factors in the Multiplier column) of threshold violation given in Column 1. Figure 13 shows the
maximum and minimum scalar value from different schemes with time. As evident, both limiters eliminate
all overshoots and undershoots.

Scalar spectra can help assess numerical dissipation introduced by the limiters. Figure 14 shows the one-
dimensional scalar and scalar-gradient spectra along the streamwise direction on the mid-plane

(〈
Z̄
〉
= 0.5

)
at t/τ = 80 from different schemes with and without the limiters. The limited-scheme results are shown
by dot-dashed lines. They follow the corresponding solid lines closely in each case, indicating that very
little dissipation is introduced by both limiters at mid-plane. The scalar concentration on the mid-plane at
t/τ = 80, as shown in Figure 11(b), is expected to be around 0.5, therefore, the effect of bound-preserving
limiters, which act around the physical bounds of 0 and 1, is expectedly minimal. To examine the effect
at other planes, Figures 15(a) and 15(b) plot the scalar spectra on planes z/δZ = 0.2

(〈
Z̄
〉
= 0.7

)
and

z/δZ = 0.4
(〈
Z̄
〉
= 0.94

)
, respectively. The limited finite-volume schemes, L-WENO(D)-opt and L-WENO4-

opt, show little deviation from the corresponding non-limited scheme results, indicating that very little
additional dissipation is introduced by the limiters. The deviation is slightly higher for the monotonicity-
preserving limiter applied to the non-dissipative fourth-order scheme at z/δZ = 0.4, which may partly be a
result of the suppression of unphysical scalar variance from overshoots and undershoots.

In Section 4.2.2, the mid-plane scalar PDF and scalar variance were found to be sensitive to numerical
dissipation in the development stage of the shear flow. Figure 16 shows those results for schemes with and
without the limiters, demonstrating that the difference in mixed-fluid composition traceable to additional
dissipation from the limiting approaches is minimal.

Table 4 shows the CPU time per iteration, overhead with respect to the TVD scheme, and the fraction
of total run time expended in scalar-convection-term evaluation from different schemes, determined using
the profiling tool gprof [68]. The total and scalar-convection CPU times per iteration are calculated by
averaging over 100 iterations the total compute time and the time spent in subroutines evaluating scalar-
convection-term, respectively, in a serial execution. All computations are carried out on a workstation with
Intel Xeon CPU E5-2670 processor using intel compiler (version 17.0.1) and compiler options -o3 -r8 for
optimization and double precision. CPU times are sensitive to the choice of compiler and optimization
flags but overheads with respect to a given scheme and percentages of total run time are similar. Since
the bound-preserving limiters act only in case of scalar overshoots/undershoots, the computational expense
depends on the flow characteristics. Flows with sharper gradients near global bounds, expected to produce
more overshoots/undershoots, will have more calls to the limiter subroutine in the program run and entail
higher cost. The compute times presented in Table 4 are calculated from runs around the flow time t/τ ≈ 60,
when the computational domain has nearly equal mixed and unmixed fluid. As evident from the table, MP-
4th is approximately three times more expensive than the non-dissipative fourth-order scheme, but because
of small fraction of total run time required for scalar-convection-term evaluation, the relative influence on
total CPU time/iteration is small. WENO schemes are expectedly more expensive than the non-dissipative
fourth-order and TVD scheme.
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Scalar value

Volume fraction

Multiplier
Scalar-convection scheme

4th MP-4th
WENO(D) L-WENO(D) WENO4 L-WENO4

-opt -opt -opt -opt

> 1.01 10−2 2.009 0 1.357 0 1.369 0
> 1.02 10−2 1.074 0 0.465 0 0.472 0
> 1.05 10−3 2.308 0 0.189 0 0.192 0
> 1.1 10−4 2.709 0 0.009 0 0.008 0
> 1.2 10−6 5.782 0 0 0 0 0

< -0.01 10−2 2.147 0 0.208 0 0.218 0
< -0.02 10−2 1.182 0 0.036 0 0.041 0
< -0.05 10−3 2.583 0 0.003 0 0.003 0
< -0.1 10−4 2.629 0 0 0 0 0
< -0.2 10−6 2.921 0 0 0 0 0

Table 3: Global scalar excursion statistics at t/τ = 80 from different numerical schemes applied to the scalar-convection term.
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Figure 13: Global scalar excursion in simulations using different numerical schemes. (a) Maximum overshoot, (b) Maximum
undershoot. Legend same as in Figure 14.
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Figure 14: One-dimensional spectra along the streamwise direction on the mid-plane of mixing layer at t/τ = 80. (a) Scalar
spectra, EZZ , (b) Scalar gradient spectra k2xEzz .
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Figure 15: One-dimensional scalar spectra along the streamwise direction at t/τ = 80 on horizontal planes: (a) z/δZ = 0.2,
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0 0.2 0.4 0.6 0.8 1
Z̄

0

1

2

3

4

5

6

7

P
D
F

t/τ = 16

4th
MP-4th
WENO(D)-opt
L-WENO(D)-opt
WENO4-opt
L-WENO4-opt
TVD

0.35 0.4 0.45 0.5 0.55 0.6 0.65
z/L

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

va
r(
Z̄
)

t/τ = 16

(a) (b)
Figure 16: (a) Mid-plane scalar PDF and (b) local scalar variance at t/τ = 16 from different schemes with and without limiters.
Legend is the same for both plots.

Scalar-convection Total
CPU time/iteration (s)Scheme CPU time/iteration (s) Overhead w.r.t. TVD % of total run time

4th 0.636 1.43 4.2 15.242
MP-4th 1.850 4.16 11.2 16.459

WENO(D)-opt 6.542 14.73 30.9 21.148
L-WENO(D)-opt 8.774 19.74 37.5 23.380

WENO4-opt 3.615 8.14 19.8 18.222
L-WENO4-opt 7.482 16.84 33.9 22.089

TVD 0.445 1.00 3.0 15.050

Table 4: Computational cost of different schemes using N = 128 and a CFL number of 0.3 for all cases.

In summary, mixing sensitivity to numerical dissipation is flow-dependent, as might be expected. The
shear flow considered here, described in Section 2.2, evolves through different mixing phases, which allows
a study across various mixing regimes. Figure 8 shows a higher sensitivity to numerical dissipation in the
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development stage of the flow and the over-diffusive nature of the stretched-vortex SGS model on coarser
grid. To study the long-time mixing evolution, the fine-grid simulation was extended, allowing shear layers
in the periodic configuration to merge and homogenize. Figure 17 compares the global scalar-variance
between the non-dissipative fourth-order and the TVD scheme for a long-time simulation. It highlights
higher sensitivity at early times, which, as expected, diminishes as the flow field approaches momentum and
scalar homogenization. The time of local maximum and minimum in scalar variance, however, is unaffected
by the additional dissipation. The time axis in Figure 8 is logarithmic to compress the much-longer times
involved and help scale the approach of the flow to the asymptotic homogenized state.
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Figure 17: Resolved global scalar-variance comparison between the non-dissipative fourth-order and the TVD scheme for a
long-time simulation using N = 512. Note the logarithmic time axis.

5. Conclusions

LES of incompressible temporally evolving shear flow using the stretched-vortex and the dynamic-
Smagorinsky SGS model examine the effects of numerical dissipation on scalar mixing, introduced in mit-
igating unphysical scalar excursions. The sensitivity of the shear flow to initial conditions is exploited to
generate flows with different mixed-fluid compositions across shear layer, enabling a study of numerical-
dissipation influence in different mixing regimes, and the time of transition between them. TVD schemes
ensure scalar boundedness but are known to be too dissipative. An assessment of mixed-fluid composition
in different stages of the shear flow evolution shows that numerical dissipation from a TVD scheme enhances
mixing in all stages of the flow, exhibiting much higher sensitivity in the development stage characterized
by organized large-scale flow-structure interactions and near-uniform mixed-fluid composition, but does not
alter the character of the mixed-fluid composition (uniform vs. non-uniform) as well as the time of transition
between mixing regimes and the time when local extrema in scalar variance are attained.

Additional dissipation influences scalar-field behavior at small scales and, therefore, statistics driven by
large-scale structures, such as mixing-zone width and growth rate, are less sensitive to numerical dissipation.
Mid-plane scalar PDF and local scalar variance are sensitive to numerical dissipation in the development
stage of the flow but less so at late times. Total scalar variance and dissipation show sensitivity to numerical
dissipation in all stages of the flow evolution. They provide useful diagnostic metrics to assess dissipation
attributable to mitigation techniques for unphysical scalar excursions.
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Two approaches based on flux reconstruction, using a linear-scaling limiter for finite-volume schemes
and a monotonicity-preserving limiter for finite-difference schemes, are presented for scalar boundedness
in incompressible-flow simulations. Both approaches eliminate unphysical scalar excursions with minimal
dissipation and preserve design order of accuracy with a conservative discretization. They provide better
alternatives to TVD schemes for scalar boundedness in turbulent-flow simulations. For the incompressible
shear flow considered here, MP-4th is a suitable scalar-convection scheme. It introduces minimal numerical
dissipation, as shown in Figures 14-16, and eliminates the overshoots/undershoots, as shown in Table 3 and
Figure 13.
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Appendix A. WENO-scheme implementation on staggered grid

For the incompressible flow simulations discussed in this paper, Eq. (2) is solved on a staggered grid, where
scalar values are stored at the cell center and velocity components at the cell edges in 2D (cell faces in 3D),
as shown in Figure 4. A conservative discretization is used for the scalar-convection term, such that for
f = ūZ̄,

∂f

∂x

∣∣∣∣
i

≈
fi+ 1

2
− fi− 1

2

Δx
, (A.1)

and, similarly, for the fluxes in the y- and z-direction. The flux at a cell interface is fi+ 1
2
= f̂

(
Z̄L
i+ 1

2

, Z̄R
i+ 1

2

, ūi+ 1
2

)
.

Velocity components, calculated from the momentum equation, are stored at cell interfaces, therefore, no
reconstruction is performed for ūi+ 1

2
, and WENO reconstructions are applied only to the scalar field to

obtain Z̄L,R

i+ 1
2

. The cell-interface flux is then obtained from the left and the right state using the upwind flux
given by Eq. 24.

The performance of three WENO schemes is analyzed in Sections 4.1 and 4.3 for the the LES of turbulent
shear flow. Here, we conduct Taylor-Green vortex flow simulations with passive scalar transport to assess
the convergence of the three schemes on a staggered grid with the implementation described above. The
flow is governed by the incompressible (uniform-density) Navier-Stokes equations, i.e., (2) without the SGS
terms. The analytical solution is given by

u(x, y, t) = −cos(x) sin(y) e−2νt, v(x, y, t) = −sin(x) cos(y) e−2νt,

w(x, y, t) = 0, Z(x, y, t) = −cos(x) cos(y) e−2νt/Sc,

where ν = 0.025 and Sc = 1.0 is assumed. Table A.5 shows the accuracy of different WENO schemes
with errors calculated at t = 2.0. A small enough time step is chosen so that temporal errors are much
smaller than spatial truncation errors. The momentum-equation terms and the viscous term of the scalar
equation are discretized using the sixth-order centered scheme to isolate the errors from the scalar-field
WENO reconstruction. All schemes exhibit the design order of accuracy. A higher convergence rate with
WENO4 (r = 3 scheme of Liu et al. [51]), which is expected to be fourth-order accurate, is because of larger
errors on coarser grids, as pointed in [52] and confirmed in Table A.5.
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N ×N
WENO(D) WENO5 WENO4

L2 error Order L2 error Order L2 error Order

64× 64 5.57e-07 3.90e-06 5.96e-05
128× 128 1.68e-08 5.053 1.21e-07 5.012 2.64e-06 4.496
256× 256 4.94e-10 5.084 3.57e-09 5.078 9.37e-08 4.817
512× 512 1.43e-11 5.112 9.57e-11 5.224 2.19e-09 5.419

Table A.5: L2 error and convergence rate of different WENO schemes for Taylor-Green vortex flow solved on a staggered grid.

Appendix B. Comparison of WENO schemes with different smoothness estimator

In this appendix, the global scalar-excursion statistics and scalar spectra (indicators of the dispersion
and dissipation properties of a numerical scheme, respectively) are compared between the WENO schemes
with solution-dependent and optimal weights. For smooth flow fields, such as the mixing layer analyzed
in this paper, the solution-dependent weights in the WENO schemes are found to be excessively diffusive,
and the optimal weights are better suited. Other variants of WENO schemes that add a downwind stencil
[69], or adapt the solution-dependent weights to map to optimal values faster [70, 71], or do both [72] to
reduce numerical dissipation are not considered here. Instead, smooth flow fields in the turbulent shear flow
considered here allows use of optimal weights in all cells. The optimal weights can be found in [51, Section
3.6] for the WENO4 and [52, Table 2] for the WENO5 scheme. For WENO(D), the weights, λ, are assumed
to be zero for one-sided stencils in [50, Section 2.2], i.e., only the central stencil is used.

Table B.6 and Figure B.18 show the global scalar-excursion statistics from WENO schemes, discussed in
Section 4.1, with optimal weights, denoted by the suffix “-opt”. No suffix denotes the classical approach with
solution-dependent weights. Figure B.19 compares the one-dimensional scalar and scalar-gradient spectra,
along the streamwise direction on the mid-plane, between them. As expected, optimal weights introduce
less dissipation but cause higher unphysical scalar excursions.

Scalar value

Volume fraction

Multiplier
Scalar-convection scheme

4th
WENO4

WENO4
WENO5

WENO5
WENO(D)

WENO(D)
-opt -opt -opt

> 1.01 10−2 2.009 1.369 0.192 1.355 0.299 1.357 0.738
> 1.02 10−2 1.074 0.472 0.024 0.468 0.038 0.465 0.180
> 1.05 10−3 2.308 0.192 0.003 0.197 0.003 0.189 0.035
> 1.1 10−4 2.709 0.008 0 0.008 0 0.009 0.0006
> 1.2 10−6 5.782 0 0 0 0 0 0

< -0.01 10−2 2.147 0.218 0 0.209 0 0.208 0.0001
< -0.02 10−2 1.182 0.041 0 0.037 0 0.036 0
< -0.05 10−3 2.583 0.003 0 0.003 0 0.003 0
< -0.1 10−4 2.629 0 0 0 0 0 0
< -0.2 10−6 2.921 0 0 0 0 0 0

Table B.6: Global scalar-excursion statistics at t/τ = 80 from different numerical schemes applied to the scalar-convection
term, and N = 256.
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Figure B.18: Global scalar excursion from different numerical schemes using N = 256. (a) Maximum overshoot, (b) Maximum
undershoot. Legend same as in Figure B.19(a).
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Figure B.19: One-dimensional spectra along the streamwise direction on the mid-plane of mixing layer at t/τ = 80 using
N = 256. (a) Scalar spectra, EZZ , (b) Scalar gradient spectra k2xEZZ .

Appendix C. Estimate of numerical-dissipation influence on heat release

Normalized temperature rise ΔT̄ (z;φ)/ΔTf in the limit of fast chemistry can be written as (e.g., [73])

ΔT̄ (z;φ)

ΔTf
=

1∫
0

Yp(Z̄, Zφ)P(Z̄; z) dZ̄,

where P(Z̄; z) denotes the resolved-scalar PDF at a horizontal plane and ΔTf is the adiabatic flame tem-
perature rise. Yp(Z̄, Zφ) is the product produced corresponding to a particular mixture fraction assuming
complete consumption of lean reactant,

Yp(Z̄, Zφ) =

⎧⎨
⎩

Z̄
Zφ

for 0 ≤ Z̄ ≤ Zφ,

1−Z̄
1−Zφ

for Zφ ≤ Z̄ ≤ 1.

For a stoichiometric mixture ratio φ, complete consumption of all reactants occurs at a stoichiometric-
mixture mole fraction,

Zφ =
φ

φ+ 1
.
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Consider the chemical reaction between hydrogen and fluorine in the limit of fast chemistry [73],

H2 + F2 → 2HF .

Figure C.20 compares the normalized temperature rise for H2-rich (φ = 1/8) condition at times used in
Figures 10 and 11 between the fourth-order non-dissipative and the TVD scheme. Consistent with the
observations in Figures 10 and 11, a higher normalized temperature rise in Figure C.20(a) from the TVD
scheme indicates a greater chemical-product volume fraction, and is a result of higher estimated mixing
because of numerical diffusivity. A longer time allows homogenization by large-scale flow structures and the
two schemes yield similar results at t/τ = 80, as shown in Figure C.20(b).
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Figure C.20: Comparison of the normalized temperature rise for H2-rich (φ = 1/8) condition at (a) t/τ = 16, (b) t/τ = 80.

Appendix D. Point-wise comparison of the scalar field

In this appendix, we discuss the point-wise difference of the scalar field obtained from schemes with
different numerical dissipation. Figure D.21 shows contours of the scalar field at the y = 0 plane from the
fourth-order non-dissipative and the flux-limited TVD scheme at t/τ = 80. The diffusive nature of the TVD
scheme is evident from a comparison of the fine-structure resolution between Figures D.21(a) and D.21(b).
Figures D.22(a) and D.22(b) plot scalar values along the vertical line x = 0 of Figure D.21 and a horizontal
line at the shear layer mid-plane, respectively. The plots highlight some of the observations made in Sections
4.1 and 4.2. Global scalar excursions from the non-dissipative fourth-order scheme can be seen as overshoots
and undershoots in Figure D.22(a), whereas the TVD scheme observes boundedness. Scalar fluctuations in
Figure D.22 are higher for the non-dissipative scheme and, therefore, its scalar variance (discussed in Section
4.2.2) is also higher.
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(a) (b)
Figure D.21: Contours of the scalar field at the y = 0 plane from the (a) non-dissipative fourth-order scheme, (b) TVD scheme
at t/τ = 80, using N = 256. The extent of the computational domain (in m): x, y ∈ [−2π, 2π] and z ∈ [0, 4π].
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Figure D.22: Point-wise scalar values at t/τ = 80 along (a) the vertical line: x = 0m, y = 0m, (b) the horizontal line: y = 0m,
z = 2πm, from simulations using N = 256.
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