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Topological Invariants in Fermi Systems with Time-Reversal Invariance
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%'e discuss topological invariants for Fermi systems that have time-reversal invariance. The TKN in-

tegers (first Chem numbers) are replaced by second Chem numbers, and Berry's phase becomes a unit

quaternion, or equivalently an element of SU(2). The canonical example playing much the same role as

spin 2 in a magnetic field is spin 2 in a quadrupole electric field. In particular, the associated bundles

are nontrivial and have 1 second Chem number. The connection that governs the adiabatic evolution

coincides with the symmetric SU(2) Yang-Mills instanton.

PACS numbers: 03.65.Bz, 02.40.+m

Much interest has focused recently on topological and

geometric invariants in eigenvalue perturbation theory,
namely on TKN integers'2 and on Berry's phase.
The folk wisdom is that nontrivial values of these invari-
ants require broken time-reversal invariance such as
occurs in a magnetic field. This belief is correct in the
sense that if all Hamiltonians can be made simultaneous-

ly real, the invariants vanish. But such simultaneous
reality is a feature of time-reversal invariance for integer
spins, i.e., Bose systems only. Our goal here is to discuss
the rich structure present for time-reversal-invariant
half-odd-integer spina, i.e., Fermi systems. Additional
details will appear in Ref. 5. Non-Abelian phases in

Kramers degenerate systems have previously been con-
sidered in Ref. 6.

Let J be the angular momentum operator, which is, of
course, odd under time reversal. In the usual representa-
tion (with J„and J, real and J» imaginary) time rever-

sal, which we call T, may be implemented by the product
of complex conjugation and rotation about the y axis by
x. This is in fact the only antiunitary operator, up to
phases, that reverses J. In representations where J is
half-odd integral, rotation by 2z is —1, and so T = —1.

This holds in general. That is, in Fermi systems with
time-reversal invariance, there exists an antiunitary
operator T which commutes with the Hamiltonian (or
family of Hamiltonians if some external parameters are

varied) and obeys T = —1. Since T anticommutes with

multiplication by i, it gives the Hilbert space a quater-
nionic structure, ' if we think of T as multiplication by j
and iT as multiplication by k.

0 is time-reversal invariant if it commutes with T.
This says that 8 is Hermitian in the quaternionic sense.
The eigenspaces are quaternionic vector spaces and so
are even dimensional as complex vector spaces. Kra-
mers' degeneracy follows immediately from this struc-
ture. An eigenvalue is called quaternionically simple if
it has the minimum degeneracy consistent with Kramers,
namely double, degeneracy in the sense of a complex
Hilbert space.

As for complex Hermitian matrices, where generically
all eigenvalues are simple in the complex sense, the ei-
genvalues of quaternionic Hermitian matrices are generi-
cally simple in the quaternionic sense. (The usual
definition but with complex conjugate replaced by
quaternionic conjugate. ) Whereas in the complex Her-
mitian case eigenvalue crossings have codimension 3, in

the quaternionic Hermitian case they have codimension
5. Simple parametric counting via Wigner and von Neu-
mann' yields these numbers. Codimension 5 means
that, generically, there are no level crossings on four-
dimensional surfaces.

What we have said so far is not new, and is presented
for background. In the complex case, a basic role is
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played by the homotopy groups of M„(C), the space of
nondegenerate, complex Hermitian n x n matrices. This
space is homotopic to the quotient U(n)/[U(1)
x. . . XU(1)] of the unitary matrices. As shown in

Ref. 2, +2[M„(C)]=Z" ', which reflects the fact that
there is a TKN integer associated with each eigenvalue,
and the integers satisfy a zero sum rule.

The quaternionic analog is M„(&l ), the nondegenerate
quaternionic Hermitian n xn matrices, which is homoto-
pic to the quotient Sp(n)/[Sp(l)x . . XSp(1)] of the
unitary symplectic matrices by the diagonal unitary sym-
plectic matrices. Now +~[M„(lt )] =0 for j=1,2, 3 and

n4[M„( lt)] =Z" '. These results follow from the homo-

topy exact sequences. M„(H ) turns out to have a richer
homotopy than M„(C) for the simple reason that
Sp(1)-S has a richer homotopy than U(l)-S', so
unlike the complex case, there are higher homotopy in-

variants in the quaternionic case.
The TKN integers associated to a map of S to

M„(C) can be computed as the integral of the first

Chem two-form ro~. In terms of the projection P(Q)
onto the one-dimensional eigenspace for H(Q) depend-
ing on parameter Q, the curvature t1 is given by
0 =iP(dPAdP), and

o)) = Tr(n).1

27'

The TKN numbers are the first Chem numbers,
C~ =fsi &0~, where S is a closed two-surface in parame-
ter space. For the canonical example H(B) =J B,
C~ =2m, where m is the azimuthal quantum number.
Clearly, if H(Q) commutes with T, then c0~ =0.

In the quaternionic case, the basic object is the second
Chem four-form (in this context more appropriately
called the first symplectic Pontryagin form" )

co2= [Tr(O ) —Tr(A) ] = Tr(A ),
1 1

8~2 8z

so that, for example, if Q parametrizes points in 5, then
the second Chem integer is given by

C2 =
4 C02.

As in the complex case, solving the Schrodinger equa-
tion adiabatically (or in any other smooth way that is
guaranteed to return to the initial state' ) produces a
holonomy identical to the natural one induced by the
metric on the Hilbert space on the bundle of eigen-
spaces. In the complex case, this holonomy is given by
a complex number of magnitude one—the Berry's phase.
In the quaternionic case it is given by a unit quaternion,
or equivalently by an element of SU(2). In the general
twofold-degenerate case considered by Wilczek and
Zee, the holonomy is an element of U(2).

These rather abstract considerations are made con-
crete in a set of elementary examples. Since J is odd un-

der T, the simplest time-reversal-invariant Hamiltonian

1S

H(Q) =QQ, J J„ (2)

~here e is a positive real number and P ~ is the spectral
projection onto the positive (or negative) eigenspace.
Conversely, to each projection P and positive number c
we can associate the Hamiltonian c(2P —1). As a re-
sult, there is a one-to-one correspondence between the
unit sphere of H(Q)'s and the set of spectral projections
P+ (or P ), yielding the first proof that that the two

with Q a real symmetric second-rank tensor, which may
be taken traceless. The space of such tensors is a five-

dimensional real vector space, with an invariant inner
product given by (Q, Q')—:—,

' Tr(QQ'), where the trace is

taken as the trace of linear operators on IR . A standard
orthonormal basis Q„a=0, . . . , 4, can be defined such
that, using e, =H(Q, ), eo —=J, —J /3, e~=3 'i (J„J,
+J J), e2=3 ' (JyJ+JJi), ei=3 'i (J„—Jy),
and e4=3 ' (J„J~+J~J„).

While this example looks specialized, by the Wigner-
Eckart theorem it will apply to any spin-J multiplet per-
turbed by a second-rank tensor. For example, our
Berry's phase calculation below will be relevant to any
spin-atomic 2 level under perturbation by an electric
quadrupole.

At Q 0, H(Q) =0 is obviously highly degenerate.
One can show that for QWO all levels are simple in the
quaternionic sense, i.e., only doubly degenerate in the
complex sense. If we take for S in Eq. (1) the unit
sphere in the space of tensor operators, i.e., —', Tr(Q )
=1, all the J+ 2 energy levels have well defined second
Chem integers, satisfying a zero sum rule. Moreover, a
simple argument shows that C2 of the nth eigenvalue is
—Cq of the (J+ 2

—n)th eigenvalue. This is in some

ways like the situation discussed by Berry, except that
for J & 2, there is not enough symmetry to facilitate a
simple calculation of the C2's.

The case J —', is basic and has some remarkable sym-

metries, as we will explain. The sense that it is basic is
that, as in Ref. 4, the generic situation for quaternion de-
generacies as one varies five parameters is twofold de-
generacy removed to first order. Just as the prototypical
complex situation is spin- —, J B, the prototypical
quaternionic situation is this spin- 2 case.

Here are the main features of the spin- 2 case.
(a) The time-reversal-invariant traceless operators on

C (equivalently traceless quaternionic Hermitian opera-
tors on lt ) are exactly the family of H(Q). This can be
seen by just counting dimensions. Each is exactly five-

dimensional and each H(Q) is quaternionic, Hermitian,
and traceless.

(b) Each nonzero H(Q), being traceless, Hermitian,
and 2 && 2 (quaternionically), can be written uniquely as

H =c(Pi —P —) =c(2P+ —1) =c (1 —2P ), -
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Chem integers are + l.
(c) Tr[H(Q) ] =6Tr(Q ). By (a), the unit sphere of

H(Q)'s is left invariant by the full group of 2X2 sym-
plectic matrices, Sp(2) =Spin(5), the twofold universal
cover of SO(5). Spin(5) acts on the unit sphere of Ham-
iltonians by SO(5) rotations. Thus, this family of opera-
tors, which a priori only has SO(3) symmetry, has
SO(5) symmetry. Any Hamiltonian can be mapped to
any other Hamiltonian by an SO(5) rotation, even

though there are pairs of Hamiltonians that are not re-
lated by SO(3).

(d) Because all unit Hamiltonians are equivalent by
the SO(5) symmetry, the second Chem form is a multi-

ple of the area form. The constant of proportionality can
be computed at any point [say (J, —

—,
' J )] to yield

another proof that the two Chem integers are + 1.
(e) Using the explicit matrices of J„,J», and J, in the

spin- 2 representation, one can easily check that the ma-
trices e, defined above form a Clifford algebra, i.e.,
e,ep+ette, =28,tt. The commutators [e„ett] generate the
Spin(5) action. By a unitary change of basis, these ma-
trices can be transformed to

eo=
1 0
0 1

s 1

0 1

0 & e2
0 —i

i 0

0 j 0
—j0' 4 k 0

which evidently span the traceless quaternionic Hermi-
tian 2 X 2 matrices. The Clifford property makes the fact
&+ (Q) =

~ [1 ~ H(Q)] of (b) evident.
(f) For many paths on the four-sphere of Hamiltoni-

ans, the SO(5) symmetry enables one to compute the
holonomy explicitly. Specifically, consider paths of the
form H(r) =U(r)epU( —r), 0~ r ~ 2tr, where U(r) is

a one-parameter group of symplectic matrices with
U(2tr) = —1. Paths of this form are closed, as
H(0) =H(2tr) =ep. By (e), such one-parameter groups
are of the form U(r) =exp(rC, tt[e„ett]) for appropriate
constants C,tt. In particular, the physical SO(3) rota-
tions are of this type. Suppose the system is initially in

an eigenstate of J, =m. The probability of the final state
being J, = —m is easily recovered from the holonomy,
and is a physical observable amenable to experimental
measurement. Consider a path generated by the physical
rotation U(z) =exp{ i r[cos(p) J,—+sin(p) J„]].For any
path generated by physical rotation the probability of an
initial state J, =

2 going to a final state J, = —
2 is

zero. This result is based on an analysis of the geometry
of SO(3) representations. The SO(3) symmetry further
allows one to compute the probability of the J, =

2 state
going to the J, = —&, which is given by '

(4sin 41)[sin [tr(1+3sin p)'t ]]
1+3sin p

For paths which are generated by SO(5) rotations not

corresponding to the physical rotations, the probability
of J, =

& going to J, = ——,
' need not be zero. In fact,

there exist paths for which this probability is unity, for
example, the path generated by U(r) =exp[(r/
8)e t (J3ep+2e3) ].

(g) This example is closely related to the symmetric
SU(2) instanton. ' The connection governing the adia-
batic time evolution for the spin —,

' has self-dual curva-
ture, and thus is a classical solution of the SU(2) Yang-
Mills equations.

(h) Connections with self-dual curvature are classified
via twistor theory, ' and the spin- 2 representation arises
naturally in this framework. The rotation group SO(3)
acts on the four-sphere of unit quadrupoles. The twistor
space of S is CP, which now has an induced SO(3) ac-
tion. This action extends to a projective representation
of SO(3) on C, which is precisely the spin- —', represen-
tation of SU(2).

The second Chem numbers may be thought of as
quantum numbers that arise from topology rather than
symmetry. Besides labeling the spectrum, quantum
numbers that come from symmetry give various selection
rules forbidding certain transitions. Similarly, the topo-
logical quantum numbers, besides labeling the spectrum
give selection rules for adiabatic processes that can force
transitions whenever the eigenstate bundle is nontrivial,
at least for some paths. This holds on general grounds
and is also illustrated by (f) above.
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