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Abstract. Irregular variations in the refractivity of the
atmosphere cause fluctuations in the phase measured by
interferometers, limiting the spatial resolution that can be
obtained. For frequencies up to the far infrared, water va-
por is the dominant cause of the variations. The temporal
power spectrum of the phase fluctuations is needed to as-
sess correction schemes such as phase referencing using a
nearby calibrator and water vapor radiometry.

A model is developed for the temporal power spec-
trum of phase fluctuations measured by an interferome-
ter through a layer of Kolmogorov turbulence of arbitrary
thickness. It is found that both the orientation of the base-
line with respect to the wind direction and the elevation
of the observations can have a large effect on the temporal
power spectrum. Plots of the spectral density distribution,
where the area under the curve is proportional to phase
power, show that substantial contributions from length
scales as long as 100 times the interferometer baseline are
possible.

The model is generally consistent with data from
the 12-GHz phase monitor at the Owens Valley Radio
Observatory, and allows the data to be extrapolated to
an arbitrary baseline, observing frequency and elevation.
There is some evidence that there can be more than one
component of turbulence present at a given time for the
Owens Valley.

The validity of the frozen turbulence assumption and
the geometrical optics approximation is discussed and
found to be reasonable under most conditions. The models
and data presented here form the basis of an analysis of
phase calibration and water vapor radiometry (Lay 1997).

Key words: atmospheric effects — instrumentation:
interferometers — site testing — techniques:
interferometric

1. Introduction

The performance of radio interferometers, particularly
those operating at millimeter and submillimeter wave-
lengths, is often limited by fluctuations in the refractive
index of the earth’s atmosphere caused by water vapor.
There is currently an active effort to correct for these
fluctuations by using the techniques of water vapor ra-
diometry (e.g. Welch 1994; Bremer 1995) and fast switch-
ing between the target and calibrator objects (Holdaway
1992; Holdaway & Owen 1995).

The refractivity of water vapor is dominated by con-
tributions from strong lines in the far infrared part of the
spectrum. The refractivity of water vapor is therefore al-
most constant from radio to submillimeter wavelengths,
and is substantially lower in the optical, where tempera-
ture variations become the dominating factor. The broad
distribution of water vapor in the atmosphere falls off with
altitude and has a scale height of approximately 2 km. The
fluctuations, however, arise from an irregular distribution
of water vapor generated by turbulent mixing.

A comprehensive treatment of the theory of wave prop-
agation in random media is given by Tatarskii (1961,
1971). More recent developments can be found in Tatarskii
et al. (1992). Treuhaft & Lanyi (1987) made numerical
integrations to model the effect of a turbulent layer of fi-
nite thickness, applying the results to VLBI observations.
Most discussions of the theory of atmospheric turbulence
concentrate on the structure function of the fluctuations,
which describes how the phase difference between two
points in space varies as a function of their separation.
Simple theory (see next section) predicts that the struc-
ture function follows a power law, and there have been
several measurements using radio interferometers to test
this relationship (e.g. Armstrong & Sramek 1982; Sramek
1990; Coulman & Vernin 1991, all using the Very Large
Array; Wright & Welch 1990, using Berkeley–Illinois–
Maryland Association Millimeter Array; Olmi & Downes
1992, using the millimeter interferometer of the Institut
de Radioastronomie Millimétrique). There is a wide scat-
ter in the measured power law indices, some of which is
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due to the difficulties in measuring the phase fluctuations
over sufficiently long time intervals (see Sect. 4.6).

An alternative approach is to use an instrument ded-
icated to observing atmospheric phase fluctuations; ex-
isting phase monitors are interferometers that observe a
tone of ∼12 GHz from a geosynchronous communications
satellite. The phase monitor at the summit of Mauna Kea
(Masson 1993) and at the Nobeyama Radio Observatory
(Ishiguro et al. 1990) have been operating the longest.
These have since been joined by similar instruments at
the Owens Valley Radio Observatory (OVRO), the Very
Long Baseline Array station on Mauna Kea, and two
in Chile which are being used to conduct site tests for
the National Radio Astronomy Observatory’s proposed
Millimeter Array and the Japanese Large Millimeter and
Submillimeter Array.

This paper focuses on the temporal power spectrum of
atmospheric phase fluctuations measured with the OVRO
phase monitor. This analysis is particularly useful for as-
sessing the timescales over which the fluctuations are im-
portant, and will be used as the basis for a companion
paper that studies phase calibration schemes, both with
and without correction from water vapor radiometry. The
primary aim of this paper is to develop the tools needed
to understand phase monitor power spectra; it is not to
make a detailed investigation of the properties of the at-
mosphere.

The next section describes how simple theory is used
to form a model of phase fluctuations which includes the
effects of a finite thickness of the turbulent layer, the ori-
entation of the baseline with respect to the wind, and the
elevation of the observations. Following this is a brief de-
scription of the OVRO phase monitor, the data processing,
and an analysis of an illustrative sample of data (Sect. 3).
There is then a discussion of the issues and implications of
this work, including how to extrapolate data measured by
a phase monitor to interferometers with different baselines
observing at arbitrary elevation.

2. The model

2.1. Turbulence, structure functions and power spectra

The simple model developed here will be used to interpret
the data from the phase monitor presented in the next sec-
tion. It is intended to emphasize the relationships between
different quantities, rather than to be mathematically
rigorous.

The inhomogenous distribution of water vapor in the
atmosphere is the result of a turbulent velocity field acting
on large scale concentrations of water vapor. Turbulence is
injected into the atmosphere on large scales by processes
such as convection, the passage of air past obstacles and
wind shear, and cascades down to smaller scales where
it is eventually dissipated by viscous friction. Between the
outer scale of injection and the inner scale of dissipation—

known as the inertial range—it is a good approximation
to say that kinetic energy is conserved, and simple dimen-
sional arguments predict that for 3-dimensional, isotropic
turbulence, the power spectrum is described by a power
law with an index of −11/3. This is the Kolmogorov Power
Spectrum (Tatarskii 1961, 1971).
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Fig. 1. A plane wavefront from a distant point source is dis-
torted by variations in the refractivity n as it passes through
the atmosphere

Figure 1 shows how a plane wavefront from a distant
point source is distorted as it passes through an atmo-
sphere containing variations in the refractivity n(x, y, z)
(= refractive index −1). Figure 2 illustrates the relation-
ships between important quantities. The refractivity field
n(x, y, z) can be integrated along the line of sight (z-
axis) to give the wavefront delay τ(x, y). These have 3-
D and 2-D Fourier Transforms given by ñ(qx, qy, qz) and
τ̃(qx, qy), respectively, where q denotes a spatial frequency.
The Fourier Transforms are implicitly performed over a fi-
nite volume containing the scales of interest in the x−y−z
domain, ensuring that the integrals remain finite. The cor-
responding power spectra are Pn and Pτ . The autocorrela-
tion functions for n(x, y, z) and τ(x, y) are An(Rxyz) and
Aτ (Rxy), which in turn are related to the 3-D and 2-D
structure functions, respectively, of the refractivity field.
For the case of fully three-dimensional Kolmogorov tur-
bulence, the 2-D structure function Dτ (Rxy) that gives
the variance of the delay difference between two lines of

sight separated by Rxy, is proportional to R
5/3
xy . The de-

tails of the calculations can be found in the literature (e.g.
Tatarskii 1961, 1971; Thompson et al. 1986). An implicit
assumption is that the wavefront delay at a given loca-
tion depends only on the refractivity field along the line
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Fig. 2. Relationships between the refractivity field n(x, y, z),
wavefront delay, structure functions and power spectra. Power
law indices, where given, are appropriate for a very thick layer
of Kolmogorov turbulence. Variables: (x, y, z) are spatial co-
ordinates, (qx, qy, qz) are the corresponding spatial frequen-
cies; rxyz and Rxyz are a position and displacement in the
3-D space, respectively; rxy and Rxy are their equivalents
in the x − y plane; qxyz and qxy are 3-D and 2-D spatial
frequencies: qxyz = (q2
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1/2;
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of sight; this is the geometrical optics approximation and
is discussed in Sect. 4.

The emphasis in the past has been on the 2-D struc-
ture function Dτ (Rxy). The focus of this analysis is the
spatial power spectrum of the wavefront delay Pτ (qx, qy).
In the next section the layer of turbulence is considered to
be of effectively infinite thickness, so that the turbulence
is isotropic; subsequent sections deal with layers of finite
thickness.

2.2. From refractivity to interferometer phase

An interferometer, comprising a pair of antennas look-
ing vertically up through the atmosphere separated by
a baseline d = (dx, dy), is sensitive to the difference in
the delay between the two signals received. This response
is illustrated schematically in Fig. 3, where the two cir-
cles represent positive and negative delta functions at the
location of the antennas. The Fourier Transform of this
response is given by 2 sin{π(dxqx + dyqy)}, so that the

�(x; y)

?

?? Interferometer
Response

P� (qx; qy)

?

�4 sin2f�(dxqx + dyqy)g

��(x; y)

?

� 2��obs

P��(qx; qy)

?

� 2��obs

��(x; y)

?

y = 0; x = wt

P��(qx; qy)

?

R
P��dqy; qx = �=w

��out(t) Pout(�=w)

(x,y)τ

d

w

w

x

y

Fig. 3. The response of an interferometer with baseline d to
a wavefront delay τ(x, y) moving at windspeed w. On the left,
τ(x, y) is mapped in stages onto the phase difference ∆φout(t)
measured by the interferometer as a function of time. The cor-
responding power spectra at each stage are shown on the right

interferometer acts as a spatial filter: the excess delay in-
troduced by a fluctuation that is much larger than the
baseline (i.e. dxqx + dyqy � 1) is very similar at each an-
tenna and therefore gets canceled out to some extent. The
power spectrum P∆τ of this filtered signal is the product
of the atmosphere’s intrinsic power spectrum Pτ and the
square of the filtering function:

P∆τ = 4Pτ sin2{π(dxqx + dyqy)} (1)

∝ (q2x + q2y)
− 11

6 sin2{π(dxqx + dyqy)}. (2)

An interferometer actually measures the difference in
the phase of the two signals received: ∆φ(x, y) =

2πνobs∆τ(x, y) and P∆φ = (2πνobs)
2
P∆τ , where νobs is

the frequency of the radiation being observed.
Figures 4a & b show contour plots of the quantity

P∆φqxqy as a function of log qx and log qy for the cases
of (dx = 100 m, dy = 0) and (dx = 0, dy = 100 m),
respectively, i.e. wind along the baseline and wind per-
pendicular to the baseline. The spatial frequencies qx and
qy have units m−1, such that q = λ−1 for a disturbance
with wavelength λ (note: λ is not the wavelength of the
radiation here). The logarithmic axes (base 10) are nec-
essary to cover the large range of scales and by plotting
equally spaced contours of P∆φqxqy the volume under the
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Fig. 4. a) Contour plot showing phase power
as a function of spatial frequency (qx, qy) for
(dx = 100 m, dy = 0) i.e. wind blowing parallel to
the baseline, as indicated by the symbol. The con-
tours are evenly spaced in the quantity P∆φqxqy,
so that volume under the contours is proportional
to phase power. b) Contour plot for wind blow-
ing perpendicular to baseline. The corresponding
spatial scales are also shown. c & d) Result of in-
tegrating the above functions over log qy. Area un-
der the curves is proportional to phase power. The
thick lines are for an unbounded turbulent region;
the thin lines show the change in shape as the
thickness of the turbulent layer ∆h is reduced to
5 km, 2 km and 1 km, and have been normalised to
have the same power on small scales. e & f) Plots
of the same curves on Log−Log axes. The asymp-
totic gradients for the unbounded case are shown.
The corresponding frequency scale is obtained by
the relation log ν = log qx + logw. All Log scales
are to base 10

contours is proportional to the variance ∆φ, i.e. the plot
shows the contributions to the variance from different spa-
tial frequencies. Although these plots are for d = 100 m,
the response for a longer (shorter) baseline is simply ob-
tained by shifting the contours down and to the left (up
and to the right). For example, for d = 200 m shift by
−0.3 (= − log 2) in both the x and y directions. It can
be shown that the volume under the contours, that is the
total variance in ∆φ, is proportional to d5/3. This is the
2-D phase structure function evaluated for a separation d
(Fig. 2).

The pattern of turbulence is blown at windspeed w
over the interferometer. Here it is assumed that w is uni-
form in speed and direction over the volume containing
the turbulence, and that the pattern of turbulence is es-
sentially fixed over the time interval needed for the pattern
to blow through a line of sight. This is the assumption of
frozen turbulence and is addressed further in Sect. 5. It is
convenient to consider the turbulence as fixed and the an-
tennas as moving at speed w in the x−direction, as shown
in Fig. 3. ∆φ(x, y) is sampled only along the x−axis, such
that x = wt, where t is time: ∆φout(t) = ∆φ(wt, 0). The
power spectrum Pout(ν) is derived by integrating P∆φ over
qy. Here ν is the temporal frequency of phase variations in

the output of the interferometer, not to be confused with
the frequency of the observed radiation νobs. For exam-
ple, a fluctuation in the refractivity with a spatial peri-
odicity of 200 m in the x−direction (i.e. qx = 0.005 m−1,
log qx = −2.3) gives rise to a measured phase fluctuation
of period 40 s (ν = 0.0025 Hz) if w = 5 m s−1. Poutqx is
plotted against log qx (= log ν − logw) in Figs. 4c and d.
Plotting Poutqx ensures that area under the curve is pro-
portional to the variance of ∆φ, i.e. the curve represents
a spectral density distribution.

The same models are plotted on Log − Log axes in
Figs. 4e and f, illustrating the broken power law depen-
dence of Pout on ν: fluctuations much smaller than the
baseline are uncorrelated between the two antennas and
Pout ∝ ν−8/3; fluctuations much larger than the baseline
give Pout ∝ ν−2/3.

2.3. The effect of baseline orientation and length

There are clear differences between the case shown in
Figs. 4a, c and e where the wind blows along the baseline,
and that shown in b, d and f where they are perpendicu-
lar. In the former case the contributions to the variance of
∆φ are quite sharply peaked around scales corresponding
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to ∼ 5d, compared to a softer peak centered on scales of
∼ 15d for the latter. The break in the power law is also
more evident in Fig. 4e than in f, and occurs at a spa-
tial frequency given by log qx = log2.5 − log(d/100 m).
When the wind is neither parallel nor perpendicular to
the baseline, the shapes of the curves are intermediate be-
tween the two extremes shown. The nulls in Figs. 4c and
e are a direct result of the interferometer’s response—the
sin2(πdxqx) of Eq. (2)—and are suppressed when the wind
is not blowing along the baseline.

The effect of the size of the individual antennas has
been ignored up to this point; fluctuations much smaller
than the effective aperture are smeared out, but since
there is very little power on scales less than d, this ap-
proximation is justified. The curves plotted are for 100 m
baselines. For a baseline length d, shift the the curves in
c and d to the left by log(d/100 m); the vertical scale
should also be increased by a factor (d/100 m)5/3. The
phase power is the same on small scales where there is no
correlation between the two lines of sight and increases on
large scales for the longer baselines.

2.4. The finite thickness of the turbulent layer

Until this point it has been assumed that the turbulent
region is effectively infinite in all directions. The three
other curves in Figs. 4c, d, e and f illustrate the effect on
the phase power spectrum of an atmosphere with verti-
cal thickness ∆h of 5 km, 2 km and 1 km. In Fig. 2, the
expressions for τ(x, y) and Pτ (qx, qy) are now given by

τ(x, y) =

∫ ∆h

0

n dz, (3)

Pτ(qx, qy) =

∫ +∞

−∞
|ñ|2 (∆h)2sinc2(π∆hqz) dqz. (4)

The values of Pout(qx) are calculated by numerical in-
tegration. The curves have been normalized so that the
power on small spatial scales is the same, to emphasize
the differences in the shapes of the distributions. The fi-
nite value of ∆h takes effect for qx<∼∆h−1: the distribution
of phase power becomes narrower as there is less power on
large spatial scales (or lower temporal frequency) and the
log− log plots deviate from the gradient of −2

3
. The exact

behavior depends on the orientation of the wind direction
with respect to the baseline. The curves shown are for a
100 m baseline, but the shape of the curve is the same for
a given value of d/∆h.

When the baseline is much longer than the thickness
of the turbulent layer, the power law index of −8/3 on
scales smaller than ∆h flattens to an index of −5/3 for
larger scales (Fig. 5). There is further flattening when the
baseline length is exceeded.
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Fig. 5. Log − Log plot to show how phase power changes as
a function of size scale when the baseline is much longer than
the thickness of the turbulent layer (∆h = 1 km in this case)

2.5. The effect of elevation

The results so far have dealt with antennas observing at
an elevation of 90◦. The effect of the elevation of the line
of sight through the turbulent layer is complicated, and
requires further elaboration of the model.

The coordinate system is now defined with the z−axis
along the line of sight and the x−axis such that the x− z
plane contains the wind vector w. The component of w
in the x−direction is the projected windspeed wx. The
z−axis has elevation ε and azimuth in the horizontal plane
θ with respect to w. The baseline components dx and dy
are in the x− and y−directions, respectively, perpendic-
ular to the line of sight; together they give the projected
baseline.

The power spectrum of the wavefront delay is now
given by

Pτ (qx, qy) = A

∫ +∞

−∞

{
(qx + ∆qx)

2 + (qy + ∆qy)
2

+(∆qz)
2
}− 11

6 (∆h)2 sinc2(π∆hqv) dqv (5)

where A is proportional to the strength of the turbulence,

∆qx = qv cos ε cos θ (6)

∆qy = qv cos ε sin θ (7)

∆qz = qv sin ε, (8)

and qv is the vertical component of each wavevector. Note
that for ε = 90◦ Eq. (5) reduces to Eq. (4). The temporal
power spectrum of the phase fluctuations at the output of
the correlator is related to Pτ in the same way as before:

Pout(qx) = (2πνobs)
2

∫ +∞

−∞
4Pτ sin2{π(dxqx+dyqy)}dqy,(9)
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Fig. 6. Spectral density plots for elevations of 90◦, 45◦, 30◦ and
15◦, in order of increasing phase power. The turbulent layer is
100 m thick, the baseline has dx = 0 and dy = 100 m, and the
lines of sight are inclined along the wind direction (θ = 0 in
Eqs. (6) and (7)). The elevations correspond to airmasses of
1.0, 1.4, 2.0 and 3.9

with ν = wxqx.

Figure 6 shows examples of how the power spectrum
obtained from a given turbulent layer is a function of the
elevation. The curves are calculated by numerical integra-
tion of Eq. (5). The shape is a function of the relative
values of ∆h, dx, dy, ε and θ. It can be seen that the
phase power on small spatial scales (high qx) is propor-
tional to ∆h/ sin ε as would be expected. It is also pos-
sible to show that the total phase power integrated over
all timescales depends only on the length of the projected
baseline (d2

x + d2
y)

1/2, the distance travelled through the
turbulent layer ∆h/ sin ε and the intensity of the turbu-
lence A.

2.6. Summary of the model

A model has been developed to interpret the power spec-
trum of atmospheric turbulence measured by an interfer-
ometer. The distribution of phase power has a strong de-
pendence on the orientation of the baseline with respect
to the wind direction. The effects of the thickness of the
turbulent layer and the elevation of the line of sight have
also been demonstrated. The assumptions are that the ge-
ometrical optics approximation is valid over the scales of
interest and that the turbulent field can be regarded as
“frozen” Kolmogorov turbulence.

3. Observations

3.1. The instrument

The data presented here are from the atmospheric phase
monitor at the Owens Valley Radio Observatory. This in-
strument comprises two 1.2 m off-axis antennas separated
by an East-West baseline of 100 m. The design is based
on the system built by Masson et al. (1990), and is on
loan from the Center for Astrophysics. The antennas are
directed at a geosynchronous communications satellite in
the South at an elevation of 43◦ that emits an unmodu-
lated tone at 11.7 GHz. The signals are down-converted
and the phase difference between them is measured with
a vector voltmeter and recorded every second. The phase
difference varies with time as a result of turbulence in the
atmosphere, drifts in the instrument response, and mo-
tions of the satellite along the line of sight. A dedicated
phase monitor of this type provides a continuous record
of the state of the atmosphere in a fixed direction on the
sky, whereas measurements derived from bright astronom-
ical sources are usually over only a limited period of time
dictated by the observing schedule.

3.2. Data processing

The data are processed in 24 hours periods. There are
several steps involved. First of all, phase wraps and 180◦

phase jumps are removed. 12- and 24-hour sinusoids are
then fitted to and subtracted from the data. This removes
almost all of the satellite’s radial motion. The data are
then divided into segments of 4096 seconds (1 hour and 8
minutes). A straight line is fitted to and subtracted from
each segment to remove drifts in the instrument and resid-
ual satellite motion, followed by a Fast Fourier Transform
to generate 2048 complex values. The power spectrum is
then given by the square of the amplitude of these values,
and comprises 2048 measurements ranging in frequency
from 0.5 Hz to 0.0 Hz, spaced by 2.4 10−4 Hz. Finally,
the 20 or so power spectra generated for a 24 hour period
are averaged together to produce the overall power spec-
trum for the day. The average rms phase, summed over
all timescales up to 4096 s, is also calculated.

The subtraction of a straight line from each segment
changes the measured power spectrum. However the im-
pact is minimal, since only the sine terms generated by
the Fourier Transform are affected (the cosines are even
functions with a first order moment of zero) and the power
removed falls off as q−2

x . In practice only the lowest two
frequencies (0.0 Hz and 2.4 10−4 Hz) are reduced signifi-
cantly.

3.3. The data

The 4 data sets shown in Fig. 7 have been chosen to illus-
trate different conditions. These are discussed in the next
section. Only a limited number of data sets have been
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Fig. 7. a–h) Phase power plots and Log − Log
plots for 4 days in the Owens Valley. a) and c)
are for Oct. 25 1995, and illustrate a very calm at-
mosphere, setting upper limits on the instrumental
contributions; b) and d) are for Feb. 4 1995 show-
ing typical conditions; e) and g) are for Feb. 5 1995
which show that there can be substantial power
on long timescales; f) and h) are for Jan. 12 1995
and show substantial power on short timescales,
probably with two components. All but the last
dataset have the same vertical scales. The lines
on the Log − Log plots have gradients of −8/3
and −2/3, as predicted for a very thick layer of
Kolmogorov turbulence, but no formal fitting has
been made

examined so far. Each of the four days of data is exam-
ined in turn and relevant issues are discussed.

3.3.1. Oct. 25 1995

The data of Figs. 7a and c are for one of the best days
for which data is available. The rms phase on the 100 m
baseline at 12 GHz, integrated over all timescales up to
4096 s, is 1.6◦ (equivalent to 110 µm of path). The Log−
Log plot shows the signature expected from atmospheric
phase noise; the straight lines have gradients of −2

3 and
−8

3
. There has been no attempt to make a formal fit to the

data and the straight lines are shown for illustration only.
The instrumental noise becomes apparent for frequencies
exceeding 10−1 Hz. The two peaks in the spectral density
plot may be due to two distinct components of turbulence
moving at different speeds in the atmosphere. The main
purpose of showing this dataset is to set an upper limit
on the contributions from instrumental noise and satellite
motion.

3.3.2. Feb. 4 1995

The data of Figs. 7b and d correspond to an integrated
rms phase of 2.5◦ at 12 GHz (170 µm of path). The Log−

Log plot again shows the characteristic signature of the
atmosphere and the contribution from instrumental noise
for ν > 10−1 Hz. The data are more consistent with the
models of Figs. 4d and f, where the wind is perpendicular
to the baseline, than with c and e, where the wind blows
along the baseline direction. The Log− Log plot shows a
more gradual transition between the two gradients than
the data shown in Fig. 7h where the wind is most likely
along the baseline.

Figure 8 shows five model curves superimposed on the
data. No formal fit has been made, but it is clear that the
data are best fitted by ∆h in the range 100 to 1000 m. The
shape of the curve for −2 < log ν < −1 is well-constrained
by the data points and is fitted much better with the wind
perpendicular to the baseline than along it. The projected
windspeed required to map the spatial frequency scale of
the model (wind perpendicular to baseline) to the tempo-
ral frequencies of the data is (4.5 ± 1) m s−1, or 9 mph.
Since the elevation is 43◦ in the direction of the wind,
the actual windspeed needed to give a projected value of
9 mph is 13 mph. The windspeed recorded at ground-level
for that period was ∼5 mph.
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Fig. 8. Data for Feb. 4 1995 with five model curves superim-
posed. The solid, long dash, short dash and dotted lines have
∆h of 100 km, 5 km, 1 km and 100 m, respectively, all with the
wind perpendicular to a 100 m baseline. The dash-dot line has
a ∆h of 1 km, but with the wind blowing parallel to a 100 m
baseline. All models are for an elevation of 45◦, appropriate for
the Owens Valley phase monitor

3.3.3. Feb. 5 1995

Panels e and f of Fig. 7 show data for the following day.
The conditions appear to be similar to Feb. 4 1995 (the
integrated rms phase is again 2.5◦ at 12 GHz), except that
the data are shifted to lower frequencies, indicative of a
lower windspeed. The projected windspeed obtained is
2.5 m s−1 or 5 mph, requiring a 7 mph wind perpendic-
ular to the baseline, compared to the recorded value of
∼4 mph at ground-level. There is still substantial phase
power on timescales of 1000 s or more.

3.3.4. Jan. 12 1995

The data in panels f and h are clearly different in char-
acter from the preceding examples. There is substantial
phase power on timescales as short as 10 s. The data rise
very rapidly from high ν and there is a more marked dis-
continuity in the gradients of the Log − Log plot. The
integrated rms phase at 12 GHz is 5.2◦, corresponding to
360 µm of path (note the different scaling on the spectral
density plot).

The shape of the distribution in Fig. 7f can only be
reconciled with the model if there are two components of
turbulence present, moving at different speeds. One has
a maximum centered on logν ' −1.3 and dominates for
logν > −2; the second has a maximum at log ν ' −2.3,
similar to the example in panel b. To account for the sharp
change in gradient of the Log − Log plot and the steep
curve at log ν ∼ 1 in the spectral density plot, the wind

for the high frequency component must be approximately
parallel to the baseline at (25 ± 5) m s−1 (50 mph). The
second component has a projected windspeed of ∼9 mph,
as for the example of Feb. 4 1995.

4. Discussion

The model provides a good framework for understanding
and interpreting the data. In the datasets examined so far
there are no obvious discrepancies with the model predic-
tions. It would be straightforward to extend the model to
different power-law relationships for the turbulence, but
in the absence of obvious problems with the Kolmogorov
model, and the lack of physical basis for another power
law, this is not considered necessary at this stage. The
data show that it is possible to have significant phase
power on timescales as short as 10 s and as long as an
hour.

4.1. Turbulence and water vapor

A turbulent velocity field can be generated in the atmo-
sphere by a number of different processes, e.g. (1) convec-
tive activity from heating of the ground, (2) the passage
of air past an obstacle, (3) instability at the interface of
two layers with different wind vectors, and (4) the large
scale motions associated with weather systems.

Each energy injection mechanism has a characteristic
range of scales over which turbulence is generated. The
Kolmogorov law assumes that the turbulence is in statis-
tical equilibrium, with a constant energy input to replen-
ish the energy dissipated on small scales. If turbulence
is generated in a particular location (e.g. on the lee of a
mountain) then at short distances downwind the turbu-
lence will be lacking power on short scales since there has
not been enough time for the energy to cascade down.
Conversely, further downwind the large scale motions will
have decayed without being replenished. Each case would
be apparent as a deviation from the Kolmogorov behav-
ior, the first as a decrement on short scales, the second
as a decrement on large scales. Beyond the outer scale of
the dominant mechanism there should also be a marked
reduction in turbulent power. There is no clear evidence
for any of these effects in the data sets studied so far.
In Fig. 7d, for example, there is no large deviation from
the model at t ∼ 2000 s; with a windspeed of 6.5 m s−1

this implies a lower limit to the outer scale of ∼10 km.
It is interesting to note that studies of the atmosphere at
optical wavelengths, where the dominant contribution to
phase fluctuations is the variation of the refractive index
with temperature, suggest an outer scale size of order 5 m
(e.g. Treuhaft et al. 1995; Coulman & Vernin 1991). This
is clearly not the case at radio wavelengths.

A mountain-top site is likely to be more complicated
than a flat location. For example, experience with inter-
ferometry at submillimeter wavelengths on Mauna Kea
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has shown that there are times when there is substantial
phase variation on 1-second timescales; similar periods are
also apparent in data from the Plateau de Bure in France
(Bremer 1995).

The presence of a turbulent velocity field is not enough
in itself to generate inhomogeneity in the distribution of
water vapor. There must also be some initial density con-
trast in the distribution of water vapor within the turbu-
lent zone; a uniform distribution cannot be mixed, and
will not give rise to variations in the refractivity under
the influence of turbulence. The total power of the phase
fluctuations therefore depends on the density contrast in
the water vapor that would be present in the turbulent re-
gion in the absence of turbulence. For example, convection
mixes water-rich air from low altitude with drier regions
higher up. A higher column density of water vapor does
not directly imply stronger phase fluctuations. This may
explain the weak dependence of radio seeing with altitude
found by Masson (1993).

The model may be used to estimate the fractional con-
tribution to the water vapor column along a single line
of sight from the varying component. For typical condi-
tions in the Owens Valley (5-minute rms phase at 12 GHz
of 2.5◦, and 5 mm of precipitable water vapor) the vary-
ing component constitutes ∼ 5% of the total water vapor
column.

4.2. Frozen turbulence

It is possible to estimate the validity of the assumption of
frozen turbulence and to show the effect that non-frozen
flows will have on the temporal power spectrum.

Consider an element of turbulence with size-scale l.
The lifetime of this feature is of order l/vl (see Tatarskii
1961, Chap. 2), where vl is the turbulent velocity of the
element. Therefore the timescale over which the feature
retains a coherent identity is tcoh ∼ l/vl. In this time the
feature is blown a distance wl/vl, where w is the wind-
speed. If wl/vl > l, i.e. w > vl then the feature passes
through a given line of sight relatively unchanged, and the
assumption of frozen turbulence is a good approximation
for this scale.

From simple dimensional arguments (Tatarskii 1961,
Chap. 2), vl ∝ l1/3, so that the velocity of the turbulent
motion is highest on the largest scales, and this is where
the frozen turbulence assumption will break down first.
The wind is usually the result of motions on the scale of
hundreds of kilometers. It is reasonable to assume that
when turbulence is produced by the wind blowing past an
obstacle or by the wind shear between layers, the turbu-
lent motions do not have speeds exceeding w. If the tur-
bulence is dominated by convection and the systematic
“background” windspeed is very low, then it is possible
that the velocity of the turbulence exceeds the windspeed
and large structures evolve faster than the blow-by time.
In this case there will be an apparent deficit of phase power

on long timescales. Frozen turbulence should therefore be
a good approximation whenever the systematic windspeed
exceeds the speed of convective motions.

4.3. The geometrical optics approximation

This approximation, as noted in Sect. 2, assumes that the
wavefront delay having passed through an inhomogeneous
medium is given by the integral of the refractivity varia-
tions along the line of sight. The effects of diffraction are
ignored. Tatarskii (1961, Chap. 6) shows that diffraction
becomes important on size scales l for which l <∼

√
λobsh,

where λobs is the observing wavelength and h is the dis-
tance between the inhomogeneity and the observer.

The phase monitor observes at a wavelength of 25 mm,
so that the approximation is valid only for scales exceed-
ing ∼ 5 m. Reference to Fig. 4 shows that there is ac-
tually very little phase power from scales less than 5 m.
Diffraction results in some of this power being spread to
larger spatial scales, so in this case the approximation has
very little impact on the power spectrum. It will become
more important for observations at lower frequencies and
shorter baselines.

4.4. Turbulence in the Owens Valley

The Owens Valley (Fig. 9) runs North–South, is approx-
imately 8 km wide, and the floor is at an elevation of
1200 m. To the West, the mountains of the Sierra Nevada
rise abruptly to over 4000 m; to the East the White
Mountain range rises to ∼ 3000 m. The wind direction
at the observatory on the valley floor is almost always
North–South, but the prevailing wind direction for eleva-
tions exceeding 4000 m is approximately East–West. The
obvious sources of turbulence are convective activity from
the valley floor, eddies generated by the passage of air over
the Sierra Nevada, and shearing between the volume of air
in the valley and the air moving over the mountains. An
analysis of the rms phase measured by the phase monitor
over 5-minute intervals over a period of several months
shows clearly that the phase tends to be worst during the
middle of the afternoon. This suggests that convective ac-
tivity inside the valley, blown in a North–South direction
perpendicular to the baseline of the phase monitor, is a
dominant contributor. This is consistent with the findings
of the previous section. Turbulence generated by the fast
air blowing over the Sierra Nevada from West to East
is the likely cause of the high frequency component in
Figs. 8f and h. This is shown schematically in Fig. 9.

4.5. Extrapolating phase monitor data

The main aim of this paper is to demonstrate that a simple
model with few assumptions can explain the basic features
of the phase monitor data taken in the Owens Valley. This
model can then be used to extrapolate the phase moni-
tor data to different baselines and elevations to assess the
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Fig. 9. Schematic illustration of the Owens Valley. Convective
turbulence in the valley is blown North–South. High-altitude
turbulence is generated by the Sierra Nevada mountains and
is blown predominantly to the West. The phase monitor is
located on the valley floor with an East–West baseline

impact of atmospheric fluctuations on astronomical data
measured with interferometers.

The model can be fitted to a measured temporal power
spectrum to estimate the wind speed (horizontal shift of
the curve) and direction (shape of the curve for the high
frequencies), turbulent intensity (vertical scaling) and the
thickness of the turbulent layer (width of the curve). An
example is given in Fig. 8. With these quantities the model
can then be used to predict the power spectrum for an
arbitrary baseline, elevation and observing frequency.

4.6. Advantages of the temporal power spectrum approach

The primary motivation for investigating the temporal
power spectrum here is to use the data to evaluate the
effect of phase calibration and correction schemes using
water vapor radiometry. A knowledge of the timescales
of fluctuations is clearly needed to do this, and the tra-
ditional structure function provides no such information.
The spectral density distribution is also much more sensi-
tive to the presence of multiple components of turbulence
(e.g. Fig. 7h) which can be distinguished on the basis of
windspeed.

The measured spectral density distributions also show
that there can be substantial phase power on timescales
longer than 1000 s for a baseline of only 100 m. When
measuring the structure function, it is vital that the phase
is monitored over a sufficiently long period of time. The
longer the baseline, the longer the time required. Figure 4d
has power on spatial scales 100 times the baseline length
and the necessary sampling period can be prohibitive, par-
ticularly if the windspeed is low. If the period is too short,
the power law index of the structure function will be un-
derestimated.

A discussion of phase calibration procedures based on
the temporal power spectrum of phase fluctuations, and

the implications for water vapor radiometer schemes that
will attempt to correct the fluctuations, is the subject of
a companion paper (Lay 1997). It will also be instructive
to study a much larger sample of data to look for cases
where the model is inadequate, and to investigate diurnal
variations.

5. Summary

The Kolmogorov model for turbulence in the atmosphere
is used to predict the power spectrum of phase fluctua-
tions measured by a radio interferometer. Spectral density
plots, where the phase fluctuation power is proportional
to the area under the curve, are shown to be very use-
ful for appreciating the relevant timescales, and there are
straightforward scalings to different baseline length and
airmass. The model is extended to include the thickness
of the turbulent layer and the orientation of the baseline
with respect to the wind direction.

The data examined so far are in broad agreement with
the model. There can be significant phase variations on
timescales as long as one hour. There may also be more
than one component of turbulence contributing to the
phase fluctuations. There is no clear evidence for an outer
scale of turbulence on scales less than ∼ 10 km, in contrast
to optical observations.
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