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We extend the perturbative classical double copy to the analysis of bound systems. We first obtain the
leading order perturbative gluon radiation field sourced by a system of interacting color charges in arbitrary
time dependent orbits, and test its validity by taking relativistic bremsstrahlung and nonrelativistic bound
state limits. By generalizing the color to kinematic replacement rules recently used in the context of
classical bremsstrahlung, we map the gluon emission amplitude to the radiation fields of dilaton gravity
sourced by interacting particles in generic (self-consistent) orbits. As an application, we reproduce the
leading post-Newtonian radiation fields and energy flux for point masses in nonrelativistic orbits from the
double copy of gauge theory.
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I. INTRODUCTION

The possibility that perturbative gravity is somehow the
square of gauge theory was first concretely realized in the
context of string theory, by the results of Kawai, Lewellen
and Tye [1] (KLT), which formulated certain factorization
identities relating S-matrix elements in closed and open
string sectors. In the limit of infinite string tension, these
KLT relations connect tree-level gluon scattering ampli-
tudes to corresponding ones involving graviton external
states. More recently, Bern, Carrasco and Johansson (BCJ)
identified a more general perturbative “duality” between
scattering amplitudes of Yang-Mills and gravity theories
[2–4], which includes as a special case the earlier results of
[1]. Roughly speaking, BCJ duality states that once a Yang-
Mills scattering amplitude is written in a certain canonical
form, the corresponding gravity amplitude can be obtained
by performing a simple set of color to kinematic replace-
ments. Although in field theory this correspondence has
only been established at tree level [3], there is evidence of
its validity at loop order [4]. See [5] for a recent review and
a comprehensive list of references.
If, as implied by BCJ duality, gravitons can be inter-

preted as a “double copy” of gluons, it becomes natural to
ask if other observables exhibit analogous structure. Of
particular interest is the question of whether the computa-
tional challenge of attempting to solve Einstein’s equations,

even perturbatively, can be sidestepped by applying a
classical version of the double copy to analogous but
relatively simpler solutions in Yang-Mills theory.
Investigation into this classical double copy was initiated
in Ref. [6] and further pursued in [7–9] in the context of
Kerr-Schild solutions of pure general relativity. Recently,
we [10] showed that the classical double copy can be
applied to the analysis of classical radiation fields and time-
dependent sources. Specifically, we found that the leading
order.1 classical bremsstrahlung radiation fields in Yang-
Mills theory and dilaton gravity theory are related by a set
of color to kinematic replacement rules, similar to those
used in the context of scattering amplitudes. This implies
that, in the context of bremsstrahlung, all physical quan-
tities of interest measured at asymptotic infinity predicted
by gravity-dilaton theory can be derived from the computa-
tionally simpler vertices of gauge theory.
In the classical bremsstrahlung configurations considered

in [10], the sources on the gauge theory side correspond to
point color charges that start out widely separated and,
therefore, noninteracting in the far past. This setup is
sufficiently similar to the case of a five-point tree-level
scattering amplitude in the context of BCJ duality [12] that
it is perhaps not unexpected that a consistent gravitational
double copy holds in the classical limit as well. See
[13] for recent discussion. In this paper, we extend
the results of [10] to the case of particles in general
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1The perturbative double copy for classical static sources
beyond leading order in perturbation theory was considered
more recently, in [11].
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time-dependent orbits. Our interest is primarily in the case of
nonrelativistic bound orbits, with the eventual goal of
making contact with post-Newtonian compact binary
inspirals [14]. From a more formal perspective, such orbital
configurations correspond to highly excited bound state
poles in S-matrix elements, so that a simple tree-level
interpretation of the radiation field and its double copy
would be inadequate. As such, these bound systems provide
a new test of the classical double copy beyond fixed order
perturbation theory in powers of the gauge coupling.
In Sec. II, we consider configurations of classical color

charges in general time-dependent orbits, and solve the
Yang-Mills equations to second order in a perturbative
expansion. The radiation field obtained in this way is then
mapped onto an effective energy-momentum tensor T̃μν in
dilaton gravity via a set of time-dependent color to kin-
ematics transformation rules that we define in Sec. III,
generalizing those used in [10]. These transformation rules
also map the equations of motion of the color charges to
those of the corresponding point sources in the gravity
theory. The resulting double copy radiation fields are
consistent with the relativistic bremsstrahlung solutions
found earlier but apply as well to more general orbital
configurations. As a special case, we work out in detail the
case of nonrelativistic configurations, finding agreement
between the double copy prediction and earlier results in the
literature [15,16] on tests of scalar-tensor theories of gravity.
Throughout, we work in d ¼ 4 spacetime dimensions, but
our results generalize trivially to any d.

II. CLASSICAL YANG-MILLS RADIATION
FIELD FOR GENERIC ORBITS

Ref. [10] computed the long distance radiation field from
a system of interacting color charges in classical Yang-
Mills theory, for the case of orbits that are unbound, with
the particles coming in from spatial infinity. Our goal in this
section is to show that the same methods can be applied to a
much broader class of time-dependent orbits, including the
case of bound systems in quasiperiodic trajectories. We
begin by reviewing the setup of [10].
By a color charge, we mean a point particle moving

along a spacetime trajectory xμðτÞ that carries a degree of
freedom caðτÞ transforming locally [at xμðτÞ] in the adjoint
representation. A concrete model for an ensemble of such
particles is the worldline Lagrangian

Spp ¼ −
X
α

mα

Z
dτα þ

X
α

Z
dxμαψ

†
αiDμψαðταÞ; ð1Þ

where the quantity ψðτÞ is a degree of freedom that
transforms linearly in some representation of the gauge
group2 In terms of this variable, the color charge is then

caðτÞ ¼ ψ†Taψ . For a fixed background gauge field, the
equations of motion are expressible in terms of these
adjoint color charges

dpμ
α

dτ
¼ −gcaαðτÞGaμ

νðxαÞvναðτÞ; ð2Þ

dcaα
dτ

¼ −gfabcvμαðτÞAb
μðxαÞccαðτÞ; ð3Þ

where the field strength is −igGa
μν ¼ ½Dμ; Dν�a. In fact,

these equations of motion are independent of the specific
model Lagrangian, in that, for dynamical gauge fields, they
follow entirely from the Yang-Mills equation

DνGaνμðxÞ ¼ −gJμaðxÞ ¼ −
δ

δAa
μðxÞ

Spp; ð4Þ

together with covariant conservation of the source
current, DμJ

μ
a ¼ 0, and conservation of stress energy,

∂νðTμν
YM þ Tμν

ppÞ ¼ 0.
Our interest here is in configurations of color charges

that remain sufficiently far apart that the dynamics is
perturbative over macroscopic time scales. We consider
particles separated by a typical distance scale r, and
carrying energy E≳m. The classical limit then corre-
sponds to orbital angular momentum L ∼ Er ≫ 1 (we use

units with c ¼ ℏ ¼ 1). In terms of αs ¼ g2

4π ≪ 1 there are
two types of perturbative corrections in the regime L ≫ 1.
Specifically, we are performing a double expansion in
αsc2a=L ≪ 1, which controls the size of corrections to the
orbital and color time evolution, as well as a parameter
αsca ≪ 1 that counts insertions of the classical gauge self-
interactions. This latter quantity can only dominate the
parameter αs ≪ 1 that counts quantum loop effects if the
color charges ca are parametrically large in units of ℏ. In
fact, it was found in [10] that a consistent double copy of
radiating solutions requires the charges to be in a regime in
which they scale as ca ∼ L ≫ 1. In this case both expan-
sions coincide, and

ϵYM ¼ αsca ≪ 1 ð5Þ

is the small quantity that determines the size of perturbative
corrections for generic kinematical configurations.
(Another scale in this problem is the typical frequency ω
of emitted radiation. We specialize to the case ωr ≪ 1 later
on, but for now we keep it generic.)
To set up the perturbative expansion, it is convenient to

work in Feynman gauge, ∂μA
μ
a ¼ 0, in which the gluon

equations of motion can be recast in the form

□AaμðxÞ ¼ −gJ̃aμðxÞ; ð6Þ2Our conventions are Dμ ¼ ∂μ − igAa
μTa.
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where we have defined an “effective source current” J̃aμðxÞ
which is conserved, ∂μJ̃

μ
a ¼ 0, and sourced by both the

particles and the gauge field itself,

J̃μaðxÞ ¼ JμaðxÞ þ fabcAb
νðxÞð∂νAcμðxÞ −GcμνðxÞÞ: ð7Þ

This current contains all the physical information that is
accessible to observers at asymptotic infinity. For example,
the radiation field at retarded time t is given by

lim
r→∞

Aμ
aðxÞ ¼ −

g
4πr

Z
dω
2π

e−iωtJ̃μaðqÞ; ð8Þ

where on the rhs, J̃μaðqÞ ¼
R
d4xeiq·xJ̃μaðxÞ is evaluated at

the on-shell four-momentum qμ ¼ ωð1; n⃗Þ, where n⃗ ¼ x⃗
jx⃗j is

the unit vector that points from the source to the detector.
This quantity also encodes the asymptotic distribution of
energy momentum and color radiated out to infinity, which
can be expressed in terms of weighted integrals of the
square of the polarized “amplitude”

AaðqÞ ¼ gϵμJ̃aμðqÞ; ð9Þ

with q2 ¼ 0 and q · ϵðqÞ ¼ 0 both on shell.
The perturbative calculation of J̃μaðxÞ can be expressed in

terms of diagrams constructed from standard Yang-Mills
bulk vertices and propagators, as well as insertions of the
point particle currents. Up to order Oðg2Þ beyond leading
order, the relevant diagrams are shown in Fig. 1. We now
compute these diagrams for arbitrary time-dependent tra-
jectories ðxμα; caαÞðτÞ, generalizing the results in [10]. The
contribution from Fig. 1(a) to the emission amplitude is
simply given by

J̃aμðqÞjworldline ¼
X
α

Z
dxμðτÞαcaαðτÞeiq·xαðτÞ

¼
X
α

Z
dτeiq·xα

i
q · vα

×

�
caα

�
_vμα −

q · _vα
q · vα

vμα

�
þ vμα _caα

�
; ð10Þ

where we have introduced the shorthand notation
xα ¼ xμðταÞ, vμα ¼ _xμαðταÞ, caα ¼ caαðταÞ (we parametrize
the worldlines by proper time τ). Note that to obtain the
second equality we have performed integration by parts to
put it in a form that will be convenient below. The
contribution from the cubic vertex, Fig. 1(b) is

J̃aμðqÞjcubic¼ ig2
X
α;β

Z
dταdτβdμαβðqÞfabccbαccβ

×

�
1

2
ðvα ·vβÞðlβ−lαÞμþðq ·vβÞvμα−ðq ·vαÞvμβ

�
;

ð11Þ

where we have neglected terms which, after integration by
parts, involve time derivatives on the worldline degrees of
freedom and therefore subleading in powers of the gauge
coupling [see Eqs. (14), (15) below]. The momentum
integral measure is defined as

dμαβðqÞ ¼
�
d4lα

ð2πÞ4
eilα·xα

l2
α

��
d4lβ

ð2πÞ4
eilβ ·xβ

l2
β

�
ð2πÞ4

× δðlα þ lβ − qÞ; ð12Þ

with poles at l2
α¼0 and l2

β¼0 corresponding to the propa-
gators in Fig 1(b). It is understood that propagators obey
retarded boundary conditions, 1=k2¼1=½ðk0þiϵÞ2− k⃗ 2�
and 1=q · v ¼ 1=ðq · vþ iϵÞ, as is appropriate for classical
observables.
These expressions can only yield consistent solutions

that obey the Ward identity qμJ̃
aμðqÞ ¼ 0 if the color

charges satisfy the classical equations of motion. To leading
order in perturbation theory, the time-dependent variables
ðxμα; caαÞ source a classical gauge field given by

AaμðxÞ ¼ g
Z

d4l
ð2πÞ4

e−il·x

l2
JaμðlÞ

¼ g
X
α

Z
dτ

d4l
ð2πÞ4

e−il·ðx−xαÞ

l2
caαðτÞvμαðτÞ: ð13Þ

Plugging Eq. (13) into Eqs. (2) and (3) yields the equations
of motion of the color charges at leading order,

mα _vα ¼ ig2
X
β

Z
dτβ

d4l
ð2πÞ4

e−il·xαβ

l2
ðcα · cβÞ

× ½ðvα · vβÞlμ − ðl · vαÞvμβ�; ð14Þ

(a) (b)

FIG. 1. Leading order Feynman diagrams for the perturbative
expansion of J̃μaðkÞ.
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_cα ¼ g2
X
β

Z
dτβ

d4l
ð2πÞ4

e−il·xαβ

l2
fabccbαccβðvα · vβÞ; ð15Þ

where xαβ ¼ xα − xβ. Inserting (14) and (15) into Eq. (10)
and adding the result to Eq. (11) then gives the total current
at OðαsÞ:

J̃aμðqÞ ¼ g2
X
α;β

Z
dταdτβdμαβðqÞ

×
�
ifabccbαccβA

μ
adj þ ðcα · cβÞ

caα
mα

Aμ
s

�
; ð16Þ

where the amplitudes Aμ
adj;s are given by

Aμ
adj ¼ ðvα · vβÞ

�
1

2
ðlβ − lαÞμ þ

l2
α

q · vα
vμα

�

þ ðq · vβÞvμα − ðq · vαÞvμβ; ð17Þ

and

Aμ
s ¼ −

l2
α

q · vα

�
ðvα · vβÞ

�
lμ
β −

q · lβ

q · vα
vμα

�

− ðq · vαÞvμβ þ ðq · vβÞvμα
�
: ð18Þ

It is manifest from the form of this equation that
qμJ̃

μ
aðqÞ ¼ 0. Note vμαðτÞ and caαðτÞ satisfy the equations

of motion but are otherwise arbitrary.

A. Consistency checks

The result obtained in Eq. (16) holds for general orbits
that obey the leading order equations of motion (14), (15).
It contains as a special case the result of Ref. [10], which
considered classical scattering solutions, with orbits that
asymptote to

xμαðτ → −∞Þ → bμα þ vματ;

caðτ → −∞Þ → caα; ð19Þ

with constant bμα, v
μ
α, and caα in the far past. Indeed, simply

inserting constant orbital and color parameters into Eq. (16)
exactly matches the solution found in [10].
We now verify that the general formula Eq. (16) also

reproduces the correct nonrelativistic limit. Consider a
system of particles in nonrelativistic orbits (bound or
unbound). In this limit, the virial theorem implies that
the typical velocity v and orbital radius r are related by

mv2 ∼
αsc2a
r

; ð20Þ

and thus for the scaling ca ∼ L ¼ mvr relevant to the
double copy (see below), the expansion parameter is v ∼
αsca ≪ 1 in agreement with the discussion in the section
above. In this limit the typical frequency of the orbits,
ωorb ∼ v=r, is the same as the that of the color factors,
since _ca

ca
∼ ωc ∼ αsca=r ∼ ωorb.

Working to leading order in v2 ≪ 1, we can choose a
Lorentz frame in which the particle trajectories take the
form

vμαðτÞ ¼ ð1; v⃗αÞ þOðv2Þ; ð21Þ

where to the order we work to, v⃗α ¼ dx⃗α=dx0 is the
ordinary three-velocity, with jv⃗αj ≪ 1. For such orbital
configurations, the frequency of emitted radiation is para-
metrically of the same order as the orbital frequency, and
the components of the outgoing gluon momentum obeys
the scaling rule qμ ∼ ðv=r; v=rÞ. On the other hand, the
momentum (potential) exchange between the particles is
typically off shell with components that scale as
lμ ∼ ðv=r; 1=rÞ. In this case, we may expand our general
result in powers of q⃗ · x⃗α ∼OðvÞ (the multipole expansion)
or powers of l0=jl⃗j ∼OðvÞ (retardation effects), but must
treat l⃗ · x⃗α ∼Oð1Þ nonperturbatively. In this limit, the
equations of motion (14) and (15) reduce to

mα
_v⃗αðtÞ ¼ −ig2

X
β

ðcα · cβÞ
Z

d3l⃗
ð2πÞ3

eil⃗·x⃗αβðtÞ

l⃗2
l⃗

¼ αs
X
β

ðcα · cβÞx⃗αβ
jx⃗αβj3

; ð22Þ

and

_cαðtÞ ¼ −g2
X
β

fabccbαccβ

Z
d3l⃗
ð2πÞ3

eil⃗·x⃗αβðtÞ

l⃗2

¼ −αs
X
β

fabccbαccβ
jx⃗αβj

; ð23Þ

respectively.
Given the scaling of radiation and potential momenta, it

is easy to see that in the nonrelativistic limit with ca ∼ L,
the contribution from Aμ

s in Eq. (16) is comparable to that
of Aμ

adj. Our solution for J̃μaðqÞ at OðαsÞ is manifestly
gauge invariant, but it is convenient to calculate the
radiation field in a gauge where the gluon polarization is
purely spatial, in which case the relevant part Eq. (16)
simplifies to
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J̃iaðqÞ ¼ ig2
X
α;β

Z
dteiωt

Z
d3l⃗
ð2πÞ3

eil⃗·x⃗αβðtÞ

l⃗4

�
l⃗2

ωþ iϵ

�
−iðcα · cβÞ

caα
mα

li − fabccbαccβv
i
α

�
þ fabccbαccβl

i

�

¼ i
Z

dteiωt
�

1

ωþ iϵ

X
α

ðcaα _viα þ _cαviαÞ −
g2

2

X
αβ

fabccbαccβ

Z
d3l⃗
ð2πÞ3 e

il⃗·x⃗αβðtÞ ∂
∂li

�
1

l⃗2

��
ð24Þ

at leading order in the NR limit. The last term can be
written as

i
αs
2

Z
dteiωt

X
αβ

fabccbαccβ
x⃗αβ
jx⃗αβj

¼ −i
Z

dteiωt
X
α

_caαx⃗α;

ð25Þ

so that after integration by parts on the first term, the
leading order nonrelativistic current becomes

J̃iaðqÞ ¼
Z

dteiωt
X
α

ðcaα _x⃗α þ _caαx⃗αÞi

¼ −iω
Z

dteiωtpi
aðtÞ; ð26Þ

where p⃗aðtÞ ¼
P

αc
a
αx⃗α is the net color electric dipole

moment of the system of charges. The emission amplitude
AaðqÞ ¼ iωϵiJ̃iaðqÞ is precisely what we would have
obtained from a composite nonrelativistic object that carries
a time-dependent dipole p⃗aðtÞ along its orbit and couples to
the color electric field through a point-particle interaction
that takes the form

Sint ¼ −
Z

dtp⃗aðtÞ · E⃗aðt; 0⃗Þ; ð27Þ

in the composite object’s rest frame. We therefore recover
the expected answer to leading order in the velocity
expansion [17].

III. DOUBLE COPY

We now generalize the classical double copy rules
discussed in [10] to the case of general time-dependent
orbits, building on the result in Eq. (16). By applying the
formal substitution rules3

caαðτÞ → imαv
μ
αðτÞ;

fabccaαcbβ →
1

2
mαmβ½ðvα · vβÞðlβ − lαÞν þ vβ · ðlα þ qÞvνα

− vα · ðlβ þ qÞvνβ�;
mαv

μ
αðτÞ → mαv

μ
αðτÞ; ð28Þ

and g → 1=2mPl, to the current J̃μaðqÞ, we obtain an object
J̃μaðqÞ → iT̃μνðqÞ4 with

T̃μνðqÞ ¼ 1

4m2
Pl

X
α;β

mαmβ

Z
dταdτβdμαβðqÞ

×

��
1

2
ðvα · vβÞðlβ − lαÞν

þ ðvβ · qÞvνα − ðvα · qÞvνβ
�
Aμ

adj

− ðvα · vβÞvναÂμ
s

�
; ð29Þ

which is symmetric and for on-shell momenta q2 ¼ 0

satisfies qμT̃
μνðqÞ ¼ 0. The on-shell tensor T̃μνðqÞ defines

a self-consistent5 perturbative solution in a theory of point
sources coupled to gravity.
This solution corresponds to a system of weakly gravi-

tating sources, which is true for generic kinematics when-
ever the expansion parameter ϵg ∼GNE=r ≪ 1 (we define
GN ¼ 1=32πm2

Pl). Specifically, T̃
μνðqÞ sources a helicity-2

radiation field given by

3The replacement rules listed in (28) are slightly different than
those used in [10]. In particular, the structure constant and color
charge mappings are different by factors of i. Despite this,
applying (28) to the gluon emission amplitude due to brems-
strahlung will give the same result as given in [10] up to an
irrelevant phase.

4In our expression for T̃μνðqÞ we have dropped terms sub-
leading in ϵg that involve the accelerations _vα, and have added an
“improvement term,” proportional to qμ, which does not affect
physical quantities to write

Âμ
s ¼ −

l2
α

q · vα

�
ðvα · vβÞ

�
1

2
ðlβ − lαÞμ −

q · lβ

q · vα
vμα

�

− ðvα · qÞvμβ þ ðq · vβÞvμα
�
:

5Note that the Ward identity is satisfied as a result of
cancellations between the terms involving the amplitudes Aμ

adj
and Aμ

s . This requires that the terms in Eq. (16) involving
different powers of the color charges ca are of comparable
magnitude, which for generic kinematics implies that the charges
must scale as the orbital angular momentum L ≫ ℏ of the system,
as was assumed in Sec. II A.
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h�ðt; n⃗Þ ¼
4GN

r

Z
dω
2π

e−iωtϵ�μν� ðqÞT̃μνðqÞ; ð30Þ

as well as a radiation scalar

ϕðt; n⃗Þ ¼ GN

r

Z
dω
2π

e−iωtT̃μ
μðqÞ: ð31Þ

Given the analytic structure of the integrand in T̃μνðqÞ, this
theory of gravity must be local. In particular, the residue of
the double pole in the integrand at l2

α ¼ l2
β ¼ 0 is analytic

in kinematic variables, so encodes the local cubic inter-
actions among the fields in the gravitational sector.
Indeed, for the case of inelastic scattering with constant

velocities vα (to leading order in ϵg), Eq. (29) precisely
matches the results of [10], which identified the double
copy amplitude T̃μνðqÞ with relativistic bremsstrahlung
scattering solutions of a particular dilaton gravity theory,
whose action in d ¼ 4 is given by

Sg ¼ −2m2
pl

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2gμν∂μϕ∂νϕ�

−
X
α

mα

Z
dταeϕ: ð32Þ

More generally, we now see that Eq. (29) yields solutions of
this theory with particles in general orbital configurations.

A. Application to post-Newtonian systems

As a test of the general result Eq. (29), we consider
particles in nonrelativistic orbits, with velocities
vμα ¼ ð1; v⃗αÞ þOðv2Þ. The integrals in Eq. (29) are then
dominated by momentum regions of potential exchange
l ∼ ðv=r; 1=rÞ and radiation q ∼ ðv=r; v=rÞ (the systemat-
ics and general power counting for this expansion are
discussed in [18]). The orbital equation in gravity is
obtained by applying the mapping defined in Eq. (28) to
either the nonrelativistic color or orbital equations in gauge
theory, Eqs. (22), (23). To lowest order in velocity this is

mα
_v⃗α ¼

i
4m2

Pl

X
β

Z
d3l⃗
ð2πÞ3 e

il⃗·x⃗αβ
l⃗

l⃗2

¼ −2GN

X
β

mαmβx⃗αβ
jx⃗αβj3

; ð33Þ

implying the conservation of energy E ¼ 1
2

P
αmαv⃗2α −P

αβGNmαmβ=jx⃗αβj ¼
P

mαð12 v⃗2α þ x⃗α · ̈x⃗αÞ. Note that by
definingGN as in pure Einstein gravity, Eq. (33) differs by a
factor of two from Newton’s law, reflecting the additional
contribution of dilaton exchange to the potential.
We find it convenient to work in a gauge with purely

spatial graviton polarizations, in which case the relevant
terms at leading order in T̃μνðqÞ at order v2 ∼ ϵg are

T̃ijðqÞ ¼
X
α;β

mαmβ

4m2
Pl

Z
dteiωt

Z
d3l⃗
ð2πÞ3

eil⃗·x⃗αβðtÞ

l⃗4

×

�
lilj −

l⃗2

ωþ iϵ
ðviαlj þ vjαliÞ

�

¼
Z

dteiωt
X
α

mα

�
i

ωþ iϵ
d
dt

ðviαvjαÞ

þ
X
β

GNmβ

jx⃗αβj
�
δij −

xiαβx
j
αβ

jx⃗αβj2
��

: ð34Þ

Using the identity

X
αβ

GNmαmβ

jx⃗αβj3
xiαβx

j
αβ ¼

X
α

mαxiα
X
β

GNmβx
j
αβ

jx⃗αβj3
þ ði ↔ jÞ

¼ −
1

2

X
α

mαðxiαẍjα þ ði ↔ jÞÞ; ð35Þ

we can write T̃ijðqÞ, after integration by parts

T̃ijðqÞ ¼
Z

dteiωt
X
α

mα½
1

2

d2

dt2
xiαx

j
α − δijx⃗α · ̈x⃗α�: ð36Þ

This yields a canonically normalized graviton and scalar
emission amplitude

iAgðqÞ ¼
iω2

4mPl

Z
dteiωtϵ�ijðqÞQijðtÞ; ð37Þ

iAϕðqÞ¼
i

2
ffiffiffi
2

p
mPl

Z
dteiωt

�
δij−

qiqj

q2

�
T̃ijðqÞ

¼ i

2
ffiffiffi
2

p
mPl

Z
dteiωt

X
α

mα

�
v⃗2α− x⃗α · ̈x⃗αþ

1

2
ðx⃗α · q⃗Þ2

�
;

ð38Þ

with quadrupole moment Qij ¼ P
αmαðxiαxjα − 1

3
δijx⃗2αÞ.

Equivalently, the radiation fields at null infinity (r → ∞
and retarded time t) are to leading post-Newtonian order,

hijðt; n⃗Þ ¼
2GN

r
½Q̈ijðtÞ�TT; ð39Þ

ϕðt; n⃗Þ¼GN

r

X
α

mα

�
v⃗2α− x⃗α · ̈x⃗α−

1

2

d2

dt2
ðx⃗α · n⃗Þ2

�
; ð40Þ

where TT denotes the transverse traceless part, using the
projector δij − ninj (recall n⃗ ¼ x⃗=jx⃗j).
This is the radiation pattern that is sourced by a

composite particle at rest at the origin, whose stress tensor
is of the form
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T̃ijðt; x⃗Þ ¼
X
α

mα

�
1

2

d2

dt2
xiαx

j
α − δijx⃗α · ̈x⃗α

�
δ3ðx⃗Þ: ð41Þ

At the linear level, the interactions of this composite
particle with gravity are given by a worldline Lagrangian
of the form [19]

Sint ¼
Z

dtQϕðtÞϕðt; 0⃗Þ þ
1

2

Z
dtQijðtÞðEij − ∂i∂jϕÞðt; 0⃗Þ;

ð42Þ
where the “gravito-electric” field is related to the Weyl
tensor, Eij ¼ W0i0j, and the scalar monopole charge QϕðtÞ
is proportional to the nonrelativistic Lagrangian of the point
particles,

QϕðtÞ ¼
4

3
L ¼ 2

3

X
α

mαv⃗2α þ
4

3

X
αβ

GNmαmβ

jx⃗αβj

¼ 2

3

X
α

mαðv⃗2α − 2x⃗α · ̈x⃗αÞ: ð43Þ

The scalar dipole moment is proportional to P⃗ ¼ P
αmα

_x⃗α,
which is constant at this order in the velocity expansion so
does not contribute to radiation. Note that, on shell, the
linearized quadrupole interaction can also be expressed in
terms of the Riemann tensor associated with g̃μν ¼ e2ϕgμν
simply as 1

2

R
dtQijðtÞR̃0i0j.

It follows from Eq. (42) that the total (time averaged)
graviton energy flux is given by the standard quadrupole
formula Pg ¼ GN

5
h ⃛Qij

⃛Qiji, while in the scalar channel, the
radiated power is given by

Pϕ ¼ 4GN

�
h _Q2

ϕi þ
1

30
h ⃛Q2

iji
�
: ð44Þ

Refs. [15,16] computed the radiation fields and energy
fluxes in generalized scalar-tensor theories of gravity,
which include as a special case the dilaton theory defined
in Eq. (32). We have verified both by direct calculation and
by comparison with [15,16] that Eqs. (39), (40) are in
agreement with the radiation fields of dilaton gravity (see
for instance Eqs. (2.18), (2.19) of Ref. [15]), providing
a consistency check of the generalized double copy
formula Eq. (29).

IV. CONCLUSION

We have extended the classical double copy to the
analysis of gravitational radiation sourced by point sources
in generic orbits. In order to do this, we introduced a natural
generalization of the color to kinematics replacements rules
used in [10], which maps the gluon field of a generic
configuration of interacting color sources into a radiating
solution in dilaton gravity coupled to point particles.
For nonrelativistic bound orbits, the double copy takes a

particularly simple form. The color dipole moment p⃗a of the
gauge theory bound state maps onto a gravitational quadru-
pole moment Qij, which couples to the string frame
Riemann tensor component R̃0i0j, and to a scalar charge
proportional to the gravitational Lagrangian of the particles,
which measures the nonconservation of the dilatation
current. To make contact with sources in pure gravity, such
as the inspiral events recently reported in [14], a systematic
way to remove the contributions due to dilaton interactions
needs to be developed. For progress in this direction see [13].
It also remains to be seen if the classical double copy of
radiation via the rules in Eq. (28) continues to hold beyond
the leading order in perturbation theory. Given the relative
simplicity of the nonrelativistic limit, the analysis of such
higher order corrections to the double copy might be more
transparent directly in terms of an effective Lagrangian with
manifest velocity power counting [18], and with Feynman
rules that are optimized [20,21] for post-Newtonian systems.
Finally, the effects of intrinsic spin in the gravitational
dynamics [22], which are important for astrophysical
sources, must be accounted for within the double copy.
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