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ABSTRACT 
Oxford Nanopore Technologies’ MinION has expanded the current DNA sequencing toolkit by 
delivering long read lengths and extreme portability. The MinION has the potential to enable 
expedited point-of-care human leukocyte antigen (HLA) typing, an assay routinely used to 
assess the immunological compatibility between organ donors and recipients, but the platform’s 
high error rate makes it challenging to type alleles with clinical-grade accuracy. Here, we 
developed and validated Athlon, an algorithm that iteratively scores nanopore reads mapped to 
a hierarchical database of HLA alleles to arrive at a consensus diploid genotype; Athlon 
achieved a 100% accuracy in class I HLA typing at high resolution.  

MAIN TEXT 
The Oxford Nanopore Technologies’ (ONT) MinION is a portable device the size of a mobile 
phone that performs rapid single-molecule sequencing.1 This device directly records dynamic 
changes in electric current across a nanopore as a single-stranded DNA or RNA molecule is 
ratcheted through the pore by a motor protein. The raw signals from hundreds of working 
nanopores are converted to sequencing reads in real time via an online base caller.  The 
portability of this system, combined with its superior read lengths of up to 50 kb2, make the 
MinION uniquely positioned to enable point-of-care clinical sequencing, especially for 
applications that require haplotype information.   

    Advances in flow cell design and base-calling algorithms have led to steady improvements in 
the MinION’s raw read accuracy, which was as low as 66% in early 20143 and is now 
approximately 92%4. However, despite initial successes in diagnostic microbiology,5-10  the 
relatively high error rate and the lack of a dedicated variant caller for diploid genomes have 
prevented the MinION from achieving widespread use in human DNA sequencing.3, 11 Here, we 
report a method for the targeted nanopore sequencing of class I HLA genes and a bioinformatic 
pipeline to interpret these data (Athlon; http://github.com/cliu32/Athlon).  Together, these 
provide a robust, cost-effective approach for the typing of class I HLA alleles in human samples 
with clinical-grade accuracy.  

    There are thousands of unique HLA proteins expressed in the human population.  These 
diverse proteins present antigens on the cell surface for immune recognition and constitute the 
major barrier to allogeneic transplantation. HLA typing is critical for the evaluation of 
immunological compatibility between organ donor and recipient pairs. Although rapid, high-
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resolution HLA typing would be ideal for organ allocation12, 13, this has not been possible due to 
the technical limitations inherent to both Sanger and second-generation sequencing platforms.  

The sequences of all known HLA alleles are deposited in the IPD-IMGT/HLA database14. 
Each HLA allele is named by locus (e.g. HLA-A) followed by an asterisk and up to four, colon-
delimited numeric fields (Fig. 1a). The first field groups together HLA alleles that encode 
antigens sharing key serological epitopes. The first and second fields describe groups of alleles 
that encode the same unique protein. If synonymous mutations are present in any exons, a third 
field is appended to the allele name, and a fourth field can be added to describe sequence 
variation in non-coding regions. This comprehensive nomenclature system also allows new 
alleles to be named and organized hierarchically as they are discovered over time.  

The antigen recognition domains (ARD) of class I HLA genes are encoded by exons 2 and 3, 
the most diverse regions of these genes. These two exons are the most informative for 
matching donor and recipient, so for hematopoietic stem cell transplantation, HLAs are typed 
and matched at least at these exons. This is referred to as the G-group level typing.15 For solid 
organ transplantation, HLAs are routinely typed at 1-field resolution, but typing at a higher 
resolution such as the 3-field, G-group level will provide added benefit.12 Therefore, to evaluate 
the performance of MinION-based HLA typing, we defined success as correctly identifying the 
one (for homozygous samples) or two (for heterozygous samples) alleles at the 3-field, G-group 
level that best matched the sequencing data.  

    We generated three datasets for this study (Online Methods and Supplementary Table 1), by 
amplifying class I HLA genes using long-range PCR with or without sample barcodes, followed 
by ligation of sequencing adaptors and multiplexed MinION sequencing. The consensus 
sequences from the template and complement strands (2D reads) from each run were 
demultiplexed based on sample barcodes or primer sequences before analysis (Online Methods 
and Supplementary Fig. 1). Average read lengths consistent with the predicted amplicon sizes 
ranging from 3.0 to 4.3 kb were achieved across these datasets (Supplementary Table 2).  We 
used one of the datasets that was generated with the earlier R7.3 flow cells (WASHU-T) to 
develop and train the Athlon pipeline. The two remaining datasets, WASHU-V and DKMS, which 
were generated with the improved MK1 R7.3 and R9.4 flow cells respectively, were used to 
evaluate the performance of Athlon.   

    Since HLA alleles are extremely diverse, mapping reads to any single reference sequence 
will result in the loss of relevant reads that differ significantly from the chosen reference. To 
circumvent this problem, Athlon performs two rounds of read mapping to identify candidate 
alleles and then build consensus sequences from these alleles. First, Athlon maps locus-
specific reads to all HLA alleles at the 3-field, G-group resolution (Online Methods) using 
BLASR, an aligner originally designed to map long and error-prone reads from the PacBio 
platform.16 One or two candidate alleles are then identified based on coverage statistics and an 
algorithm outlined below (see Fig. 1a-c). Second, all locus-specific reads are realigned to the 
candidate alleles to generate one or two consensus sequences, which are then queried against 
all reference alleles in the database to identify the best match as the final typing result (Fig. 1d).  

    To identify the candidate alleles used to generate the final consensus sequences, Athlon 
represents each HLA locus by a tree structure, treating the typing fields as branching nodes and 
leaves in order to identify alleles with the highest read coverage (Fig. 1a). For example, the 
HLA-A locus has 3311 leaves, 2546 nodes, and 21 nodes at the 3-, 2-, and 1-field typing levels 
respectively (Fig. 1a). Read coverage at the leaves under each node is summed to provide a 
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total coverage value for each 2-field node and then for each 1-field node. The nodes and leaves 
are then sorted at each level by total coverage in descending order (Fig. 1b). Next, candidate 
alleles are identified by first selecting the top-ranked nodes at the 1-field level and then selecting 
the highest-ranked 2-field nodes that are connected to these 1-field nodes. The highest-ranked 
3-field leaves that are connected to the selected 2-field nodes are then chosen as the candidate 
alleles (Fig. 1b). For the last step of Athlon, all reads are remapped to the selected candidate 
alleles, and the final consensus sequences are blasted against the reference database to 
identify the closest allele(s) as the final typing result (Fig. 1d).  

    To differentiate homozygous versus heterozygous genotypes, Athlon uses cutoffs based on 
normalized coverage to determine whether to consider a second allele at the one-field and two-
field levels.  The optimal cutoff values were empirically determined using the WASHU-T training 
dataset (n=15), which included three homozygous and 27 heterozygous samples.  We 
quantified the coverage of 2nd-ranked 1-field and 2-field nodes in the three homozygous 
samples, and the coverage data were normalized using values from the highest ranked nodes 
as denominators (Online Methods and Supplementary Fig. 2). The mean plus two standard 
deviations of the normalized coverage of 2nd-ranked nodes was approximately 15% and 40% of 
the top-ranked allele, which were used as the statistical thresholds for calling a second node (i.e. 
a heterozygous typing call) at the 1-field and 2-field resolutions respectively (Fig. 1c). With these 
values for coverage thresholds, we were able to successful classify all homozygous and 
heterozygous samples in the training dataset. No threshold was applied at the 3-field level 
because alleles that are heterozygous beyond the first two fields encode the same protein.  

    Although the training dataset was collected with earlier versions of R7.3 chemistry, which is 
significantly more error prone than the later R7.3 and current R9.4 chemistry, we achieved 
typing results that were 96.7%, 83.3%, and 70% concordant with the truth at 1-, 2-, and 3-field 
resolutions respectively (Fig. 2a). We next used Athlon to type another low accuracy dataset 
previously published by Ammar et al., which also used the earlier R7.3 chemistry (n=2, a total of 
4 alleles typed at 2-field resolution). The Athlon pipeline correctly typed three alleles at the 2-
field level (a 75% accuracy), while the original analysis based on the GATK HLACaller was 
completely discordant at the same resolution (Fig. 2b), demonstrating that Athlon significantly 
improves HLA typing accuracy over the only existing method.  

    We next sought to evaluate the performance of Athlon using samples sequenced with 
updated R7.3 and R9.4 flow cells (Supplementary Table 1).  We first analyzed the WASHU-V 
dataset (n=9, including four homozygous samples). For these samples, Athlon was 100% 
accurate at all three resolutions (Fig. 2c). To validate these results on a larger number of 
samples, we analyzed the DKMS dataset (n=30), which was collected from a single multiplexed 
MinION run.  Again, the final allele calls were 100% concordant with the ground truth at 1-, 2- 
and 3-field resolutions (Fig. 2d). Additionally, the number of mismatches between the final 
predicted consensus sequence(s) and the closest reference allele(s) was quite low for the 
samples in these two high-quality datasets relative to the earlier, error prone, WASHU-T dataset 
(Fig. 2e). These results demonstrate that the Athlon pipeline performs HLA typing with clinical-
grade accuracy when samples are sequenced with updated R7.3 and R9.4 flow cells.     

    To determine the maximum number of samples that can be multiplexed on a flow cell, we 
down-sampled the number of MINION reads used for our analysis and investigated the impact 
on Athlon’s accuracy.  We explored a range of 15-800 reads per sample for the WASHU-V 
dataset and a range of 15-400 reads per sample for the DKMS dataset.  For the WASHU-V 
dataset, Athlon was 100% accurate at the 1-field level throughout the range of down-sampling. 
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At the 2- and 3-field resolutions, Athlon was 100% concordant if 400 or more reads were input 
per sample (Fig. 2f). For the DKMS dataset, Athlon was 100% correct at the 1-field level with as 
few as 25 reads per sample, and only 100 reads per sample were required for a 100% 
concordance at the 2- and 3-field resolutions (Fig. 2g). These results suggest that up to 600 loci 
can be typed on a single flow cell, assuming that least 60K total reads can be obtained from 
each sequencing run (Supplementary Table).  Extrapolating from these results, we estimate that 
more than 100 individuals can be typed for class I HLA genes using a single MinION flow cell.  
Furthermore, when fewer reads are used per sample, significant reductions in computation time 
can be achieved (Fig.2f,g, and Online Methods). Taken together, these results suggest that 
rapid, point-of-care clinical sequencing can be performed cost-effectively through sample 
multiplexing.  

In summary, we have developed and validated a MinION-based method that allows for the 
accurate typing of highly polymorphic class I HLA genes. One-hundred percent accuracy was 
obtained for 3-field G-group level typing, a resolution that is suitable for clinical applications.  
This approach paves the way for point-of-care HLA typing, which would greatly expedite organ 
allocation since it could be initiated at the bedside of deceased donors, or in an outreach 
laboratory. Additionally, the library preparation for the MinION does not require the 
fragmentation of long amplicons, which is regularly applied to HLA typing with second-
generation sequencing platforms.  Bypassing this step simplifies the workflow, reduces bias,17 
and results in a more uniform read coverage (Supplementary Fig. 3). Moreover, nanopore 
sequencing can be readily scaled up to much larger numbers of pores18 and does not require a 
significant capital investment for equipment. In conclusion, MinION-based sequencing has the 
potential to spark a paradigm shift in HLA typing in contemporary clinical and research 
laboratories.  

METHODS 
Methods, including statements of data availability and any associated references, are available 
in the online version of the paper.  
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FIGURES 

Figure 1. Athlon pipeline for HLA typing by nanopore sequencing.  
(a) Hierarchical mapping of reads to HLA alleles.  Reads are mapped to individual alleles at the 
3-field, G-group level (leaves) and coverage is summed to obtain values for each node at the 2- 
and 1-field level. The hierarchy of the HLA nomenclature system is summarized in the top panel. 
The numbers in the gradient triangles indicate the total number of 2-field nodes and 3-field 
leaves. Red, blue and yellow bars represent nanopore reads mapped to different leaves and 
nodes, and the thickness of the bars represents the depth of coverage. (b) Rank lists of 1-, 2- 
and 3-field alleles based on the summed total depth of coverage (see Online Methods). Arrows 
indicate the process of identifying top-ranked, 1-, 2- and 3-field candidate alleles, which are 
shaded in blue and yellow for a representative heterozgyous sample . (c) An algorithm for 
calling homozygous versus heterozygous genotypes at the 1- and 2-field typing levels based on 
the coverage depth of the 2nd-ranked allele as a percentage of that of the top-ranked allele. 
Thresholds of 15% and 40% at the 1-field and 2-field typing levels respectively were established 
using the homozygous samples from the training dataset. (d) Consensus-based error correction 
and blasting for final alleles.  
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Figure 2. HLA typing accuracy and read downsampling.  
(a-d) Concordance of HLA typing results for various datasets. (e) Number of mismatches 
between the predicted consensus sequence and the closest reference allele per sample in the 
WASHU-T, -V and DKMS datasets. Horizontal bars are medians. (f,g) Impact of down-sampling 
of the WASHU-V (f) and DKMS (g) datasets on the concordance rates. Concordance at 1-, 2- 
and 3-field resolutions are plotted against the numbers of input reads for the Athlon pipeline. 
The computation time is also indicated for different numbers of input reads.  
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ONLINE METHODS 

Datasets and study design 
Three datasets, WASHU-T (for Washington University-Training), WASHU-V (for validation) and 
DKMS (for German Bone Marrow Donor Center), were generated and analyzed in this study 
(Table S1). The WASHU-T dataset used five genomic DNA specimens, four from the 1000 
Genomes projects and one from an deidentified homozygous donor, to prepare five multiplexed 
libraries. Each library included fragmented amplicons from three HLA class I genes (see below) 
and was sequenced by the R7.3 flow cell chemistry in one run. The WASHU-T dataset was 
used to develop and train the Athlon pipeline.  

The WASHU-V dataset used three genomic DNA specimens, two from the 1000 Genomes 
projects and one from a deidentified homozygous donor, to generate three libraries. Each 
multiplexed fragmented amplicons from three HLA class I genes and was sequenced by the 
updated MK1 R7.3 flow cell chemistry in one run. An external validation was performed using 
the DKMS dataset, which was generated by multiplexed sequencing of 30 barcoded locus-
specific samples in one run using the R9.4 flow cell chemistry. Detailed information including 
software and protocol versions are provided in Supplementary Table 1. All specimens in the 
WASHU-T, -V and DKMS datasets were typed by one or more reference methods, including 
Sanger and Illumina sequencing. Moreover, to benchmark against a method reported previously 
by Ammar et al.,19 the dataset from that report, which included two locus-specific samples 
(Supplementary Table 1), were analyzed using the Athlon pipeline. The typing results were 
compared with the truth and typing results reported from the original study. Only 2D reads were 
analyzed for all datasets due to their lower error rate.  

Target amplification 
Three class I HLA genes, HLA-A, -B, and -C, were amplified separately in full length by long-
range PCR. Primer sequences are listed in Supplementary Table 1. The primers and PCR 
conditions used for the WASHU datasets were reported previously.20 Long range PCR of the 
DKMS samples was performed in 96 well plates with 4 µl template DNA, 12.5 µl 2x GoTaq® 
Long PCR Master Mix (Promega, Madison, USA) and 1 µl of a target-specific primer mix (50 µM 
each) in a total volume of 25 µl. A thermal profile of 95°C for 3 min followed by 25 cycles at 
95°C for 15 s, 62°C for 30 s and 68°C for 7.5 min, and a finishing step at 68°C for 15 min was 
used. A subsequent PCR was applied for barcoding where a 5´specific adaptor sequence of the 
target-specific primers was used as template for the barcode introducing primers. This PCR was 
performed in 96 well plates where 2 µl of the target specific PCR (PCR1) was mixed with 12.5 µl 
2x GoTaq® Long PCR Master Mix (Promega, Madison, USA), 8.5 µl of Nuclease-Free Water 
(Promega, Madison, USA) and 1 µl of an index primer mix (20 µM each); a thermal profile of 
95°C for 3 min followed by 7 cycles at 95°C for 15 s, 55°C for 30 s and 68°C for 7.5 min, and a 
finishing step at 68°C for 15 min was used. Target-specific and indexing primers were designed 
in-house. All primers were obtained from metabion (metabion international AG, Planegg, 
Germany). 

Library preparation and nanopore sequencing 
For the WASHU-T and -V datasets, PCR amplicons of HLA-A, -B, and -C from the same 
genomic DNA source were pooled and purified with a 1.0x reaction with Agencourt Ampure XP 
Beads (Fisher Scientific NC9959336). DNA was then treated with PreCR Repair Mix (NEB 
M0309) to repair any damaged template DNA. Following a second round of 1x ampure clean-up, 
libraries were prepared with the standard protocol supplied by ONT using the version MN004 or 
MN006 library preparation kits. Libraries #1 through #5 were sequenced for 48 hours on the 
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R7.3 flow cells on the original MinION devices (WASHU-T dataset). Libraries #6, #7, and #3 
(repeat) were sequenced for 12 hours on the MAP103 (R7.3) flow cells on the newer MK1 
MinIONs (WASHU-V dataset).  Sequencing and base calling were performed using the 
MinKnow and Metrichor software available at the time (Supplementary Table 1), and the native 
FAST5 files were converted to the fastq format using Poretools.21  

For the DKMS dataset all barcoded amplicons were pooled at 10 µl each and purified initally 
using SPRIselect Beads (Beckham Coulter, Brea, USA) in a ratio of 0.7:1 beads to PCR product. 
1.5 µg of the purified pool was used for ONT library preparation with the ligation based 2D 
Library Preparation Kit (SQK-LSK208) in combination with an R9.4 SpotON Flowcell (FLO-
MIN106). Library Preparation took place according to the manufacturer´s protocol and 
sequencing was done for 48h on a MK1B MinION. Sequencing and base calling were 
performed using MinKNOW version 1.1.21 and Metrichor version 1.125. The native Fast5 files 
were converted to FASTQ files using Poretools.21 

Demultiplexing  
The WASHU-T, -V and Ammar datasets were demultiplexed based on the locus-specific primer 
sequences. The python script is provided in the supplementary package online 
(http://github.com/cliu32/Athlon). The DKMS dataset was demultiplexed using lastlopper.pl 
(https://github.com/gringer/bioinfscripts/blob/master/lastlopper.pl), a wrapper script for the LAST 
aligner (http://last.cbrc.jp/) 

HLA nomenclature and result evaluation 
HLA alleles are named by the gene name (e.g. HLA-A) followed by an asterisk and up to four 
digital fields separated by colons. One-field typing corresponds to a group of alleles carrying 
one or more shared serological antigens. HLA alleles encoding the same unique protein share 
the same 2-field typing. If synonymous mutations are present in the exons, a third field is 
appended to the shared 2-field typing to form unique 3-field typings (Figure 1A). For alleles 
sharing the same 3-field typing but with sequence variations in the non-coding regions, a fourth 
field is added to form unique 4-field typings. The G-group code was used to describe alleles with 
identical sequences across exon(s) encoding the peptide binding domains (exons 2 and 3 for 
class I and exon 2 for class II alleles). To represent a group of such alleles, a capitalized "G" is 
suffixed to the allele designation of the lowest numbered allele to form the group name, e.g. 
A*01:01:01G.  

For solid organ transplantation, HLAs are largely typed at 1-field resolution as a standard of 
care, although typing at a higher resolution may have added benefit.12 For hematopoietic stem 
cell transplantation, HLAs are at least typed at the G-group level of resolution.15 With these 
considerations, we aimed to type HLAs at up to the 3-field resolution using the G-group 
nomenclature. The reference sequences were constructed accordingly to serve this goal (see 
below). For the WASHU-T, -V, and DKMS datasets, all samples were typed at 3- to 4-field 
levels by reference methods, the accuracy of nanopore typing results were evaluated by the 
concordance rates at 1-field, 2-field, and 3-field G-group levels respectively. For the Ammar 
dataset, because the samples were typed at 2-field level by the reference method, the accuracy 
of nanopore typing results were evaluated by concordance rate among all alleles at 1- and 2-
field levels respectively.   

Reference sequences 
Reference sequences for this study were constructed based on the IPD-IMGT/HLA database 
release 3.26.0.14 The .dat file was parsed using Biopython, and sequences for exons 2 and 3 
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were joint by a large intronic gap filled by "-" as space holders. The final reference file included 
3311, 4163, and 3034 sequences for the HLA-A, -B and -C loci, respectively. A separate set of 
reference sequences without the intronic gap were used for the second read mapping to 
candidate alleles followed by consensus generation and blast.  

Main procedures and components of the Athlon pipeline 
The rationale and workflow of the pipeline are detailed in the Results section. A script for the 
pipeline, reference files, and sample data are provided at http://github.com/cliu32/Athlon. All 
read mapping were performed by BLASR (version 2.0.0)16 with the “hitPolicy” set as 
“randombest”. Read coverage was quantified using Bedtools (version 2.25.0) 22 with the default 
setting. Samtools (samtools and bcftools, version 1.2 using htslib 1.2.1)23 was used with default 
setting to manipulate bam files and generate consensus sequences. Final allele call was made 
using Blast (version 2.2.31)24 with the default setting to identify the closest reference allele to a 
consensus sequence.  

Downsampling experiment 
The WASHU-V and DKMS datasets were downsampled to the number of reads per sample as 
indicated using the seqtk package version 1.0-r31 (Li, https://github.com/lh3/seqtk) followed by 
analysis using the Athlon pipeline.  

Calculation of quality metrics 
The coverage depth at each base position was obtained using Bedtools (Version 2.25.0) for 
every candidate allele in the DKMS dataset, which was downsampled to 400 reads per sample. 
The coverage was visualized for each locus. The uniformity of coverage was represented by the 
coefficient of variance (CV) calculated as the standard deviation of coverage depth at each 
position across exons 2 and 3 divided by the mean coverage. The allelic balance was calculated 
as the total coverage of the minor candidate allele divided by that of the major candidate allele 
in each sample (n=30).  

Data availability  
Raw nanopore reads are available from the authors upon request.   
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SUPPLEMENTARY MATERIALS 

Supplementary Figure 1. Number of reads and read length in the datasets analyzed for 
this study.  
Datasets include WASHU-T (n=15), WASHU-V (n=9), Ammar dataset (n=2), and DKMS dataset 
(n=30). (Upper panel) Mean read length and standard deviation are shown for each sample. 
(Lower panel) Mean number of reads are plotted for each sample.  

 

  

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/178590doi: bioRxiv preprint first posted online Aug. 20, 2017; 

http://dx.doi.org/10.1101/178590


11 

 

Supplementary Figure 2. Statistical heterozygosity thresholds at 1-field and 2-field levels 
to distinguish heterozygous versus homozygous samples.  
The ratios of the coverage of 2nd-ranked allele to that of the top-ranked allele were plotted for 
the three homozygous samples in the WASHU-T dataset at 1-field (a) and 2-field (b) levels 
respectively. Horizontal bars are mean (long) and standard deviations (short). Dotted horizontal 
lines are heterozygosity thresholds, 15% and 40%, which approximated the means plus two 
standard deviations at 1-field (a) and 2-field (b) levels respectively.  The coverage ratios 
between the 2nd- and top-ranked alleles were also plotted for the four homozygous samples and 
five heterozygous samples in the WASHU-V dataset at 1-field level (a). The ratios for the four 
homozygous samples at 2-field level were plotted in (b). 
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Supplementary Figure 3. Coverage-related quality metrics.  
(a) The coverage plots for all candidate alleles from the 30 DKMS samples downsampled to 400 
reads per sample are visualized for HLA-A, -B and -C genes (gray lines) in the upper, middle 
and lower panels respectively. The mean coverage plots (black lines) are superimposed on 
individual plots. (b) The coefficient of variance (CV) of coverage depths at all positions across a 
candidate allele, and it correlation with mean coverage depths of individual candidate alleles. A 
linear regression line is shown. (c) Distribution of allele balance ratios, calculated as the total 
coverage of the minor allele divided by that of the dominant allele, across 30 DKMS samples.  
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Supplementary Table 1. Characteristics of three datasets included in this study.  
Dataset WASHU-T WASHU-V Ammar et al, 2015 DKMS 
Flow cell chemistry R7.3 R7.3 R7.3 R9.4 
Goal for each dataset Assay and pipeline development Preliminary validation Benchmark with previous publication Different multiplex strategies and extended 

validation of bioinformatic pipeline 
Targeted HLA loci HLA-A, -B, and -C HLA-A, -B, and -C HLA-A, and -B HLA-A, -B, and -C 
Source of genomic DNA HG01968, HG01886, HG01872, HG01756, 

and an anonymous donor (n=5) 
HG01872, HG10757, and 
an anonymous donor (n=3) 

NA12878 (n=1) Donors (n=30) 

Number of samples 
(total/homozygotes) * 

15/3 9/4 2/0 30/0 

Number of alleles ** 30 18 4 60 
PCR primers     

HLA-A, forward ATCCTGGATACTCACGACGCGGAC Same as left AGAAGAGTCCAGGTGGACAGGTAAGGAGTG Custom in-house designed primers 
HLA-A, reverse CATCAACCTCTCATGGCAAGAATTT Same as left TTCTACTGAAGGGCCAAGGACAATGGAG  
HLA-B, forward AGGTGAATGGCTCTGAAAATTTGTCTC Same as left TGGATTCAGCACCAAGATCACTAGAACCAG  
HLA-B, reverse AGAGTTTAATTGTAATGCTGTTTTGACACA Same as left GTCTCTCCCTGGTTTCCACAGACAGATCCT  
HLA-C, forward GGCCGCCTGTACTTTTCTCAGCAG Same as left n/a  
HLA-C, reverse CCATGGTGAGTTTCCCTGTACAAGAG Same as left n/a  

Multiplexing/barcode Amplicons from three different loci of each 
DNA specimen are pooled to prepare the 
library for one run; no barcode 

Same as left Amplicons from the two HLA loci and another 
non-HLA locus, CYP2D6, are pooled to prepare 
the library for one run; no barcode 

Each amplicon has a unique barcode; all amplicons 
are pooled to prepare one library for one run  

Library preparation 
protocol 

MN004_revC MN006_revE SQK-MAP003 SQK-LSK208 

MinKNOW software Version 47.3.7 Version 51.1.62 Version 47.3 Version 1.1.21 
Run time 48 hours 12 hours 24 hours 48 hours 
Metrichor software R7.x_2D_1.9_2.22 2D_MAP6_1.69 Version 2.23 Version 1.125 
Type of reads analyzed 2D 2D 2D 2D 
Resolution of reference 
alleles 

2-field and 3-field Same as left 2-field 4-field 

Reference typing 
methods 

A combination of Sanger sequencing, SSO, 
SSP, and exome sequencing (Liu et al., 2013) 

Same as left Statistical phasing of genotypes from multiple 
platforms using predefined markers from the 
HapMap project 

Amplicon based Exon 2 and 3 Illumina Shotgun; 
SMRT Sequencing (Pacific Biosciences) 

* A sample corresponds to data generated for each locus of each DNA specimen.  
** Homozygous alleles are counted twice; the total number of alleles is used as the denominator to calculate accuracy.  
HLA, human leukocyte antigen; ONT, Oxford Nanopore Technology; PCR, polymerase chain reaction.   
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Supplementary Table 2. Number and length of 2D reads from the three datasets.  
WASHU-T & WASHU-V (N=8) Ammar et al, 2015 (N=2) DKMS (N=30) 

ID 
Read 
Number 

Length, 
min 

Length, 
max 

Length, 
mean 

Length, 
SD ID 

Read 
Number 

Length, 
min 

Length, 
max 

Length, 
mean 

Length, 
SD ID 

Read 
Number 

Length, 
min 

Length, 
max 

Length, 
mean 

Length, 
SD 

1A 7753 322 7606 3205 360 A 266 311 7271 3586 762 DKMS01 1643 46 8917 4178 691 
1B 2306 457 8436 4033 453 B 570 314 7399 3608 535 DKMS02 1680 438 12213 4173 658 
1C 2368 632 7384 4183 332       DKMS03 1979 410 12973 4164 744 
2A 4762 266 7681 3226 312       DKMS04 2396 50 9804 4194 653 
2B 1667 323 4444 4055 396       DKMS05 1288 130 10139 4186 675 
2C 1078 323 8179 4165 480       DKMS06 989 452 8607 4174 584 
3A 7057 271 8666 3218 331       DKMS07 1559 30 8830 4167 656 
3B 1865 396 12252 4029 507       DKMS08 1628 409 8942 4165 692 
3C 1880 256 9853 4200 412       DKMS09 1396 54 8853 4175 657 
4A 10818 255 14134 3232 362       DKMS10 1792 217 13416 4207 767 
4B 3380 379 8384 4041 478       DKMS11 2167 391 8859 4100 704 
4C 4418 221 8457 4212 442       DKMS12 1927 49 8853 4108 672 
5A 7107 256 8400 3264 284       DKMS13 1824 50 15217 4124 758 
5B 1683 314 4617 4087 386       DKMS14 1695 402 11811 4117 710 
5C 982 553 8437 4213 447       DKMS15 2240 367 10064 4109 701 
6A 18877 279 15598 3014 561       DKMS16 1780 35 8941 4084 680 
6B 18333 295 7574 3810 507       DKMS17 1928 412 13816 4094 676 
6C 4428 355 7764 3972 522       DKMS18 1897 37 8996 4095 695 
7A 15972 294 8337 3046 495       DKMS19 1358 50 8780 4127 631 
7B 11732 295 8147 3802 499       DKMS20 1334 439 8842 4098 644 
7C 3000 980 6624 3975 489       DKMS21 2295 28 9641 4101 728 
R3A 57066 199 7770 2976 543       DKMS22 2549 53 9279 4156 688 
R3B 29464 170 8122 3770 528       DKMS23 2303 40 8938 4157 642 
R3C 12528 255 9317 3937 555       DKMS24 2791 323 12647 4098 773 
            DKMS25 2267 198 9438 4202 664 
            DKMS26 3650 38 9408 4146 723 
            DKMS27 3018 36 8982 4148 673 
            DKMS28 2350 322 12979 4133 689 
            DKMS29 3062 82 13336 4160 728 
            DKMS30 2620 387 13541 4268 871 
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Supplementary Table 3. HLA typing results and candidate allele pairs for the WASHU-T 
and WASHU-V datasets.  

ID Allele Dataset Truth 
Final results Candidate alleles 

All reads 400 reads 200 reads 100 reads All reads 400 reads 200 reads 100 reads 
1A Allele1 WASHU-T A*02:01:01 A*02:119:XX A*02:01:25 A*02:01:119 A*02:01:94 A*02:01:31 A*02:01:25 A*02:01:119 A*02:01:94 
1A Allele2 WASHU-T A*68:01:02 A*68:01:22 A*68:01:22 A*68:01:22 A*68:01:22 A*68:01:22 A*68:01:22 A*68:01:22 A*68:01:22 
1B Allele1 WASHU-T B*07:02:01 B*07:02:03 B*07:02:04 B*07:67N:XX B*07:02:04 B*07:02:03 B*07:02:40 B*07:67N:XX B*07:02:04 
1B Allele2 WASHU-T B*40:02:01 B*40:02:01G B*40:02:08 B*40:02:07 B*40:02:01G B*40:02:06 B*40:02:08 B*40:02:07 B*40:02:01G 
1C Allele1 WASHU-T C*07:02:01 C*07:02:12 C*07:02:32 C*07:02:32 C*07:02:57 C*07:02:12 C*07:02:32 C*07:02:32 C*07:02:57 
1C Allele2 WASHU-T C*03:04:01 C*03:04:01G C*03:04:38 C*03:04:38 C*03:03:05 C*03:04:16 C*03:04:38 C*03:04:38 C*03:03:05 
2A Allele1 WASHU-T A*30:02:01 A*30:02:01G A*30:02:01G A*30:02:01G A*30:02:01G A*30:02:01G A*30:02:09 A*30:02:01G A*30:02:09 
2A Allele2 WASHU-T A*74:01:01G A*74:01:01G A*74:01:01G A*74:01:04 A*74:01:01G A*74:01:01G A*74:01:01G A*74:01:04 A*74:01:01G 
2B Allele1 WASHU-T B*57:03:01 B*57:03:01G B*57:03:01G B*57:01:01G B*57:01:08 B*57:01:01G B*57:01:01G B*57:01:03 B*57:01:08 
2B Allele2 WASHU-T B*15:03:01 B*15:03:01G B*15:266:XX B*15:266:XX B*15:266:XX B*15:266:XX B*15:266:XX B*15:266:XX B*15:266:XX 
2C Allele1 WASHU-T C*02:10:01G C*02:02:06 C*02:02:15 C*02:02:09 C*02:02:06 C*02:02:06 C*02:02:15 C*02:02:09 C*02:02:06 
2C Allele2 WASHU-T C*07:01:02 C*07:01:01G C*07:01:17 C*07:01:17 C*07:57:XX C*07:01:17 C*07:01:17 C*07:01:17 C*07:57:XX 
3A Allele1 WASHU-T A*24:07:01 A*24:02:64 A*24:02:34G A*24:02:72 A*24:02:64 A*24:02:64 A*24:02:34G A*24:02:72 A*24:02:64 
3A Allele2 WASHU-T A*11:02:01 A*11:02:01G A*11:02:01G A*11:02:01G A*11:01:33 A*11:02:01G A*11:02:01G A*11:02:01G A*11:01:33 
3B Allele1 WASHU-T B*27:04:01 B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G 
3B Allele2 WASHU-T B*39:05:01 B*39:05:01 B*39:01:18 B*39:01:18 B*39:121:XX B*39:01:04 B*39:01:18 B*39:01:18 B*39:121:XX 
3C Allele1 WASHU-T C*08:01:01 C*08:01:01G C*08:01:01G C*08:01:12 C*08:01:01G C*08:01:01G C*08:01:01G C*08:01:12 C*08:01:01G 
3C Allele2 WASHU-T C*12:02:02 C*12:02:01G C*12:02:01G C*12:02:09 C*12:02:09 C*12:02:01G C*12:02:01G C*12:02:09 C*12:02:09 
4A Allele1 WASHU-T A*30:02:01 A*30:02:01G A*30:02:01G A*30:02:01G A*30:02:09 A*30:02:01G A*30:02:09 A*30:02:09 A*30:02:09 
4A Allele2 WASHU-T A*66:01:01G A*26:01:23 A*26:01:06 A*26:01:02 A*26:17:XX A*26:01:06 A*26:01:06 A*26:01:02 A*26:17:XX 
4B Allele1 WASHU-T B*41:02:01 B*41:02:01G B*41:02:01G B*41:02:01G B*41:39:XX B*41:02:01G B*41:02:01G B*41:02:01G B*41:39:XX 
4B Allele2 WASHU-T B*18:01:01 B*18:114:XX B*18:01:01G B*18:01:01G B*18:01:02 B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:02 
4C Allele1 WASHU-T C*17:01:01 C*17:01:07 C*17:01:07 C*17:01:07 C*17:01:07 C*17:01:07 C*17:01:07 C*17:01:07 C*17:01:07 
4C Allele2 WASHU-T C*05:01:01 C*05:01:01G C*05:01:01G C*05:01:02 C*05:31:XX C*05:01:01G C*05:01:02 C*05:01:02 C*05:31:XX 
5A Allele1 WASHU-T A*01:01:01 A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:20 A*01:01:20 A*01:01:01G 
5A Allele2 WASHU-T A*01:01:01 A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:20 A*01:01:20 A*01:01:01G 
5B Allele1 WASHU-T B*08:01:01/20 B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:06 B*08:01:06 B*08:01:01G B*08:01:06 B*08:01:06 
5B Allele2 WASHU-T B*08:01:01/20 B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:06 B*08:01:06 B*08:01:01G B*08:01:06 B*08:01:06 
5C Allele1 WASHU-T C*07:01:01:01 C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G 
5C Allele2 WASHU-T C*07:01:01:01 C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G 
6A Allele1 WASHU-V A*03:01:01:04 A*03:01:01G A*03:01:01G A*03:01:01G A*03:01:01G A*03:01:23 A*03:01:23 A*03:01:23 A*03:01:23 
6A Allele2 WASHU-V A*03:01:01:06 A*03:01:01G A*03:01:01G A*03:01:01G A*03:01:01G A*03:01:23 A*03:01:23 A*03:01:23 A*03:01:23 
6B Allele1 WASHU-V B*57:01:01 B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G 
6B Allele2 WASHU-V B*57:01:01 B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:01G 
6C Allele1 WASHU-V C*06:02:01:01 C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G 
6C Allele2 WASHU-V C*06:02:01:01 C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G 
7A Allele1 WASHU-V A*02:01:01 A*02:01:01G A*02:01:01G A*02:01:87 A*02:01:81 A*02:01:87 A*02:01:47 A*02:01:87 A*02:01:81 
7A Allele2 WASHU-V A*01:01:01:01 A*01:01:01G A*01:01:01G A*01:01:63 A*01:01:13 A*01:01:34 A*01:01:34 A*01:01:63 A*01:01:13 
7B Allele1 WASHU-V B*57:01:01 B*57:01:01G B*57:01:01G B*57:01:01G B*57:01:09 B*57:01:01G B*57:01:09 B*57:01:01G B*57:01:09 
7B Allele2 WASHU-V B*18:01:01 B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G 
7C Allele1 WASHU-V C*07:01:01:01 C*07:01:01G C*07:01:01G C*07:01:34 C*07:01:01G C*07:01:01G C*07:01:07 C*07:01:34 C*07:01:01G 
7C Allele2 WASHU-V C*07:01:01:01 C*07:01:01G C*07:01:01G C*07:528:XX C*07:528:XX C*07:01:01G C*07:01:07 C*07:528:XX C*07:528:XX 
R3A Allele1 WASHU-V A*11:02:01 A*11:02:01G A*11:02:01G A*11:02:01G A*11:02:01G A*11:02:01G A*11:02:01G A*11:02:01G A*11:02:01G 
R3A Allele2 WASHU-V A*24:07:01 A*24:07:01 A*24:07:01 A*24:07:01 A*24:07:01 A*24:02:41 A*24:07:01 A*24:02:17 A*24:07:01 
R3B Allele1 WASHU-V B*27:04:01 B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G B*27:04:01G 
R3B Allele2 WASHU-V B*39:05:01 B*39:05:01 B*39:05:01 B*39:05:01 B*39:01:01G B*39:01:13 B*39:01:13 B*39:31:XX B*39:01:13 
R3C Allele1 WASHU-V C*08:01:01 C*08:01:01G C*08:01:01G C*08:01:01G C*08:01:06 C*08:01:06 C*08:01:06 C*08:01:06 C*08:01:06 
R3C Allele2 WASHU-V C*12:02:02 C*12:02:01G C*12:02:01G C*12:02:01G C*12:02:01G C*12:02:01G C*12:02:01G C*12:02:01G C*12:02:01G 
Discordance in 1-field typing | Discordance in 2-field typing | Discordance in 3-field typing | Truth and typing result in the same G group 
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Supplementary Table 4. HLA typing results and candidate allele pairs for the Ammar 
dataset.  

ID Allele Truth Ammar et al. 
Athlon 

Final results Candidate alleles 
Ammar_A Allele1 A*01:01 A*01:32 A*01:01:73 A*01:01:73 
Ammar_A Allele2 A*11:01 A*03:12 A*11:01:08 A*11:01:60 
Ammar_B Allele1 B*08:01 B*07:65 B*08:01:06 B*08:01:04 
Ammar_B Allele2 B*56:01 B*55:10 B*55:01:01G B*55:48:XX 
Discordance in 1-field typing | Discordance in 2-field typing 
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Supplementary Table 5. HLA typing results and candidate allele pairs for the DKMS 
dataset.  
ID Allele Truth 

Final results Candidate alleles 
All reads 400 reads 200 reads 100 reads All reads 400 reads 200 reads 100 reads 

DKMS01 Allele1 A*01:01:01:01 A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G 
DKMS01 Allele2 A*26:01:01:01 A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G 
DKMS02 Allele1 A*02:01:01:01 A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:29 A*02:01:47 A*02:01:36 A*02:01:112 
DKMS02 Allele2 A*24:02:01:01 A*24:02:01G A*24:02:01G A*24:02:01G A*24:02:01G A*24:02:01G A*24:02:41 A*24:02:41 A*24:02:01G 
DKMS03 Allele1 A*01:01:01:01 A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:63 A*01:01:63 A*01:01:01G 
DKMS03 Allele2 A*31:01:02:01 A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G 
DKMS04 Allele1 A*01:01:01:01 A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:63 A*01:01:01G 
DKMS04 Allele2 A*26:01:01:01 A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G A*26:01:01G 
DKMS05 Allele1 A*11:01:01:01 A*11:01:01G A*11:01:01G A*11:01:01G A*11:01:01G A*11:01:01G A*11:01:01G A*11:01:27 A*11:01:01G 
DKMS05 Allele2 A*23:01:01 A*23:01:01G A*23:01:01G A*23:01:01G A*23:01:01G A*23:01:01G A*23:01:01G A*23:01:01G A*23:01:01G 
DKMS06 Allele1 A*68:01:02:02 A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G 
DKMS06 Allele2 A*03:01:01:01 A*03:01:01G A*03:01:01G A*03:01:01G A*03:01:01G A*03:01:23 A*03:01:01G A*03:01:48 A*03:01:23 
DKMS07 Allele1 A*01:01:01:01 A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:01G A*01:01:63 A*01:01:63 A*01:01:01G 
DKMS07 Allele2 A*02:01:01:01 A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:29 A*02:01:01G A*02:01:01G 
DKMS08 Allele1 A*02:01:01:01 A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:47 A*02:01:29 A*02:01:69 A*02:01:01G 
DKMS08 Allele2 A*68:01:02:02 A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G A*68:01:02G 
DKMS09 Allele1 A*02:01:01:01 A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:47 A*02:01:01G 
DKMS09 Allele2 A*03:01:01:01 A*03:01:01G A*03:01:01G A*03:01:01G A*03:01:01G A*03:01:23 A*03:01:01G A*03:01:01G A*03:01:23 
DKMS10 Allele1 A*02:01:01:01 A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:01G A*02:01:47 A*02:01:84 A*02:01:01G A*02:01:01G 
DKMS10 Allele2 A*31:01:02:01 A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G A*31:01:02G 
DKMS11 Allele1 B*27:05:02 B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G 
DKMS11 Allele2 B*52:01:01:02 B*52:01:01G B*52:01:01G B*52:01:01G B*52:01:01G B*52:01:01G B*52:01:01G B*52:01:01G B*52:01:01G 
DKMS12 Allele1 B*07:02:01 B*07:02:01G B*07:02:01G B*07:02:01G B*07:02:01G B*07:02:01G B*07:02:03 B*07:02:01G B*07:02:01G 
DKMS12 Allele2 B*44:02:01:01 B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G 
DKMS13 Allele1 B*39:01:01:03 B*39:01:01G B*39:01:01G B*39:01:01G B*39:01:01G B*39:01:01G B*39:01:01G B*39:01:01G B*39:01:01G 
DKMS13 Allele2 B*55:01:01 B*55:01:01G B*55:01:01G B*55:01:01G B*55:01:01G B*55:01:01G B*55:01:01G B*55:01:01G B*55:01:01G 
DKMS14 Allele1 B*27:02:01 B*27:02:01 B*27:02:01 B*27:02:01 B*27:02:01 B*27:02:01 B*27:02:01 B*27:02:01 B*27:02:01 
DKMS14 Allele2 B*56:01:01:03 B*56:01:01G B*56:01:01G B*56:01:01G B*56:01:01G B*56:01:05 B*56:01:05 B*56:01:01G B*56:01:05 
DKMS15 Allele1 B*37:01:01 B*37:01:01G B*37:01:01G B*37:01:01G B*37:01:01G B*37:01:01G B*37:01:01G B*37:01:01G B*37:01:01G 
DKMS15 Allele2 B*44:02:01:01 B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G 
DKMS16 Allele1 B*27:05:02 B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G 
DKMS16 Allele2 B*44:02:01:01 B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G B*44:02:01G 
DKMS17 Allele1 B*18:01:01:03 B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G B*18:01:01G 
DKMS17 Allele2 B*40:01:02 B*40:01:01G B*40:01:01G B*40:01:01G B*40:01:01G B*40:01:01G B*40:01:01G B*40:01:01G B*40:01:01G 
DKMS18 Allele1 B*15:01:01:01 B*15:01:01G B*15:01:01G B*15:01:01G B*15:01:01G B*15:01:01G B*15:01:28 B*15:01:01G B*15:01:01G 
DKMS18 Allele2 B*08:01:01:01 B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G 
DKMS19 Allele1 B*35:01:01:02 B*35:01:01G B*35:01:01G B*35:01:01G B*35:01:01G B*35:01:01G B*35:01:01G B*35:01:32 B*35:01:01G 
DKMS19 Allele2 B*08:01:01:01 B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G B*08:01:01G 
DKMS20 Allele1 B*51:01:01:01 B*51:01:01G B*51:01:01G B*51:01:01G B*51:01:01G B*51:01:01G B*51:01:01G B*51:01:01G B*51:01:01G 
DKMS20 Allele2 B*27:05:02 B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G B*27:05:02G 
DKMS21 Allele1 C*08:02:01:01 C*08:02:01G C*08:02:01G C*08:02:01G C*08:02:01G C*08:02:01G C*08:02:01G C*08:02:01G C*08:02:01G 
DKMS21 Allele2 C*02:02:02:01 C*02:02:02G C*02:02:02G C*02:02:02G C*02:02:02G C*02:02:02G C*02:02:02G C*02:02:02G C*02:02:02G 
DKMS22 Allele1 C*06:02:01:03 C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G 
DKMS22 Allele2 C*01:02:01 C*01:02:01G C*01:02:01G C*01:02:01G C*01:02:01G C*01:02:01G C*01:02:01G C*01:02:05 C*01:02:01G 
DKMS19 Allele1 C*04:01:01:01 C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:62 C*04:01:62 
DKMS19 Allele2 C*07:04:01:01 C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G 
DKMS20 Allele1 C*05:01:01:02 C*05:01:01G C*05:01:01G C*05:01:01G C*05:01:01G C*05:01:01G C*05:01:02 C*05:01:01G C*05:01:01G 
DKMS20 Allele2 C*12:03:01:01 C*12:03:01G C*12:03:01G C*12:03:01G C*12:03:01G C*12:03:01G C*12:03:01G C*12:03:01G C*12:03:01G 
DKMS21 Allele1 C*04:01:01:01 C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:01G 
DKMS21 Allele2 C*07:04:01:01 C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G 
DKMS22 Allele1 C*07:01:01:01 C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G 
DKMS22 Allele2 C*12:03:01:01 C*12:03:01G C*12:03:01G C*12:03:01G C*12:03:01G C*12:03:01G C*12:03:28 C*12:03:28 C*12:03:01G 
DKMS23 Allele1 C*01:02:01 C*01:02:01G C*01:02:01G C*01:02:01G C*01:02:01G C*01:02:01G C*01:02:01G C*01:02:01G C*01:02:01G 
DKMS23 Allele2 C*04:01:01:01 C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:01G C*04:01:11 C*04:01:01G C*04:01:68 C*04:01:01G 
DKMS24 Allele1 C*03:04:01:01 C*03:04:01G C*03:04:01G C*03:04:01G C*03:04:01G C*03:04:01G C*03:04:12 C*03:04:08 C*03:04:08 
DKMS24 Allele2 C*07:04:01:01 C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G 
DKMS25 Allele1 C*05:01:01:02 C*05:01:01G C*05:01:01G C*05:01:01G C*05:01:01G C*05:01:01G C*05:01:01G C*05:01:01G C*05:01:01G 
DKMS25 Allele2 C*07:01:01:01 C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:01G C*07:01:16 C*07:01:53 C*07:01:40 
DKMS26 Allele1 C*06:02:01:01 C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G C*06:02:01G 
DKMS26 Allele2 C*07:04:01:01 C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G C*07:04:01G  
Discordance in 3-field typing | Truth and typing result in the same G group 
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