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Abstract—Financial transactions, internet search, and data
analysis are all placing increasing demands on databases. SQL,
NoSQL, and NewSQL databases have been developed to meet
these demands and each offers unique benefits. SQL, NoSQL,
and NewSQL databases also rely on different underlying math-
ematical models. Polystores seek to provide a mechanism to
allow applications to transparently achieve the benefits of di-
verse databases while insulating applications from the details of
these databases. Integrating the underlying mathematics of these
diverse databases can be an important enabler for polystores as it
enables effective reasoning across different databases. Associative
arrays provide a common approach for the mathematics of
polystores by encompassing the mathematics found in different
databases: sets (SQL), graphs (NoSQL), and matrices (NewSQL).
Prior work presented the SQL relational model in terms of
associative arrays and identified key mathematical properties
that are preserved within SQL. This work provides the rigorous
mathematical definitions, lemmas, and theorems underlying these
properties. Specifically, SQL Relational Algebra deals primarily
with relations – multisets of tuples – and operations on and
between those relations. These relations can be modeled as
associative arrays by treating tuples as non-zero rows in an
array. Operations in relational algebra are built as compositions
of standard operations on associative arrays which mirror their
matrix counterparts. These constructions provide insight into
how relational algebra can be handled via array operations.
As an example application, the composition of two projection
operations is shown to also be a projection, and the projection
of a union is shown to be equal to the union of the projections.

I. INTRODUCTION

The success of SQL, NoSQL, and NewSQL databases is
a reflection of their ability to provide significant function-
ality and performance benefits for specific domains, such
as financial transactions, internet search, data analysis, and,
increasingly, machine learning. Polystore databases seek to
provide a mechanism to allow applications to transparently
achieve the benefits of diverse databases while insulating
applications from the details of these databases. Polystores
must support a wide range of databases with different iter-
faces. Among these interfaces are the standard Relational or
SQL (Structured Query Language) databases [1], [2] such as
MySQL, PostgreSQL, and Oracle; key-value stores/NoSQL
databases such as Google BigTable [3], Apache Accumulo
[4], and MongoDB [5]; NewSQL databases such as C-Store
[6], H-Store [7], SciDB [8], VoltDB [9], and Graphulo [10],
[11].

NoSQL databases were developed to represent large sparse
tables, contributing to the widespread adoption of NoSQL

This material is based in part upon work supported by the NSF under
grant number DMS-1312831. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

databases to analyze data on the internet [12]–[14]. NewSQL
databases support new analytics capabilities within a database.
In hybrid processing systems like Apache Pig [15], Apache
Spark [16], and HaLoop [17], SQL, NoSQL, and NewSQL
concepts have been blended.

Polystore databases, such as BigDAWG [18]–[22] and
Myria [23], were created to make use of the varied specialties
of the aforementioned database types [24]. One inherent
challenge is that SQL, NoSQL, and NewSQL databases use
different data models and make use of different mathematical
tools, as illustrated by Figure 1 and Figure 2.
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Abstract—The success of SQL, NoSQL, and NewSQL databases 
is a reflection of their ability to provide significant functionality 
and performance benefits for specific domains, such as financial 
transactions, internet search, and data analysis.  The BigDAWG 
polystore seeks to provide a mechanism to allow applications to 
transparently achieve the benefits of diverse databases while 
insulating applications from the details of these databases.  
Associative arrays provide a common approach to the 
mathematics found in different databases: sets (SQL), graphs 
(NoSQL), and matrices (NewSQL).  This work presents the SQL 
relational model in terms of associative arrays and identifies the 
key mathematical properties that are preserved within SQL.  
These properties include associativity, commutativity, 
distributivity, identities, annihilators, and inverses. Performance 
measurements on distributivity and associativity show the impact 
these properties can have on associative array operations.  These 
results demonstrate that associative arrays could provide a 
mathematical model for polystores to optimize the exchange of 
data and execution queries. 
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I.  INTRODUCTION  
Relational or SQL (Structured Query Language) databases 

[Codd 1970, Stonebraker 1976] such as PostgreSQL, MySQL, 
and Oracle have been the de facto interface to databases since 
the 1980s (see Figure 1) and are the bedrock of electronic 
transactions around the world. More recently, key-value stores 
(NoSQL databases) such as Google BigTable [Chang 2008], 
Apache Accumulo [Wall 2015], and MongoDB [Chodorow 
2013] have been developed for representing large sparse tables 
to aid in the analysis of data for Internet search. As a result, the 
majority of the data on the Internet is now analyzed using key-
value stores [DeCandia et al 2007, Lakshman & Malik 2010, 
George 2011]. In response to similar performance challenges, 
the relational database community has developed a new class 
of databases (NewSQL) such as C-Store [Stonebraker 2005], 
H-Store [Kallman 2008], SciDB [Balazinska 2009], VoltDB 
[Stonebraker 2013], and Graphulo [Hutchison 2015] to support 
new analytics capabilities within a database.  The SQL, 
NoSQL, and NewSQL concepts have also been blended in 
hybrid processing systems, such as Apache Pig [Olston 2008], 
Apache Spark [Zaharia 2010], and HaLoop [Bu 2010].  An 
effective mathematical model that encompasses the concepts of 

SQL, NoSQL, and NewSQL would enable their 
interoperability.  Such a mathematical model is the primary 
goal of this paper. 

 

 
Figure 1.  Evolution of SQL, NoSQL, NewSQL, and polystore 
databases.  Each class of database delivered new mathematics, 
functionality, and performance focused on new application areas. 

SQL, NoSQL, and NewSQL databases are designed for 
specific applications, have distinct data models, and rely on 
different underlying mathematics (see Figure 2).  Because of 
their differences, each database has unique strengths that are 
well suited for particular workloads.  It is now recognized that 
special-purpose databases can be 100x faster for a particular 
application than a general-purpose database [Kepner 2014].  In 
addition, the availability of high performance data analysis 
platforms, such as the MIT SuperCloud [Reuther 2013, Prout 
2015], allows high performance databases to share the same 
hardware platform without sacrificing performance. 

 

 
Figure 2.  Focus areas of SQL, NoSQL, NewSQL, and Polystore 
databases. 
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Fig. 1. Focus areas of SQL, NoSQL, NewSQL, and Polystore databases. Each
class of database has distinct strengths and relies on a different mathematics.
Polystores provide a way to unify these databases and their mathematics.
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The recognition of “one size does not fit all” [Stonebraker 
& Çetintemel 2005] has led to the need for polystore databases, 
such as BigDAWG [Duggan 2015, Elmore 2015], that can 
contextualize queries and cast data between multiple databases 
so that a user can employ the best database for a particular task 
(see Figure 3). To achieve this goal, polystore databases need 
to bridge SQL, NoSQL, and NewSQL databases.  The 
Dynamic Distributed Dimensional Data Model (D4M) 
technology [Kepner 2012] was developed to provide a linear 
algebraic interface to graphs stored in NoSQL databases [Byun 
2012, Kepner 2013].  Subsequently, D4M has been 
successfully used with both SQL [Wu 2014, Gadepally 2015] 
and NewSQL [Samsi 2016] databases.  The effectiveness of 
D4M to seamlessly interact with these diverse databases rests 
on its associative array algebra [Kepner & Chaidez 2013, 
Kepner & Chaidez 2014, Kepner & Jansen 2016] that provides 
a mathematics that spans sets, graphs, and matrices.  The 
ability of D4M (and Myria [Halperin 2014]) to bridge multiple 
databases has laid the foundation for the polystore database 
concept. 

 

 
Figure 3.  BigDAWG polystore database architecture.  Analytic 
translators contextualize queries to specific databases.  Data 
translators cast data between databases. 

Mathematics is one of the most important differences 
among SQL, NoSQL, and NewSQL databases (see Figure 4).  
The relational algebra found in SQL databases is based upon 
selection, union, and intersection of special sets called 
relations.  NoSQL is designed for analyzing sparse 
relationships among data and relies on graph theory and graph 
analysis.  NewSQL databases use matrices and linear algebra to 
look for patterns in numeric data. 

 

 
Figure 4.  Mathematics of breadth-first search for SQL, NoSQL, and 
NewSQL databases. 

The approach to developing an associative array model of 
the above databases is as follows.  First, the relevant aspects of 
relations are summarized.  Second, the sparse matrix operations 
that encompass graph algorithms and matrix mathematics are 
given.  Third, the associative array model that describes 
NoSQL and NewSQL databases is described.  Fourth, relations 

and their corresponding operations are defined in terms of 
associative arrays.  Fifth, the mathematical properties required 
by graph algorithms and matrix mathematics are confirmed for 
relational operations.  Finally, performance results illustrating 
the impact of these properties are presented and discussed. 

II. RELATIONS 
The relational model, based on set theory, is a key 

mathematical foundation for SQL databases.  The relational 
model effectively consists of relational algebra, relational 
calculus, and the structured query language (SQL) that balance 
the theoretical, implementation, and systems design aspects of 
databases.  The relational model is well covered in the 
literature [Maier 1983, Codd 1990, Abiteboul 1995]; only the 
most relevant aspects of the model are reviewed here.  Some of 
the more significant mathematical contributions of the 
relational model to databases include 
 
(R1) Relations: a mathematical definition of database tables 

sufficient for their representation without constraining 
their implementation; 

(R2) Query semantics: a mathematical definition of operations 
on relations sufficient for proving the correctness of 
database queries; 

(R3) Proof of the equivalence of declarative and procedural 
syntaxes over the above definitions that has enabled the 
use of declarative semantics for database users and 
procedural semantics for database builders [Codd 1972]. 

 
Of these results, (R3) has been enormously important, but 
would not be possible without (R1) and (R2).  (R3) has been 
critical to the success of SQL databases that follow the 
relational model.  (R3) has enabled the successful coexistence 
of separate interfaces and languages for users and 
implementers, with the confidence that neither would create a 
fundamental mathematical contradiction for the other. 

The relational model is based on balancing mathematical 
rigor with implementation practicality.  Too much 
mathematical rigor burdens a database implementation with 
unnecessary mathematics.  Too little mathematical rigor makes 
it is difficult to know if a database implementation will work.  
As with all good compromises, there have been advocates for 
improvement on both sides.  As cited earlier, many new 
databases under the names of NoSQL and NewSQL differ from 
the relational model to meet new performance and analysis 
demands.  Likewise, there is extensive mathematical work on 
modifications to the relational model to increase its 
mathematical rigor [Imieliński 1984a, Imieliński 1984b, 
Kanellakis 1989, Tsalenko 1992, Plotkin 1998, Priss 2006, van 
Emden 2006, Litak 2014, Hutchison 2016].  One motivation 
for increasing the mathematical rigor [Kelly 2012] is to align 
relations with well-established Zermelo-Fraenkel Choice (ZFC) 
set theory [Zermelo 1908, Fraenkel 1922] that is the foundation 
for a number of branches of mathematics. 

The emerging diversity of databases has initiated a dialogue 
regarding the traditional relational model and the newer graph 
and matrix models.  This dialogue is akin to the earlier 
declarative and procedural conversation that culminated in the 
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Fig. 2. Breadth-first search for SQL, NoSQL, and NewSQL databases in their
native data models. In each case, the operation being performed is finding the
nearest neighbors of alice who are bob and carl.

Integrating the mathematics of these diverse databases is an
important enabler for polystores as it allows reasoning across
different databases. The mathematical foundations for these
databases include sets (SQL), graphs (NoSQL), and matrices
(NewSQL). LARA [25] is one branch of work that reduces the
mathematics of sets (Relational Algebra) and matrices (Linear
Algebra) to a common basis of 3 operators, emphasizing their
practical realization in data processing systems. This paper
focuses on associative arrays as a common approach for the

ar
X

iv
:1

71
2.

00
80

2v
1 

 [
cs

.D
B

] 
 3

 D
ec

 2
01

7
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216285294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mathematics of polystores by situating Relational Algebra onto
the same foundations as Linear Algebra.

The associative array approach to bridging NoSQL and
NewSQL databases has been demonstrated by the Dynamic
Distributed Dimensional Data Model (D4M) technology [26]
which provides a linear algebraic interface to SQL, NoSQL,
and NewSQL databases [27]–[31]. The key object of D4M
is the associative array, which generalizes the notion of a
matrix to allow for more general value sets and indexing sets.
This more general structure makes associative arrays better
equipped to deal with graphs and relations in a more direct
fashion than matrices [32]–[35].

Relations form the basis of the mathematical foundation
for SQL databases [36]–[38]. In set theory, they are realized
as multisets of tuples. Associative arrays can be used to
realize multisets of tuples of values which support a notion of
“addition” and “multiplication”. Associative array analogues
of traditional matrix operations can be defined, and this leads
to the question of whether the gamut of relational algebra
operations can be likewise realized in terms of the associative
array operations.

Our prior work [39] presented the SQL relational model
in terms of associative arrays and identified key mathematical
properties that are preserved within SQL. This work provides
the rigorous mathematical definitions and proofs of some of
these properties. Specifically, SQL Relational Algebra deals
primarily with relations – multisets of tuples – and opera-
tions on and between those relations. These relations can be
modeled as associative arrays by treating tuples as non-zero
rows in an array. Operations in relational algebra can be built
as compositions of standard operations on associative arrays
which mirror their matrix counterparts. These constructions
provide insight into how relational algebra can be handled via
array operations.

This paper gives some technical background of multisets
and associative arrays to explain the motivation for identifying
relations and associative arrays, defines some major relational
algebra operations in terms of standard associative array
operations, and uses these definitions to prove fundamental
properties of some of the relational algebra operations.

II. MATHEMATICAL PRELIMINARIES AND DEFINITIONS

Understanding relations in terms of associative arrays be-
gins with the careful definition of the relevant mathematical
properties of relations and associative arrays.

A. Relations and Multisets in Set Theory

Relations form the basis of the mathematical foundation for
SQL databases [36]–[38]. In set theory, they are realized as
multisets of tuples.

One approach to defining multisets in set theory that
matches intuition closely is to define a multiset as a sequence

f : I → A

in which f−1(a) is a non-empty finite set for each a ∈ A.
The size of f−1(a) represents how many copies of a are in
the multiset. Two sequences

f : I → A and g : J → B

are said to define the same multiset if A = B and there exists
a bijection

h : I → J

such that
g ◦ h = f

This definition of equality of multisets captures the fact that
the specific indexing set I used does not matter, only the sizes
of f−1(a) (which is invariant under equality of multisets).

This makes sense of something like {a, b, a, c, e, a, b} as the
multiset

f : {1, . . . , 7} → {a, b, c, e}

where f(1) = a, f(2) = b, f(3) = a, f(4) = c, f(5) = e,
f(6) = a, f(7) = b, In this notation, {a, a, a, b, b, c, e} defines
the same multiset.

A slight variation on this definition is to allow A to
contain non-elements, i.e. an a ∈ A such that f−1(a) is
empty. Accepting this variation makes the equivalance with
associative arrays technically simpler.

In relational algebra, a relation is a multiset of tuples. These
tuples conform to a schema of n attributes, where n is the arity
of the relation. For example, an arity-3 relation might contain
the tuple (7, “Hayden”, 20). We assume all relations contain
a primary key attribute; if not, then a primary key can be
appended to the relation as an additional attribute, as many
databases do in practice under the hood. If J refers to the
relation’s primary key and V refers to (the cross product of)
its other attributes’ domains, then we can define a relation as

f : J → V

which maps the primary key value of a tuple to its other
attributes’ values. For example, such a mapping might contain
the entry 7→ (“Hayden”, 20) Primary keys outside the relation
map to all-null rows, as discussed in the next section.

Note that while both multisets and tuples are of the form

f : I → A

they differ in that the specific set I is inconsequential in the
definition of a multiset, while it is important in the case of
tuples.

B. Associative Arrays

In practice, the values in a tuple can range from alphanu-
meric strings to real numbers to sets. Moreover, the kinds of
operations defined on those values need not be the traditional
addition and multiplication of real numbers. However, in order
to define analogues of the standard matrix operations, there
need be some “addition” ⊕ and some “multiplication” ⊗, and
these should satisfy some minimum set of properties to ensure



that these array-analogues have a minimum set of desireable
properties.

Generalizing the notion of a matrix to allow for more
general value sets equipped with more general operations
produces the notion of an associative array.

Definition II.1 (Semiring). [40], [41] A semiring is a set V
equipped with two binary operations ⊕ and ⊗ such that

1) ⊕ is associative and commutative and has an identity
element 0 ∈ V,

2) ⊗ is associative with an identity element 1 ∈ V,
3) ⊗ distributes over ⊕, and
4) 0 is an annihilator for ⊗.

All rings and fields are semirings. The set of natural num-
bers N = {0, 1, 2, . . .} is a semiring under standard addition
and multiplication. The set of non-negative real numbers is a
semiring under standard addition and multiplication. The set of
extended real numbers R ∪ {−∞,∞} with semiring addition
⊕ = max and semiring multiplication ⊗ = min is a semiring
called the max-min algebra. R ∪ {−∞,∞} with ⊕ = max
and ⊗ = + is a semiring called the max-plus algebra. The
set of alphanumeric strings ordered lexicographically along
with a formal maximum ∞ is a semiring with ⊕ = min and
⊗ = concatenation.

The convention that null = 0 is used here. Note that if a
formal null is added to V with the properties

null⊕ v = v ⊕ null = v

null⊗ v = v ⊗ null = null

for every v ∈ V∪{null}, then V∪{null} would be a semiring
with a new additive identity null. Thus, nothing is lost by
examining only the case where the convention null = 0 is
used.

Definition II.2 (Associative Array). An associative array is a
map

A : K1 ×K2 → V

where V is a semiring, such that A(k1, k2) 6= 0 for only
finitely-many pairs (k1, k2). Elements of K1 are called row
keys and elements of K2 are called column keys.

Definition II.3 (Array Addition). Suppose

A,B : K1 ×K2 → V

are two associative arrays. Their array addition

C = A⊕B : K1 ×K2 → V

is defined by

C(k1, k2) = (A⊕B)(k1, k2) = A(k1, k2)⊕B(k1, k2)

Array addition is both associative and commutative.

Definition II.4 (Zero Array). 0 is the zero array, in which
every entry is 0.

The zero array provides an identity element for array addition.

Definition II.5 (Element-Wise Product). Suppose

A,B : K1 ×K2 → V

are two associative arrays. Their array element-wise product

C = A⊗B : K1 ×K2 → V

is defined by

C(k1, k2) = (A⊗B)(k1, k2) = A(k1, k2)⊗B(k1, k2)

Array element-wise product is associative, as well as com-
mutative if ⊗ is commutative.

Definition II.6 (Element-Wise Identity). Given a row key set
K1 and a column key set K2, denote by 1K1,K2

the associative
array K1 ×K2 → V with

1K1,K2
(k1, k2) = 1

The element-wise identity 1K1,K2 provides an identity element
for array element-wise product when restricted to associative
arrays A : K1 ×K2 → V.

Definition II.7 (Array Multiplication). Suppose

A : K1 ×K2 → V

and
B : K2 ×K3 → V

are two associative arrays. Then their array product

C = A B = A⊕.⊗B : K1 ×K3 → V

is defined by

C(k1, k3) =
⊕
k2∈K2

A(k1, k2)⊗B(k2, k3)

Array multiplication is associative, but in general need not be
commutative even if ⊗ is commutative.

For brevity, A ⊕.⊗ B is denoted A B, except when it
is important to be explicit about the operations being used
(particularly when they are not semiring ⊕ and ⊗).

Definition II.8 (Array Identity). Given a row key set K1, a
column key set K2, and a partial function

f : K1→| K2

meaning f is a function defined on a subset dom f ⊂ K1.
Denote by

IK1,K2,f

the associative array K1 ×K2 → V with

IK1,K2,f (k1, k2) =

{
1 if k1 ∈ dom f and k2 = f(k1)

0 otherwise

IK1,K2 means IK1,K2,f where

dom f = K1 ∩K2

and f acts as the identity on K1 ∩ K2. If K1 = K2 = K,
then

IK1,K2
= IK



Finally, if K1,K2, f are understood, then write

IK1,K2,f = I

The array identity IK1,K2,f does not in general act as an
identity element for array multiplication. IK , however, is an
identity for array multiplication when restricted to associative
arrays A : K ×K → V.

When performing operations between associative arrays
whose row and column key sets are not “compatible” (i.e.
satisfy the hypotheses of the above definitions), this can be
solved by zero padding.

Definition II.9 (Zero Padding). If

A : K1 ×K2 → V

is an associative array and K ′1,K
′
2 are arbitrary sets, then

padK′
1×K′

2
(A) : (K1 ∪K ′1)× (K2 ∪K ′2)→ V

is defined by

padK′
1×K′

2
(A)(i, j) =

{
A(i, j) if i ∈ K1, j ∈ K2

0 otherwise

By padding arrays prior to carrying out an operation, opera-
tions can be defined in general. Explicitly, given

A : K1 ×K2 → V

and
B : K3 ×K4 → V

then

A⊕B = pad(K1∪K3)×(K2∪K4)(A)

⊕ pad(K1∪K3)×(K2∪K4)(B)

A⊗B = pad(K1∪K3)×(K2∪K4)(A)

⊗ pad(K1∪K3)×(K2∪K4)(B)

A⊕.⊗B = padK1×(K2∪K3)(A)

⊕.⊗ pad(K2∪K3)×K4
(B)

Likewise, equality of two arrays is done up to zero padding:
A = B if and only if

pad(K1∪K3)×(K2∪K4)(A) = pad(K1∪K3)×(K2∪K4)(B)

Definition II.10 (Row Support). For an associative array

A : K1 ×K2 → V

the row support IA is the set of row keys associated with
non-zero rows of A.

Definition II.11 (Transpose). Suppose

A : K1 ×K2 → V

is an associative array. Then its transpose Aᵀ is the associa-
tive array K2 ×K1 → V defined by

Aᵀ(k2, k1) = A(k1, k2)

Definition II.12 (Array Kronecker Product). Suppose

A : K1 ×K2 → V

and
B : K3 ×K4 → V

are associative arrays. Then their array Kronecker product

C = A ⊗©C

is the associative array

(K1 ×K3)× (K2 ×K4)→ V

defined by

C((k1, k3), (k2, k4)) = A(k1, k2)⊗B(k3, k4)

The array Kronecker product allows associative arrays opera-
tions to handle dimensions higher than 2 dimensions.

III. RELATIONS AS ASSOCIATIVE ARRAYS

Motivated by the definition of a relation as a multiset
(sequence) of tuples, define a relation to be an associative
array with the intuition that the rows of an associative array are
the relevant tuples which are indexed by the column indices.
The row indices are only meant to differentiate the rows. In
practice, the sequence number identifying the distinct rows in
an SQL table serve a similar purpose.

Definition III.1 (Row and Row Equality). If

A : K1 ×K2 → V

is an associative array with i ∈ K1, then the i-th row is the
tuple

A(i, :) : K2 → V

sending j to A(i, j). Such a row is non-zero if it not identically
zero. If

B : K3 ×K4 → V

and i′ ∈ K3, then the i-th row of A is equal to the i′-th row of
B if A(i, j) and B(i′, j) are both defined and equal whenever
one of them is non-zero. A−1(i, :) denotes the subset of IA
containing the indices of rows in A which are equal to A(i, :).

Definition III.2 (Weak Equivalence). The associative arrays

A : K1 ×K2 → V

and
B : K3 ×K4 → V

are weakly equivalent
A ∼ B

if for each non-zero row of A there is an equal row in B, and
vice-a-versa.

In terms of multisets, two arrays are weakly equivalent if their
underlying sets of tuples are equal.



Lemma III.3. Given associative arrays

A : K1 ×K2 → V

and
B : K3 ×K4 → V

Define the array
P : K1 ×K3 → V

by

P(k1, k3) =

{
1 if A(k1, :) = B(k3, :)

0 otherwise

Then the following are equivalent
1) A ∼ B.
2) If A(k1, :) is a non-zero row, so is the row P(k1, :), and

if B(k3, :) is a non-zero row, so is the column P(:, k3).

Lemma III.4. A ∼ B if and only if there exist functions

f : IA → IB

and
g : IB → IA

such that

A = IIA,IB,f B and B = IIB,IA,g A

Definition III.5 (Strong Equivalence). Two associative arrays

A : K1 ×K2 → V

and
B : K3 ×K4 → V

are strongly equivalent

A ≈ B

if for each non-zero row of A, there are exactly as many copies
of that row in B as in A, and vice-a-versa.

In terms of multisets, two arrays are strongly equivalent if they
are equal as multisets.

Lemma III.6. For associative arrays

A : K1 ×K2 → V

and
B : K3 ×K4 → V

define the array
P : K1 ×K3 → V

by

P(k1, k3) =

{
1 if A(k1, :) = B(k3, :)

0 otherwise

Then the following are equivalent:
1) A ≈ B
2) A ∼ B and if P(k1, k3) 6= 0, then the number of non-

zero entries of the row P(k1, :) is equal to the number
of non-zero entries of the column P(:,K3).

Lemma III.7. A ≈ B if and only if there exists a bijection

f : IA → IB

such that
A = IIA,IB,f B

The array P constructed in III.3 and III.6 can be computed
using the following array operation.

Lemma III.8. For associative arrays

A : K1 ×K2 → V

and
B : K3 ×K4 → V

define the array
P : K1 ×K3 → V

by

P(k1, k3) =

{
1 if A(k1, :) = B(k3, :)

0 otherwise

Then
P = (IIA A) ∧.δ (IIB B)ᵀ

where

v ∧ w =

{
1 if v, w 6= 0

0 otherwise
δ(v, w) =

{
1 if v = w

0 otherwise

IV. RELATIONAL ALGEBRA OPERATIONS

There are many operations defined on relations. This is a re-
sult of of Codd’s Theorem [42], which states that relational al-
gebra and relational calculus queries have the same expressive
power. In other words, to carry out a wide range of relational
queries, it is enough to implement the basic relational algebra
operations. By implementing these operations with associative
algebra operations, this reduces SQL queries to linear algebra.

Equipped with the necessary array operations and notions
of equivalence for arrays viewed as relations, it is possible to
define several of the standard operations in relational algebra
in terms of array operations.

Definition IV.1 (Project). Suppose J is a set of column keys.
Then define the projection operation ΠJ by

ΠJ(A) = A IJ

which removes all columns not in J . In SQL syntax, it is

SELECT J(1), . . . , J(n) FROM A

Definition IV.2 (Rename). Suppose J1, J2 are two sets of
column keys with a bijection f : J1 → J2. Then define the
rename operation ρJ1/J2,f by

ρJ1/J2,f (A) = A IJ1,J2,f

where
A : K1 ×K2 → V



This operation selects the columns to be renamed, and then
renames them according to f . In SQL syntax, it is

SELECT J1(1), . . . , J1(n) AS J2(1), . . . , J2(n) FROM A

The function f can act trivially on some columns. This allows
the rename operation to keep fixed the columns that aren’t
being renamed to something new.

Definition IV.3 (Union). For two arrays

A : K1 ×K2 → V

and
B : K3 ×K4 → V

their union is

A ∪B = (IIA×{1},IA A)⊕ (IIB×{2},IB B)

This operation effectively adds the counts of rows together. In
SQL syntax, it is

SELECT ∗ FROM A UNION ALL SELECT ∗ FROM B

A. Operations Involving Choices of Representative Rows

In the definition of a multiset intersection operation, the
number of times a row appears in A ∩ B should be the
minimum of the number of times that row appears in both
A and B. Similarly, in the definition of a multiset difference
operation, the number of times a row appears in A\B should
be the number of times it appears in A minus the number of
times it appears in B (showing up zero times if this difference
is negative). This suggests a difficult arising due to needed
to select the relevant number of rows, which arises due to
explictly having these rows indexed in a way that may not
offer an unambiguous way of making this choice. Assume
there is a function

Subn (A,B)

which assigns to any sets of row keys A and B and a non-
negative integer

0 ≤ n ≤ |A|+ |B|

a fixed subset of

(A× {1}) ∪ (B × {2})

of size n.
If there is a fixed, explicit total ordering of the row keys,

then
(A× {1}) ∪ (B × {2})

has a canonical ordering coming from the ordering of the rows;
if

A = {a1, . . . , an}

with a1 < · · · < an and

B = {b1, . . . , bm}

with b1 < · · · < bm then

(a1, 1) < · · · < (an, 1) < (b1, 2) < · · · < (bm, 2)

Then Subn (A,B) can be taken to be the first n elements of

(A× {1}) ∪ (B × {2})
with respect to the above ordering.

Definition IV.4 (Intersection). The intersection operation is
defined by

A ∩B = IS (A ∪B)

where

S =
⋃

i1∈IA
i2∈IB

A(i1,:)=B(i2,:)

Submin(mi1 ,ni2 )

(
A−1(i1, :),B

−1(i2, :)
)

where
mi1 = |A−1(i1, :)|

and
ni2 = |B−1(i2, :)|

This selects from A ∪ B the minimum of the count of each
row from A and B. In SQL syntax, it is

SELECT ∗ FROM A INTERSECT SELECT ∗ FROM B

Definition IV.5 (Multiset Difference). The multiset difference
operation is defined by

A \B = IS A

where

S = IA \ π1


⋃

i1∈IA
i2∈IB

A(i1,:)=B(i2,:)

Subpi1,i2

(
A−1(i1, :), ∅

)


and

pi1,i2 = |A−1(i1, :)| −max
(
0, |A−1(i1, :)| − |B−1(i2, :)|

)
This removes from A as many copies of a row as are present
in B (up to all of the copies of that row in A). In SQL syntax,
it is

SELECT ∗ FROM A EXCEPT SELECT ∗ FROM B

The use of π1, projection onto the first coordinate, in the above
expression of S, is intended to correct for the fact that the set

Subpi1,i2

(
A−1(i1, :), ∅

)
is technically a subset of IA × {1}. Taking π1 makes S a
subset of IA instead.

The notion of Subn (A,B) allows for the notion of a set
difference of A and B to be defined as well, being defined as
in Definition IV.5 except with pi1,i2 = 0.

The notion of Subn (A,B) also allows for all duplicate
elements of an associative array to be removed, effectively
allowing for set semantics, by taking

Set(A) = ISA

where

S = π1

[ ⋃
i∈IA

Sub1

(
A−1(i, :), ∅

)]



B. Operations Involving Functions of Certain Entries in a
Row

Definition IV.6. Suppose J is a set of column keys. If A is
an array, then the J-column indexed entries of a row A(i, :)
are the entries A(i, j) where j ∈ J .

Definition IV.7 (Select). Suppose ϕ is a boolean-valued func-
tion (so taking values in {0, 1} ⊂ V) of the J-column indexed
entries of a row, whose values we denote as ϕ(A(k1, J)). Then
we define the select operation (determined by ϕ) by

σϕ(J)(A) =
[
[ϕ(A(:, J)) ϕ(A(:, J))ᵀ]⊗ IIA

]
A

where ϕ(A(:, J)) is the column vector

ϕ(A(:, J)) =


1

i1 ϕ(A(i1, J))
...

...
in ϕ(A(in, J))


This operation selects those rows of A which evaluate to true
under ϕ. In SQL syntax, it is

SELECT ∗ FROM A where ϕ(A·J(1),...,J(n))

Definition IV.8 (Theta Join). Suppose θ is a boolean-valued
function on the J1-column-indexed entries of a first row and
the J2-column-indexed entries of a second row. Then define
the theta join operation (determined by θ) by

A ./θ(J1,J2) B = σθ(J1,J2)

(
[A ⊗© 1K3,{1}]

⊕ ρ{2}×K4,K4×{2},f [1K1,{2} ⊗©B]
)

where f : (2, k) 7→ (k, 2).
This operation selects pairs of rows from A and B which
evaluate to true under θ. In SQL syntax, it is

SELECT ∗ FROM A,B WHERE
θ(A·J1(1),...,J1(n),B·J2(1),...,J2(n))

The theta join operation creates new column indices for the
resulting rows by “tagging” them with 1 and 2; this ensures
that there is no conflict between them when performing the
array addition.

If needed, it can be assumed that whenever a theta join
operation is performed, the non-zero column indices of the first
and second array are distinct, and the column indices K2×{1}
and K4×{2} can be identified with the corresponding column
indices of K2 and K4, respectively.

Dealing with the case where the non-zero column indices of
the two arrays are not necessarily distinct, it can be required
that θ evaluates to true exactly when the values at those indices
agree and are defined. To achieve this, the array addition ⊕
can be replaced with a new operation ⊕= for which

v ⊕= w =


v if w = 0

w if v = 0

v if v = w

undefined otherwise

(This “undefined” value only shows up to be removed upon
use of the selection σθ(J1,J2), so there is no need not worry
about the effect of it on the algebra.)

Definition IV.9 (Extended Projection). Suppose ϕ is a function
of the J-column indexed entries of a row and j′ is a column
key. Define the extended projection (determined by ϕ and j′)
by

j′Πϕ(J)(A) = ρ{1},{j′}
(
ϕ(ΠJ(A)(:, J))

)

=


j′

i1 ϕ(A(i1, J))
...

...
in ϕ(A(in, J))


and IA = {i1, . . . , in}. This replaces the J-indexed columns
with a single column j′ whose entries are computed by ϕ. In
SQL syntax, it is

SELECT ϕ(A·J(1),...,J(n)) AS j′ FROM A

Taking liberties with the notation, it is typical to write

ϕ(ΠJ(A)(:, J))

as
ϕ(ΠJ(A)(:, J)) = ΠJ(A) ϕ.⊗ 1J,{j′}

since the entries are computed as

ϕ(A(i, j1), . . . ,A(i, jm)) = ϕ
(
A(i, j1)⊗1, . . . ,A(i, jm)⊗1

)
which is remarkably close to⊕

j∈J
(A(i, j)⊗ 1)

In fact, if ϕ is an iterated (commutative, associative) binary
operation ∗, then this is the same as

ΠJ(A) ∗.⊗ 1J,{j′}

Definition IV.10 (Aggregation). Suppose j and j′ are column
keys and f is a function of finitely-supported tuples of elements
in V (i.e. all but finitely-many elements are 0) taking values
in V. Define the aggregation (determined by j, j′ and f ) by

jGf(j′)(A) = P f.⊗A

=


1

i1 f (P(i1, i1)⊗A(i1, j
′), . . . ,P(i1, in)⊗A(in, j

′))
...

...
in f (P(in, i1)⊗A(i1, j

′), . . . ,P(in, in)⊗A(in, j
′))


where

P = [IIA ⊕.⊗A(:, j)]⊕.δ [IIA ⊕.⊗A(:, j)]ᵀ

This operation applies the function f (the aggregate function)
on all the values of column j′ in A that share a common value
in column j. In SQL syntax, it is

SELECT fj′ FROM A GROUP BY j



Unlike in the cases of selection, theta join, and extended
projection, where the domains of the relevant functions (ϕ in
the case of selection and extended projection, θ in the case of
theta join) are explicitly given, the domain of f is not explicitly
given. (We’ve said it is a function of finitely-supported tuples
of elements in V, but without restricting the possible indices,
there are too many of these to even form a set.)

In all practical considerations, the set of possible column
keys can be assumed to be finite; in this case, consider all
finitely-supported tuples of elements in V indexed by those
possible column keys.

Another practical consideration is that f is symmetric, in
that permuting those indexing column keys does not affect the
result. In this case, take f to simply be a function of any finite
multiset of non-zero values in V, passing on the set-theoretic
difficulties to that of multisets.

If the values A(i, j) and A(i′, j) are equal and non-zero,
then the aggregate jGf(j′)(A) will also have its i-th and i′-th
entries equal. Moreover, the row keys of the aggregate are the
same as those of A (at least, the non-zero rows).

By additionally (array) multiplying IᵀIA,V,f on the left,
where f(i) = A(i, j), every row of the aggregate represents
unique information with row keys equal to the value A(i, j)
that was used to select the values being aggregated.

Finally, to use a column key j′′ in place of the default 1,
(array) multiply I{1},{j′′} on the right.

V. PROPERTIES OF RELATIONAL ALGEBRA OPERATIONS

Since relations are defined by associative arrays with either
strong or weak equivalence, to ensure that these operations are
defined on relations, they must be invariant under strong and
weak equivalence.

Proposition V.1. Each operation is invariant under strong
equivalence. Each operation (except for multiset difference) is
invariant under weak equivalence.

The fact that multiset difference (Definition IV.5) is not
invariant under weak equivalence is not a random occurrence –
this is due to the fact that the definition of multiset difference
seeks to remove only a certain number of instances of a row.
If, instead, every instance of a row was removed, then this
new operation would be invariant under both strong and weak
equivalence.

Many of the desirable properties of each of the relational
algebra operations can be proven using array algebra with the
above definitions of those operations.

Proposition V.2.
1) If there is a fixed set K of column keys, then ΠK acts

as the identity map.
2) Π∅ sends every array to the zero array 0.
3) ρJ/J,idJ

acts as the identity map.
4) 0 is an identity under ∪.
5) 0 is an annihilator under ∩.
6) 0 is a right identity and left annihilator under \.
7) If ϕ ≡ 1, then σϕ acts as the identity map.

8) If ϕ ≡ 0, then σϕ sends every array to 0.
9) If θ ≡ 0, then A ./θ(J,J ′) B = 0.

10) If J = {j′} and ϕ(v) = v, then j′Πϕ(J) acts as the
identity map. If ϕ ≡ 0, then j′Πϕ(J) sends every array
to 0.

11) If J1, J2 are sets of column indices, then

ΠJ1 ◦ΠJ2 = ΠJ1∩J2

where ◦ is function composition.
12) ΠJ preserves ∪,∩, \.
13) If J1, J2, J3, J4 are sets of column indices and

f : J1 → J2

and
g : J3 → J4

are bijections, then it need not be the case that

ρJ1/J2,f ◦ ρJ3/J4,g = ρJ3/J4,g ◦ ρJ1/J2,f

even up to strong or weak equivalence, where ◦ is
function composition.

14) ρJ1/J2,f preserves ∪,∩, \.
15) Both ∪ and ∩ are commutative and associative (up to

both weak and strong equivalence, and up to a canonical
renaming of column keys).

16) Both ∪ and ∩ distribute over one-another (up to both
weak and strong equivalence, and up to a canonical
renaming of column keys).

17) \ is neither commutative nor associative (even up to
strong or weak equivalence).

The proofs of all of the above proposition is beyond the
space limitations of this work. However, they are straightfor-
ward given the definitions. As an example proof using array
algebra, consider the proof that

ΠJ1 ◦ΠJ2 = ΠJ1∩J2

and that
ΠJ(A ∪B) = ΠJ(A) ∪ΠJ(B)

Proof.
By Definition IV.1,

ΠJ1(ΠJ2(A)) = (A IJ2) IJ1
= (A⊕.⊗ IJ2)⊕.⊗ IJ1
= A⊕.⊗ (IJ2 ⊕.⊗ IJ1)

Thus, it suffices to show that

IJ2 ⊕.⊗ IJ1 = IJ1∩J2

By Definition II.7,

(IJ2 ⊕.⊗ IJ1) (i, j) =
⊕

k∈J1∪J2

IJ2(i, k)⊗ IJ1(k, j)

The term
IJ2(i, k)⊗ IJ1(k, j)



is 1 if and only if i = k ∈ J2 and k = j ∈ J1, and 0
otherwise. This only occurs when i = k = j ∈ J1 ∩ J2, and
this contributes the only possible non-zero term of the sum.
This shows that

(IJ2 ⊕.⊗ IJ1)(i, j) =

{
1 if i = j ∈ J1 ∩ J2

0 otherwise

= IJ1∩J2(i, j)

For preservation of union, Definition IV.3 gives

ΠJ(A ∪B) = ΠJ

(
(IIA×{1},IA A) ⊕ (IIB×{2},IB B)

)
=
(
(IIA×{1},IA A) ⊕ (IIB×{2},IBB)

)
IJ

= ((IIA×{1},IA A) IJ) ⊕ ((IIB×{2},IB B) IJ)

= (IIA×{1},IA (A IJ)) ⊕ (IIB×{2},IB (B IJ))

=
(
IIA×{1},IAΠJ(A)

)
⊕
(
IIB×{2},IB ΠJ(B)

)
Now, this is nearly in the form ΠJ(A) ∪ ΠJ(B), with the
only issue being that wherever a IA or IB show up, there
should instead be IΠJ (A) or IΠJ (B), respectively. However,
this replacement can be made due to the fact that taking a
projection can only make IA (resp. IB) smaller in size. Indeed,
if f : J1→| J2 is a partial injection, J3 ⊂ J1, and IC ⊂
f [J3] = {f(j) | j ∈ J3}, then

IJ1,J2,f C = IJ3,J2,f |J3
C

One benefit of proving these properties of the relational
algebra operations as defined via the array algebra operations
is that it gives a better understanding of how these operations
work without resorting to equality up to strong or weak
equivalence; in many cases, the relation is outright equality,
or at least equality up to strong or weak equivalence where
the relabeling is in some sense “canonical”.

Another benefit is in performance [39]; thanks to the
fact that associativity, commutativity, and distributivity of
⊕,⊗,⊕.⊗ lead to performance increases since the relational
algebra operations can be built up by the associative algebra
operations.

VI. CONCLUSION

SQL, NoSQL, and NewSQL databases are specialized to
deal with certain domains, and all three can be useful in a
single context. For this reason, polystore databases have been
developed to bridge these three concepts.

Associative arrays provide a mathematical framework
through which the mathematical cores of SQL, NoSQL, and
NewSQL can be reduced, allowing for polystore databases like
BigDAWG to translate between the three data types inherent to
these databases – sets (SQL), graphs (NoSQL), and matrices
(NewSQL).

Future work will focus on exploring additional properties
that the associative array perspective provides with regards
to relational algebra, providing analysis of optimizations, and
the potential application of quantifying uncertainly in database
queries.
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