SUPPORTING INFORMATION

An Initiation Kinetics Prediction Model Enables Rational Design of Ruthenium Olefin Metathesis Catalysts Bearing Modified Chelating Benzylidenes

Shao-Xiong Luo,[†] Keary M. Engle,[†] Xiaofei Dong,[∥] Andrew Hejl,[†] Michael K. Takase,[†] Lawrence M. Henling,[†] Peng Liu,^{*,§} K. N. Houk,^{*,∥} and Robert H. Grubbs^{*,†}

 † Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, CA 91125
 § Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
 M Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
 *pengliu@pitt.edu
 *houk@chem.ucla.edu
 *rhg@caltech.edu

Table of Contents

General Information	page	S-2
Experimental Procedures	pages	S-2 – S-18
UV/Vis Initiation Kinetics	pages	S-2 – S-4
¹ H-NMR Initiation Kinetics	page	S-5
¹ H- ¹ H EXSY NMR Experiment	page	S-6
General Three-Step S _N Ar Procedure	pages	S-7 – S-8
General Wittig Olefination Procedure	page	S-9
Styrene Chelation	page	S-10
Characterization of New Compounds	pages	S-11 – S-18
Analysis of Collective Data	page	S-19
X-ray Crystallography Methods and Results	pages	S-20 – S-58
Computational Methods and Results	pages	S-59 – S-153
3D Structures of the Optimized Geometries	pages	S-59 – S-61
Cartesian coordinates (Å), SCF energies, enthalpies at 298K, and		
Gibbs free energies at 298K for the optimized structures	pages	S-62 – S-167
Energy Scan for non-chelated form of 32	page	S-168
References	page	S-169 – S-170
NMR Spectra	pages	S-171 – S-234

GENERAL INFORMATION

All reactions were carried out in a flask open to air, in dry glassware under an argon atmosphere using standard Schlenk techniques, or in a Vacuum Atmospheres Glovebox under a nitrogen atmosphere, as specified. Unless otherwise noted, all materials were used as received from commercial sources without further purification. Catalysts 2–5, 33, 36 and 39 were donated by Materia, Inc. All other chemicals were purchased from Aldrich. All bulk solvents were purchased from VWR and used as received. In air- or moisture-sensitive reactions, anhydrous, degassed solvents were used. All other non-deuterated solvents were purified by passage through solvent purification columns. ¹H and ¹³C spectra were recorded on Varian Mercury (300 MHz and 75 MHz, respectively), Bruker Ascend 400 spectrometer (400 MHz and 101 MHz, respectively) and Varian Inova (500 MHz and 125 MHz, respectively) instruments. Solutions of catalysts for NMR analysis were prepared in a glovebox using freshly opened ampules of CD₂Cl₂ from Cambridge Isotope Laboratories. CDCl₃ was handled outside of the glovebox and used as received from Cambridge Isotope Laboratories. All NMR Spectra were internally referenced to SiMe₄, methylene chloride or chloroform signals. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and b = broad. Highresolution mass spectra (HRMS) were provided by the California Institute of Technology Mass Spectrometry Facility using a JEOL JMS-600H High Resolution Mass Spectrometer. All HRMS were ionized by EI or FAB.

EXPERIMENTAL PROCEDURES

UV/Vis Initiation Kinetics:

Septum-equipped screw-capped quartz cuvettes for UV/Vis were purchased from Starna Cells, Inc. (Item# 1-Q-10-GL14-S). All catalyst solutions were prepared and handled in a glovebox. Cuvettes were tightly sealed at removal and wrapped with additional parafilm. UV/Vis kinetics experiments were performed on an Agilent HP8452 UV/Vis spectrophotometer with temperature controller and magnetic stir plate. The solution was allowed to equilibrate to the desired temperature (10 $^{\circ}$ C) for at least 10 min prior to beginning the experiment. During the experiment, dry air was blown over the faces of the cuvette to prevent condensation.

General Procedure for UV/Vis Initiation kinetics with BVE:¹ In a glovebox, a $1 \cdot 10^{-3}$ M stock solution of the appropriate catalyst (0.01 mmol) in toluene (10.0 mL solution volume) was prepared. A 0.3 mL aliquot of the $1 \cdot 10^{-3}$ M catalyst stock solution was added to a UV/Vis cuvette, and additional toluene (2.7 mL) was added, to obtain 3.0 mL of a $1 \cdot 10^{-4}$ M solution of the catalyst in toluene. Separately, a 0.5 M stock solution of butyl vinyl ether (100.2 mg, 1.00 mmol) in toluene (2.0 mL solution volume) was prepared in a septum-topped vial; toluene was added in the glovebox, and butyl vinyl ether was added by syringe outside of the glovebox. Outside of the glovebox, the cuvette was placed in the UV/Vis spectrophotometer and allowed to equilibrate to the desired temperature (10 °C) for at least 10 min, prior to beginning the experiment. A spectrum was collected to determine λ_{max} for the catalyst. At a catalyst concentration of $1 \cdot 10^{-4}$ M, the absorbance was generally near 1.0 (\pm 0.2). An aliquot of the butyl vinyl ether stock solution (18 µL, $9 \cdot 10^{-3}$ mmol, 30 equiv, $3.0 \cdot 10^{-3}$ M in the reaction solution) was added, and data collection was initialized. Spectra were collected at regular intervals for at least three half-lives (Figure S1). The absorbance

value at λ_{max} was plotted against time, and the data were fit to a first-order exponential decay function, from which k_{obs} was determined (Figures S2 and S3). Other wavelengths ($\lambda_{max} \pm 4$ nm) gave very similar k_{obs} values. The experiments as repeated in triplicate for each catalyst. The results are summarized in Table S1.

Figure S1: Representative data for a UV/Vis initiation kinetics experiment (catalyst 21, trial 1).

Figure S2: Representative plot of absorbance ($\lambda_{max} = 376$ nm) versus time for a UV/Vis initiation kinetics experiment (catalyst **21**, trial 1).

Figure S3: Representative semi-log plot of absorbance ($\lambda_{max} = 376$ nm) versus time for a UV/Vis initiation kinetics experiment (catalyst **21**, trial 1).

					$k_{\text{init}} (10^{-4} \text{ s}^{-1})$					
Catalyst	Ar =	$R^1 =$	$R^2 =$	λ_{max}	Trial 1	Trial 2	Trial 3	Average	Std. Dev.	$k_{\rm rel}$
22	Mes	c-Butyl	Н	378	0.2865	0.2795	0.2645	2.768E-05	1.12398E-06	0.69
16	Mes	Ethyl	Н	376	0.3969	0.3772	0.4153	3.967E-05	1.90537E-06	1.0
25	Mes	c-Heptyl	Н	380	0.3906	0.4186	0.417	4.083E-05	1.57243E-06	1.0
21	Mes	Phenethyl	Н	376	0.4314	0.4489	0.4962	4.5883E-05	3.35226E-06	1.1
26	Mes	c-Octyl	Н	380	0.4599	0.4622	0.4674	4.631E-05	3.84231E-07	1.2
24	Mes	c-Hexyl	Н	380	0.4561	0.5109	0.4847	0.0000483	2.74088E-06	1.2
23	Mes	c-Pentyl	Н	380	0.5879	0.5546	0.5873	0.0000576	1.90549E-06	1.4
17	Mes	<i>n</i> -Propyl	Н	376	0.6923	0.7085	0.7129	7.0456E-05	1.08487E-06	1.8
18	Mes	t-Butyl	Н	380	1.244	1.259	1.220	0.000124	1.96723E-06	3.1
19	Mes	<i>i</i> -Butyl	Н	378	1.814	1.875	1.860	0.000184	3.17857E-06	4.6
20	Mes	Benzyl	Н	370	5.429	4.939	4.849	0.000507	3.12143E-05	13
28	Mes	CH ₂ -1-Ada	Н	374	5.29	5.61	5.604	0.000550	1.83045E-05	14
27	Mes	CHCy ₂	Н	376	137.4	133.5	136.9	0.0136	0.000212211	340
33	Dipp	<i>i</i> -Propyl	Н	374	0.03695	-	-	0.03695	-	0.092
34	Dipp	1-Ada	Н	378	0.09822	-	-	0.09822	-	0.25
35	Dipp	2-Ada	Н	378	2.860	2.944	2.926	2.910E-04	4.423E-06	7.3
36	o-Tol	<i>i</i> -Propyl	Н	374	0.2288	0.2152	0.1684	2.041E-05	3.168E-06	0.51
37	o-Tol	1-Ada	Н	378	2.541	2.300	2.589	2.477E-04	1.549E-05	6.2
38	o-Tol	2-Ada	Н	376	71.26	75.07	80.17	7.550E-03	4.471E-04	190

Table S1: Summary of UV/Vis initiation kinetics data.

NMR Initiation Kinetics:^{1c, 2}

An NMR tube with a screwcap septum top was charged with catalyst **32** solution in toluene- d_8 (5 mM). The sample was equilibrated at 70 °C in the NMR probe before butyl vinyl ether (30 equiv) was added via syringe. Reactions were monitored by measuring the decay of the benzylidene peak by ¹H NMR as a function of time using an array. Interchange rate k_I is approximated by $k_{obs}/[BVE]$.³

Figure S4: Initiation kinetics of catalyst 32 approximately over the course of two half-lives of the initiation reaction

¹H–¹H EXSY NMR Study:⁴

Solution of catalyst **32** in toluene- d_8 (5 mM) was equilibrated at 70 °C in the NMR probe before being subjected to ¹H–¹H NOESY pulse sequences with different mixing time (20 and 500 ms, respectively). The volume of the diagonal and cross-peaks were derived from the spectra. The rate exchange matrix was calculated with EXSYCalc and the methoxy exchange rate was determined.

Figure S5: ¹H–¹H EXSY studies for OMe exchange in **32**

General Three-Step S_NAr Procedure:

S1

Scheme S1: General depiction of three-step S_NAr route for synthesizing 2-alkoxybenzaldehydes.

Nt-Butyl-1-(2-fluorophenyl)methanimine (S1):⁵ To a 100-mL round-bottom flask equipped with a Teflon-coated magnetic stir bar were added *tert*-butylamine (1.04 mL, 10.0 mmol), 2-fluorobenzaldehyde (1.05 mL, 10.0 mmol), and toluene (50 mL). The flask was equipped with a Dean–Stark apparatus wrapped in aluminum foil and a

reflux condenser. The reaction was allowed to stir at vigorous reflux (140–150 °C) for 8 h. During the course of the reaction, water accumulated at the bottom of the Dean–Stark apparatus. The reaction was allowed to cool to room temperature. A small aliquot was taken, concentrated *in vacuo*, and analyzed by ¹H NMR to monitor reaction progress. (2-Fluorobenzaldehyde has a characteristic ¹H NMR peak at 10.35 ppm (s) in CDCl₃, and the product (S1) has a ¹H NMR peak at 8.57 ppm (s); comparison of these two peaks provides a convenient means of monitoring reaction progress.) In cases where the reaction had not proceeded to >95% conversion, an additional portion of *tert*-butylamine commensurate with the amount of starting material remaining was added, and the reaction was heated for an additional 2–4 h. Upon completion, the reaction mixture was allowed to cool to room temperature, and the solvent was removed *in vacuo*. The crude imine product (S1) was obtained as a yellow oil and was used in the subsequent step without further purification. ¹H NMR (300 MHz, CDCl₃) δ 8.57 (s, 1H), 8.00 (td, J_1 = 7.7 Hz, J_2 = 1.8 Hz, 1H), 7.41–7.31 (m, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.10–7.02 (m, 1H), 1.30 (s, 9H).

General S_NAr procedure:^{5a, 6} To a 100-mL Schlenk flask equipped with a Teflon-coated magnetic stir bar under Ar, were added dry NaH (252 mg, 10.5 mmol), DMSO (20 mL), and the appropriate alcohol (10.0 mmol). Upon addition of the alcohol, vigorous bubbling was observed.

The solution was allowed to stir at room temperature, at which point it was a white suspension. A solution of crude *N-tert*-butyl-1-(2-fluorophenyl)methanimine (**S1**) (assumed to be 10.0 mmol) in DMSO (10 mL) was added. The reaction mixture was heated to 100 °C for 1 h, during which time it changed color from yellow to red to brown. After 1 h, a small aliquot of the reaction mixture was removed with a syringe and quenched with H₂O. The resulting mixture was extracted with Et₂O, and the organic phase was concentrated *in vacuo* and examined by ¹H NMR spectroscopy to monitor reaction progress. In instances where the reaction had not proceeded to completion (*i.e.*, >95% conversion) an additional portion of NaH and alcohol commensurate with the amount of starting material remaining was added, and the reaction mixture was heated at 100 °C for an additional 1 h. Upon completion of the reaction, the flask was allowed to cool to room temperature. The reaction mixture was carefully poured into a separatory funnel containing 100 mL of H₂O to quench residual NaH and sodium alkoxide salts. The mixture was extracted with Et₂O (3 × 100 mL). The organic layers were combined and concentrated *in vacuo*. The crude product was obtained as a pink oil or off-white solid and was used in the next step without further purification.

General acidic hydrolysis procedure:^{5a, 6} To a 500-mL round-bottom flask equipped with a Teflon-coated magnetic stir bar, were added crude S_NAr product (assumed to be 10.0 mmol). A 50:15:1 H₂O:THF:HOAc solution was added, and the reaction was stirred at room temperature overnight (approximately 12 h). THF was removed *in vacuo*, and the resulting aqueous solution was extracted with Et₂O (3 × 50 mL). The combined organic layers were washed with brine (100 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by silica gel column chromatography using a gradient solvent system (100:1 hexane:Et₂O \rightarrow 40:1 hexane:Et₂O) as the eluent, gave the pure product as white or off-white solid. The final yield was calculated for the combined three steps.

General Wittig Olefination Procedure:

Scheme S2: General depiction of Wittig olefination reaction.

General Wittig olefination procedure:^{5a, 7} To a flame-dried 100-mL Schlenk flask equipped with a magnetic stir bar under Ar, were added methyltriphenylphosphonium bromide (1.34 g, 3.75 mmol) and anhydrous THF (20 mL). LiHMDS solution (1.0 M in THF) (3.75 mL, 3.75 mmol) was added at 0 °C. The resulting yellow solution was allowed to warm to room temperature are stir until it became homogeneous (approximately 1 h). The solution was cooled to -78 °C in a dry ice/acetone bath, and the appropriate 2-alkoxybenzaldehyde was added (3.0 mmol). The solution was allowed to warm to room temperature are stir overnight (approximately 12 h). Et₂O (30 mL) was added, and the resulting heterogeneous solution was cooled to -20 °C for 30 min. The solution was filtered through a pad of Celite to remove the triphenylphosphine oxide precipitate, and the Celite was washed twice with Et₂O that had been cooled to 0 °C. The filtrate was concentrated *in vacuo*, and the resulting yellow oil was purified by silica gel column chromatography using a gradient solvent system (100:1 hexane:Et₂O \rightarrow 40:1 hexane:Et₂O) as the eluent. The pure product was thus obtained as a white solid or colorless oil. To prevent polymerization during prolonged storage, all styrenes were kept under an Ar atmosphere at -20 °C.

Scheme S3: General depiction of styrene chelation reaction using CuCl procedure.

General chelation procedure with CuCl (Method A):⁸ To a flame-dried 20-mL Schlenk flask equipped with a magnetic stir bar under Ar, were added Grubbs 2^{nd} generation catalyst (2) (170 mg, 0.2 mmol), CuCl (19.8 mg, 0.2 mmol), the appropriate styrene (0.2 mmol) and DCM (5 mL). The reaction was stirred at 40 °C for 1 h, during which time a color change from maroon to brown or green was observed. The reaction vessel was allowed to cool to room temperature, and the volatiles were removed *in vacuo* to give a green or brown residue. The crude product was dissolved in a minimal amount of 1:1 hexane:DCM, at which point a white precipitate, CuCl•PCy₃, was observed. The suspension was filtered through a pad of cotton in a glass pipette to remove CuCl•PCy₃, and the solution was loaded directly onto a silica gel column. The column was performed first using 4:1 hexane:Et₂O as the eluent to remove organic byproducts. Next, DCM was used as the eluent, at which point the product eluted rapidly. The fractions containing the product were combined, concentrated *in vacuo*, and dried under high vacuum to give the analytically pure product as a green microcrystalline solid.

Scheme S4: General depiction of styrene chelation reaction using Amberlyst-15 procedure.

General chelation procedure with Amberlyst 15 resin (Methods B and C):⁹ To a flame-dried 20-mL Schlenk flask equipped with a magnetic stir bar under Ar, were added Grubbs catalyst (2, 3, or 4) (170 mg, 0.2 mmol) or Umicore M31 (39) (149 mg, 0.2 mmol), dry Amberlyst-15 hydrogen form (dry, acidic) (4.7 mmol H^+/g) (170 mg, 0.8 mmol H^+), the appropriate styrene (0.2 or 0.4 mmol), and DCM (5 mL). The reaction was stirred at 40 °C for 1 h, during which time a color change from maroon to brown or green was observed. The reaction vessel was allowed to cool to room temperature, and the reaction mixture was filtered through a pad of cotton in a glass pipette to remove the Amberlyst-15 resin. The resulting filtrate was concentrated *in vacuo* to give a brown residue. Pentane (10 mL) was added, and the resulting suspension was sonicated for 1 min, during which time the pentane phase became dark brown, and a green precipitate was observed. The suspension was filtered through a fritted Buchner filter funnel. The green precipitate was washed sequentially with methanol (2 × 5 mL) and pentane (2 × 5 mL) and then dried under high vacuum to give the analytically pure product as a green solid.

Characterization of New Compounds

Known 2-alkoxybenzaldehydes **S2–S16**, **S18–S20** were prepared according to previously reported procedures.^{5a, 10} Analytical data were in agreement with previously reported data.^{5a, 10-11}

2-(2,2,2-trifluoroethoxy)benzaldehyde (S17): To a flame-dried 250 mL Schlenk flask equipped with a magnetic stir bar under Ar, were added salicylaldehyde (10 mmol), Cs_2CO_3 (45 mmol) and dry DMF (40 mL). Reaction mixture was cooled in ice bath and 2,2,2-trifluoroethyl trifluoromethanesulfonate (12 mmol) was added slowly. The reaction mixture and the warm to reach term for the reaction mixture and the slowly.

stir for 3 hours. The reaction mixture was allowed to warm to room temperature and stir for 3 hours. The reaction mixture was quenched with water and extracted three times with ethyl ether. The ethereal solution was washed with brine and dried over Na₂SO₄ before being concentrated *in vacuo*. The crude product was purified by column chromatography with 4:1 pentane:Et₂O as the eluent to yield a white solid (98% yield). ¹H NMR (500 MHz, CDCl₃) δ 10.49 (d, J = 0.8 Hz, 1H), 7.89 (dd, J = 7.7, 1.8 Hz, 1H), 7.59 (ddd, J = 8.4, 7.4, 1.8 Hz, 1H), 7.19–7.07 (m, 1H), 6.96 (d, J = 8.4 Hz, 1H), 4.49 (q, J = 7.9 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 188.96, 159.47, 136.03, 128.96, 125.69, 123.16 (q, $J_{CF} = 278.0$ Hz), 122.92, 112.92, 66.31 (q, $J_{CF} = 36.2$ Hz); HRMS (EI+) *m/z* Calcd for C₉H₇F₃O₂ [M]⁺204.0398, found 204.0372.

Known styrenes **S25**, **S32**, **S35**, and **S37–S39** were prepared according to previously reported procedures.^{1a, 7} Analytical data were in agreement with previously reported data.^{1a, 12}

1-ethoxy-2-vinylbenzene (S21): The title compound was prepared on a 3.0-mmol scale from commercially available 2-ethoxybenzaldehyde (S2) according to the general Wittig procedure and was obtained as a colorless oil (430 mg, 97% yield). **S21 H NMR** (500 MHz, CDCl₃) δ 7.48 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.7$ Hz, 1H), 7.22 (ddd, $J_1 = 8.0$ Hz, $J_2 = 7.3$ Hz, $J_3 = 1.7$ Hz, 1H), 7.08 (dd, $J_1 = 17.8$ Hz, $J_2 = 11.2$ Hz, 1H), 6.97–6.89 (m, 1H), 6.86 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.1$ Hz, 1H), 5.76 (dd, $J_1 = 17.8$ Hz, $J_2 = 1.6$ Hz, 1H), 5.26 (dd, $J_1 = 11.2$ Hz, $J_2 = 1.6$ Hz, 1H), 4.06 (q, J = 7.0 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.31, 131.96, 128.91, 126.91, 126.66, 120.63, 114.36, 112.09, 63.99, 15.04; HRMS (FAB+) m/z Calcd for C₁₀H₁₃O [M+H]⁺ 149.0966, found 149.0986.

1-*n***-propoxy-2-vinylbenzene (S22):** The title compound was prepared on a 3.0mmol scale from commercially available 2-*n*-propoxybenzaldehyde (S3) according to the general Wittig procedure and was obtained as a colorless oil (372 mg, 76% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.48 (dd, J_1 = 7.6 Hz, J_2 = 1.7 Hz, 1H), 7.21 (ddd, J_1 = 8.1 Hz, J_2 = 7.3 Hz, J_3 = 1.7 Hz, 1H), 7.08 (dd, J_1 = 17.8 Hz,

*J*₂ = 11.2 Hz, 1H), 6.94–6.89 (m, 1H), 6.86 (dd, *J*_{*I*} = 8.2 Hz, *J*₂ = 0.8 Hz, 1H), 5.76 (dd, *J*_{*I*} = 17.8 Hz, *J*₂ = 1.6 Hz, 1H), 5.25 (dd, *J*_{*I*} = 11.2 Hz, *J*₂ = 1.6 Hz, 1H), 3.95 (t, *J* = 6.4 Hz, 2H), 1.90–1.79 (m, 2H), 1.07 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.50, 132.01, 128.89, 127.05, 126.67, 120.60, 114.25, 112.16, 70.02, 22.84, 10.79; HRMS (EI+) *m/z* Calcd for C₁₁H₁₄O [M]⁺ 162.1045, found 162.1064.

1-(tert-butoxy)-2-vinylbenzene (S23): The title compound was prepared on a 2.0mmol scale from 2-(tert-butoxy)benzaldehyde (S4) according to the general Wittig procedure and was obtained as a colorless oil (322 mg, 91% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (dd, J_1 = 8.0 Hz, J_2 = 1.6 Hz, 1H), 7.17 (ddd, J_1 = 8.3 Hz, J_2 = 7.2 Hz, $J_3 = 1.8$ Hz, 1H), 7.10 (dd, $J_1 = 18.0$ Hz, $J_2 = 11.1$ Hz, 1H), 7.06–7.01 (m,

2H), 5.70 (dd, $J_1 = 17.9$ Hz, $J_2 = 1.4$ Hz, 1H), 5.22 (dd, $J_1 = 11.1$ Hz, $J_1 = 1.4$ Hz, 1H), 1.37 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 153.51, 133.01, 132.64, 128.21, 125.93, 123.45, 123.23, 113.69, 79.93, 29.27; **HRMS** (EI+) m/z Calcd for C₁₂H₁₆O [M]⁺ 176.1201, found 176.1238.

1-iso-butoxy-2-vinylbenzene (S24): The title compound was prepared on a 2.0mmol scale from commercially available 2-iso-butoxybenzaldehyde (S5) according to the general Wittig procedure and was obtained as a colorless oil (3% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.51 (dd, J = 7.6, 1.7 Hz, 1H), 7.23 (ddd, J

= 8.2, 7.4, 1.7 Hz, 1H), 7.13 (dd, J = 17.8, 11.2 Hz, 1H), 6.98–6.91 (m, 1H), 6.87 (dd, J = 8.3, 0.9Hz, 1H), 5.79 (dd, J = 17.8, 1.6 Hz, 1H), 5.28 (dd, J = 11.2, 1.6 Hz, 1H), 3.78 (d, J = 6.4 Hz, 2H), 2.16 (dh, J = 13.3, 6.7 Hz, 1H), 1.08 (d, J = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 156.59, 132.01, 128.89, 127.10, 126.64, 120.58, 114.20, 112.15, 74.94, 28.60, 19.50; HRMS (FAB+) m/z Calcd for $C_{12}H_{17}O[M+H]^+$ 177.1279, found 177.1285.

1-phenethoxy-2-vinylbenzene (S26): The title compound was prepared on a 2.0mmol scale from 2-phenethoxybenzaldehyde (S7) according to the general Wittig procedure and was obtained as a colorless oil (96% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.46 (ddt, J = 7.6, 1.7, 0.5 Hz, 1H), 7.33–7.26 (m, 4H), 7.24–7.20 (m, 1H), 7.18 (ddd, J = 8.2, 7.4, 1.7 Hz, 1H), 7.03 (ddt, J = 17.7, 11.1, 0.6 Hz, 1H), 6.94–6.87 (m, 1H), 6.83 (dd, J = 8.3, 1.1 Hz, 1H), 5.71 (dd, J = 17.8, 1.6 Hz, 1H), 5.23 (dd, J = 11.1, 1.6 Hz, 1H), 4.18 $(t, J = 7.0 \text{ Hz}, 2\text{H}), 3.12 (t, J = 7.0 \text{ Hz}, 2\text{H}); {}^{13}\text{C} \text{NMR} (125 \text{ MHz}, \text{CDCl}_3) \delta 156.17, 138.53, 131.95,$ 129.16, 128.90, 128.62, 127.26, 126.71, 126.62, 120.92, 114.39, 112.29, 69.34, 36.09; HRMS (FAB+) m/z Calcd for C₁₆H₁₆O $[M]^+$ 224.1201, found 224.1205.

S27

1-cyclobutoxy-2-vinylbenzene (S27): The title compound was prepared on a 3.0mmol scale from 2-cyclobutoxybenzaldehyde (S8) according to the general Wittig procedure and was obtained as a colorless oil (499 mg, 95% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 7.6 Hz, 1H), 7.20 (t, J = 7.8 Hz, 1H), 7.15–7.05 (m, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 5.81-5.77 (m, 1H), 5.30-5.27 (m, 1H), 4.68 (p, J = 7.2 Hz, 1H), 2.52–2.44 (m, 2H), 2.28–2.18 (m, 2H), 1.93–1.83 (m, 1H), 1.77– 1.64 (m. 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.93, 131.98, 128.81, 126.85, 126.68, 120.61,

114.30, 112.85, 71.89, 30.89, 13.43; **HRMS** (EI+) m/z Calcd for C₁₂H₁₄O [M]⁺ 174.1045, found 174.1052.

1-(cyclopentyloxy)-2-vinylbenzene (S28): The title compound was prepared on a 3.0-mmol scale from 2-(cyclopentyloxy)benzaldehyde (S9) according to the general Wittig procedure and was obtained as a colorless oil (500 mg, 87% yield). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.49-7.45 \text{ (m, 1H)}, 7.23-7.17 \text{ (m, 1H)}, 7.03 \text{ (ddd, } J_1 = 17.6 \text{ Hz},$ $J_2 = 11.2 \text{ Hz}, J_3 = 3.8 \text{ Hz}, 1\text{H}$, 6.93–6.85 (m, 2H), 5.78–5.71 (m, 1H), 5.26–5.20 (m, 1H), 4.83–4.78 (m, 1H), 1.93–1.87 (m, 4H), 1.87–1.78 (m, 2H), 1.68–1.59 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 155.39, 132.15, 128.73, 127.44, 126.71, 120.31, 114.06, 113.51, 79.74, 33.05, 24.18; **HRMS** (EI+) m/z Calcd for C₁₃H₁₆O [M]⁺ 188.1201, found 188.1205.

1-(cyclohexyloxy)-2-vinylbenzene (S29): The title compound was prepared on a 2.0-mmol scale from 2-(cyclohexyloxy)benzaldehyde (S10) according to the general Wittig procedure and was obtained as a colorless oil (>99% yield). ¹H **NMR** (500 MHz, CDCl₃) δ 7.49 (dd, J_1 = 7.6 Hz, J_2 = 1.7 Hz, 1H), 7.19 (ddd, J_1 = 8.2 Hz, $J_2 = 7.4$ Hz, $J_3 = 1.7$ Hz, 1H), 7.09 (dd, $J_1 = 17.8$ Hz, $J_2 = 11.2$ Hz, 1H), S29 6.93–6.88 (m, 2H), 5.74 (dd, J_1 = 17.8 Hz, J_2 = 1.6 Hz, 1H), 5.24 (dd, J_1 = 11.1 Hz, J_2 = 1.6 Hz, 1H), 4.28 (tt, $J_1 = 8.4$ Hz, $J_2 = 3.6$ Hz, 1H), 2.00–1.93 (m, 2H), 1.83–1.76 (m, 2H), 1.64–1.52 (m, 3H), 1.42–1.33 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) & 155.12, 132.08, 128.75, 128.06, 126.61, 120.68, 114.45, 114.01, 76.05, 31.95, 25.82, 23.77; **HRMS** (EI+) m/z Calcd for C₁₄H₁₈O [M]⁺ 202.1358, found 202.1383.

(2-vinylphenoxy)cycloheptane (S30): The title compound was prepared on a 2.0mmol scale from 2-(cvcloheptvloxy)benzaldehvde (S11) according to the general Wittig procedure and was obtained as a colorless oil (85% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.47 (m, 1H), 7.23–7.17 (m, 1H), 7.09 (dd, J = 17.8, 11.1Hz, 1H), 6.94–6.88 (m, 1H), 6.85 (d, J = 8.3 Hz, 1H), 5.75 (dt, J = 17.8, 1.3 Hz, 1H), 5.25 (dt, J = 11.1, 1.2 Hz, 1H), 4.46 (tt, J = 8.0, 4.2 Hz, 1H), 2.08–1.99 (m,

2H), 1.90–1.81 (m, 2H), 1.81–1.70 (m, 2H), 1.70–1.55 (m, 4H), 1.53–1.43 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 155.18, 132.15, 128.76, 127.93, 126.63, 120.47, 114.14, 113.97, 78.60, 33.91. 28.57, 23.12; **HRMS** (FAB+) m/z Calcd for C₁₅H₂₀O [M]⁺ 216.1514, found 216.1508.

(2-vinvlphenoxy)cvclooctane (S31): The title compound was prepared on a 3.0mmol scale from 2-(cyclooctyloxy)benzaldehyde (S12) according to the general Wittig procedure and was obtained as a colorless oil (646 mg, 93% yield). 7.51 $(dd, J = 7.5, 1.2 Hz, 1H), 7.25-7.19 (m, 1H), 7.10 (dd, J_1 = 17.8 Hz, J_2 = 11.2 Hz, 1H)$ 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 5.76 (ddd, $J_1 = 17.8$ Hz, J_2 = 1.4 Hz, J_3 = 0.9 Hz, 1H), 5.30–5.20 (m, 1H), 4.46 (tt, J_1 = 8.0 Hz, J_2 = 3.8 Hz,

1H), 2.01–1.88 (m, 4H), 1.87–1.78 (m, 2H), 1.73–1.65 (m, 1H), 1.65–1.51 (m, 7H); ¹³C NMR (125 MHz, CDCl₃) δ 155.11, 132.16, 128.74, 127.96, 126.67, 120.44, 114.13, 113.94, 78.55, 31.69, 27.30, 25.74, 23.19; **HRMS** (FAB+) m/z Calcd for $C_{16}H_{22}O_2$ [M]⁺ 230.1671, found 230.1671.

(3r,5r,7r)-1-((2-vinylphenoxy)methyl)adamantane (S33): The title compound was prepared on a 3.0-mmol scale from 2-(((3r,5r,7r)-adamantan-1yl)methoxy)benzaldehyde (S14) according to the general Wittig procedure and was obtained as a colorless oil (93% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.49 (dd, J = 7.6, 1.7 Hz, 1H), 7.21 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.12 (dd, J = 17.8)

11.2 Hz, 1H), 6.93–6.87 (m, 1H), 6.87–6.82 (m, 1H), 5.77 (dd, J = 17.8, 1.6 Hz, 1H), 5.27 (dd, J = 17.8, 1H), 5.27 (dd, J = 17.8, 1H), 5.27 (dd, J = 1 = 11.2, 1.5 Hz, 1H), 3.53 (s, 2H), 2.04 (s, 3H), 1.81–1.66 (m, 12H); ¹³C NMR (125 MHz, CDCL₃) δ 156.67, 131.79, 128.93, 126.91, 126.37, 120.35, 114.12, 111.92, 78.69, 39.83, 37.30, 34.12, 28.37; **HRMS** (FAB+) m/z Calcd for C₁₉H₂₄O [M]⁺ 268.1827, found 268.1833.

(1s,2s,5r)-2-methyl-2-(2-vinylphenoxy)adamantane **(S34)**: The title compound was prepared on a 3.0-mmol scale from 2-(((1S,2S,5R)-2methyladamantan-2-yl)oxy)benzaldehyde (S15) according to the general Wittig procedure and was obtained as a colorless oil (57% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.57–7.51 (m, 1H), 7.21–7.11 (m, 2H), 6.98 (d, *J* = 7.7 Hz, 2H), 5.70

(dd, J = 17.8, 1.2 Hz, 1H), 5.22 (dd, J = 11.1, 1.2 Hz, 1H), 2.46 (d, J = 11.7 Hz, 2H), 2.19 (s, 2H),1.95–1.80 (m, 6H), 1.76 (s, 2H), 1.61 (d, J = 12.2 Hz, 2H), 1.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) & 154.01, 133.02, 131.55, 128.28, 126.11, 121.81, 120.95, 113.53, 84.97, 38.60, 38.53, 35.31, 33.21, 27.63, 27.24, 22.27; **HRMS** (FAB+) m/z Calcd for C₁₉H₂₃O [(M+H)-H₂]⁺ 267.1749, found 267.1743.

S36

1-(2,2,2-trifluoroethoxy)-2-vinylbenzene (S36): The title compound was prepared on a 3.0-mmol scale from 2-(2,2,2-trifluoroethoxy)benzaldehyde (S17) according to the general Wittig procedure and was obtained as a colorless oil (98% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.55–7.48 (m, 1H), 7.28–7.19 (m, 1H), 7.03 (td, J = 11.9, 11.2, 7.0 Hz, 2H), 6.82 (d, J = 8.2 Hz, 1H), 5.78 (dt, J = 17.8, 1.2 Hz, 1.2 Hz)1H), 5.32 (dt, J = 11.2, 1.1 Hz, 1H), 4.35 (q, J = 8.1 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ

154.64, 130.88, 129.00, 127.83, 127.09, 123.51 (q, $J_{CF} = 278.0$ Hz), 122.86, 115.63, 112.97, 66.59 (q, $J_{CF} = 35.6 \text{ Hz}$); **HRMS** (EI+) m/z Calcd for C₁₀H₉F₃O [M]⁺ 202.0606, found 202.0644.

ethoxy catalyst (16): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (62 mg, 51% yield, Method A). ¹H NMR (500 MHz, CD_2Cl_2) δ 16.52 (s, 1H), 7.56 $(ddd, J_1 = 8.8 \text{ Hz}, J_2 = 7.1 \text{ Hz}, J_3 = 2.0 \text{ Hz}, 1\text{H}), 7.08 \text{ (bs, 4H)}, 7.00-6.92 \text{ (m, 2H)},$ 6.88 (d, J = 8.3 Hz, 1H), 4.17 (q, J = 6.9 Hz, 2H), 4.16 (s, 4H), 2.44 (bs, 12H), 2.42 (bs, 6H), 1.13 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD_2Cl_2) δ 294.71, 211.58, 154.32, 145.56, 139.63, 139.54, 136.70 (bs), 130.06, 129.96, 123.68, 122.31, 112.82, 67.18, 52.25, 21.45, 19.75 (bs), 13.96; **HRMS** (FAB+) m/z Calcd for $C_{30}H_{36}Cl_2N_2ORu [M]^+$ 612.1248, found 612.1256.

n-propoxy catalyst (17): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (98 mg, 78% yield, Method A). ¹H NMR (500 MHz, CD₂Cl₂) δ 16.52 (s, 1H), 7.57 (ddd, $J_1 = 8.7$ Hz, $J_2 = 7.0$ Hz, $J_3 = 2.2$ Hz, 1H), 7.09 (s, 4H), 7.00–6.92 (m, 2H), 6.90 (d, J = 8.3 Hz, 1H), 4.16 (s, 4H), 4.02 (t, J = , 2H), 2.44 (s, 12H), 2.43 (s, 6H), 1.57 (h, J = 7.6 Hz, 2H), 0.79 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 295.23, 211.53, 154.38, 145.67, 139.67, 139.50, 136.64 (bs), 130.08, 129.96, 123.74, 122.34, 113.10, 72.90, 52.20, 22.05, 21.48, 19.75 (bs),

9.97; **HRMS** (FAB+) m/z Calcd for C₃₁H₃₈Cl₂N₂ORu [M]⁺ 626.1405, found 626.1429.

tert-butoxy catalyst (18): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (117 mg, 91% yield, Method A). ¹H NMR (500 MHz, CD_2Cl_2) δ 16.50 (s, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.18–6.98 (m, 5H), 6.97–6.86 (m, 2H), 4.15 (s, 4H), 2.42 (bs, 18H), 1.52 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 298.91, 211.77, 152.20, 146.99, 139.72 (bs), 139.47, 129.92, 129.54, 123.80, 122.57, 116.89, 88.30, 52.16 (bs), 28.88, 21.44, 19.64 (bs); HRMS (FAB+) m/z Calcd for $C_{32}H_{40}Cl_2N_2ORu [M]^+ 640.1562$, found 640.1545.

iso-butoxy catalyst (19): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (80 mg, 63% yield, Method A). ¹H NMR (500 MHz, CD₂Cl₂) & 16.57 (s, 1H), 7.56 (ddd, J = 8.8, 6.0, 3.1 Hz, 1H), 7.08 (s, 4H), 6.98–6.91 (m, 3H), 4.16 (s, 4H), 3.93 (d, J = 6.3 Hz, 2H), 2.44 (d, J = 10.4 Hz, 18H), 1.83 (dh, J = 13.1, 6.5 Hz, 1H), 0.83 (d, J = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 296.13 (Ru,=CAr), 296.02 (Ru=CAr), 210.81, 154.71, 145.96, 139.52, 139.36, 136.50 (bs), 130.01, 129.83, 123.96, 122.40, 114.31, 78.60, 52.07 (bs), 28.42, 21.44, 19.84, 19.69 (bs); **HRMS** (FAB+) m/z Calcd for C₃₂H₄₀Cl₂N₂ORu [M]⁺ 640.1562, found 640.1586.

benzyloxy catalyst (20): The title compound was prepared on a 0.2 mmol scale according to the general chelation procedure and was obtained as a green microcrystalline solid (78 mg, 58% yield, Method A). ¹H NMR (500 MHz, CD₂Cl₂) δ 16.55 (d, J = 1.0 Hz, 1H), 7.43–7.38 (m, 3H), 7.30–7.24 (m, 3H), 7.10–7.04 (m, 4H), 6.97–6.90 (m, 2H), 6.74 (d, J = 8.4 Hz, 1H), 5.26 (s, 2H), 4.11 (s, 4H), 2.44 (s, 12H), 2.42 (s, 6H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 290.80, 209.83, 153.79, 144.75, 139.23, 139.00, 136.90, 135.44, 129.95, 129.88, 128.89, 128.58, 128.23,

123.89, 122.28, 114.16, 75.23, 52.38, 21.49, 19.55. Analytical data were in agreement with previously reported data.^{12a}

phenethoxy catalyst (21): The title compound was prepared on a 0.2 mmol scale according to the general chelation procedure and obtained as green microcrystalline solid (117 mg, 85% yield, Method A). ¹H NMR (400 MHz, CD_2Cl_2) δ 16.45 (s, 1H), 7.54 (ddd, J = 8.5, 7.3, 1.8 Hz, 1H), 7.35–7.28 (m, 2H), 7.27–7.22 (m, 1H), 7.18–7.11 (m, 2H), 7.03 (d, J = 8.3 Hz, 4H), 7.02–6.94 (m, 2H), 6.85 (d, J = 8.3Hz, 1H), 4.26–4.20 (m, 2H), 4.18 (s, 4H), 2.90–2.79 (m, 2H), 2.47 (s, 12H), 2.20 (s, 6H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 294.77 (bs), 211.04, 153.97, 145.46,

21 139.61, 137.04, 136.27, 130.07, 129.88, 129.82, 128.95, 127.09, 123.88, 122.37, 113.03, 71.52, 52.07 (bs), 35.10, 21.20, 19.73 (bs); **HRMS** (FAB+) m/z Calcd for $C_{36}H_{40}Cl_2N_2ORu$ [M]⁺ 688.1561, found 688.1586.

cyclobutoxy catalyst (22): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (123 mg, 96% yield, Method A). ¹H NMR (500 MHz, CD₂Cl₂) δ 16.48 (s, 1H), 7.52 (ddd, *J* = 8.3, 7.3, 1.8 Hz, 1H), 7.07 (s, 4H), 6.99–6.89 (m, 2H), 6.74 (d, *J* = 8.2 Hz, 1H), 4.76 (p, *J* = 7.4 Hz, 1H), 4.16 (s, 4H), 2.44 (s, 12H), 2.40 (s, 6H), 2.21–2.05 (m, 4H), 1.68 (qt, *J* = 9.9, 2.4 Hz, 1H), 1.55–1.50 (m, 1H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 294.60 (Ru=CAr), 294.31 (Ru=CAr), 211.55, 153.08, 145.25, 139.56, 139.43, 136.56 (bs), 129.94, 129.78, 123.50, 122.17, 113.21, 1.19, 21.37, 19.67 (bs), 13.54; HRMS (FAB+) *m/z* Calcd for C₃₂H₃₈Cl₂N₂ORu

76.34, 52.08, 31.19, 21.37, 19.67 (bs), 13.54; **HRMS** (FAB+) m/z Calcd for C₃₂H₃₈Cl₂N₂ORu [M]⁺ 638.1405, found 638.1386.

cyclopentyloxy catalyst (23): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (124 mg, 95% yield, Method A). ¹H NMR (500 MHz, CD₂Cl₂) δ 16.52 (s, 1H), 7.55 (ddd, $J_I = 8.4$ Hz, $J_2 = 7.3$ Hz, $J_3 = 1.8$ Hz, 1H), 7.08 (bs, 4H), 6.97 (dd, $J_I = 7.6$ Hz, $J_2 = 1.7$ Hz, 1H), 6.92 (td, $J_I = 7.4$ Hz, $J_2 = 0.7$ Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 4.91 (tt, $J_I = 7.4$ Hz, $J_2 = 4.8$ Hz, 1H), 4.15 (s, 4H), 2.45 (bs, 12H), 2.43 (bs, 6H), 1.96–1.87 (m, 2H), 1.79–1.70 (m, 2H), 1.69–1.60 (m, 2H), 1.41–1.33 (m, 2H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 296.27

(Ru=CAr), 296.13 (Ru=CAr), 211.73, 153.92, 145.83, 139.72 (bs), 139.50, 136.52 (bs), 130.03, 129.97, 123.08, 122.52, 113.82, 84.92, 52.19 (bs), 33.55, 24.81, 21.49, 19.82 (bs); **HRMS** (FAB+) m/z Calcd for C₃₃H₄₀Cl₂N₂ORu [M]⁺ 652.1562, found 652.1544.

cyclohexyloxy catalyst (24): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (126 mg, 94% yield, Method A). ¹H NMR (500 MHz, CD₂Cl₂) δ 16.51 (s, 1H), 7.57–7.52 (m, 1H), 7.08 (s, 4H), 6.97 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.4$ Hz, 1H), 6.90 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 8.3 Hz, 1H), 4.50 (tt, $J_1 = 10.9$ Hz, $J_2 = 3.9$ Hz, 1H), 4.16 (s, 4H), 2.44 (bs, 12H), 2.42 (bs, 6H), 2.07 (d, J = 11.0 Hz, 2H), 1.67 (d, J = 13.1 Hz, 2H), 1.57 (d, J = 12.7 Hz, 1H), 1.42–1.30 (m, 2H), 1.25–1.14 (m, 2H), 1.07–0.99 (m, 1H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 296.81 (Ru=CAr), 296.70

(Ru=CAr), 211.49, 152.43, 145.65, 139.61 (bs), 139.31, 129.85, 129.74 (bs), 122.78, 122.74, 113.28, 81.62, 51.96(bs), 31.76, 25.69, 25.38, 21.42, 19.55 (bs); **HRMS** (FAB+) m/z Calcd for $C_{34}H_{42}Cl_2N_2ORu$ [M]⁺ 666.1718, found 666.1697.

cycloheptyloxy catalyst (25): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (134 mg, 98% yield, Method A). ¹H NMR (500 MHz, CD_2Cl_2) δ 16.50 (s, 1H), 7.58–7.51 (m, 1H), 7.08 (s, 4H), 6.97 (dd, J = 7.5, 1.5 Hz, 1H), 6.94–6.88 (m, 1H), 6.76 (d, J = 8.3 Hz, 1H), 4.64 (tt, J = 8.9, 4.0 Hz, 1H), 4.15 (s, 4H), 2.45 (s, 12H), 2.42 (s, 6H), 2.09–1.99 (m, 2H), 1.67–1.56 (m, 4H), 1.56–1.45 (m, 4H), 1.30–1.24 (m, 2H); ¹³C NMR (125 MHz, CD_2Cl_2) δ 296.69 (Ru=CAr), 296.56 (Ru=CAr), 211.74, 152.72, 146.06, 139.75 (bs), 139.42, 136.71

(bs), 129.92, 129.90, 122.85, 122.78, 113.71, 84.17, 52.17 (bs), 33.67, 28.35, 23.72, 21.49, 19.84 (bs); **HRMS** (FAB+) *m/z* Calcd for C₃₅H₄₄Cl₂N₂ORu [M]⁺ 680.1875, found 680.1893.

cyclooctyloxy catalyst (26): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (107 mg, 77% yield, Method A) ¹H NMR (500 MHz, CD_2Cl_2) δ 16.51 (s, 1H), 7.58–7.53 (m, 1H), 7.09 (s, 4H), 6.97 (dd, J = 7.6, 1.6 Hz, 1H), 6.91 (t, J = 7.3 Hz, 1H), 6.77 (d, J = 8.3 Hz, 1H), 4.74 (tt, J = 9.5, 2.9 Hz, 1H), 4.14 (s, 4H), 2.43 (s, 18H), 1.95–1.89 (m, 2H), 1.71–1.62 (m, 4H), 1.59–1.51 (m, 2H), 1.49–1.43 (m, 2H), 1.43–1.31 (m, 4H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 296.44, 211.21, 152.45, 145.91, 139.52 (bs), 139.31, 129.87, 129.82, 122.77,

113.63, 84.03, 52.04 (bs), 32.89, 26.84, 26.55, 24.33, 21.45, 19.66 (bs); **HRMS** (FAB+) m/z Calcd for C₃₆H₄₆Cl₂N₂ORu [M]⁺ 694.2031, found 694.2036.

dicyclohexylmethoxy catalyst (27): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (12 mg, 8% yield, Method A; 72 mg, 47%, Method C). ¹H NMR (500 MHz, CD₂Cl₂) δ 16.72 (s, 1H), 7.46 (ddd, J = 8.9, 5.5, 3.6 Hz, 1H), 7.09 (d, J = 30.4 Hz, 4H), 6.98 (d, J = 8.6 Hz, 1H), 6.87–6.79 (m, 2H), 4.49 (t, J = 6.5 Hz, 1H), 4.08 (s, 4H), 2.70–2.28 (m, 18H), 1.86 (tdt, J = 11.0, 6.5, 3.3 Hz, 2H), 1.63 (d, J = 12.7 Hz, 2H), 1.53–1.33 (m, 8H), 1.22 (d, J = 12.2 Hz, 2H), 1.15 (ddg, J = 16.3, 7.6, 4.4, 3.9 Hz, 2H), 1.08–0.91 (m, 4H), 0.82 (qd, J = 11.8,

3.0 Hz, 2H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 296.65 (Ru=CAr), 296.55 (Ru=CAr), 208.83, 156.38, 145.87, 139.65, 139.65, 139.18, 138.50, 135.44 (bs), 130.03, 122.32, 122.26, 114.32, 93.74, 52.68 (bs), 52.04 (bs), 39.68, 29.83, 29.12, 26.92, 26.56, 26.35, 21.45, 20.64, 18.62; **HRMS** (FAB+) *m/z* Calcd for C₄₁H₅₄Cl₂N₂ORu [M]⁺ 762.2657, found 762.2658.

1-adamantanylmethoxy catalyst (28): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (79 mg, 54% yield, Method B). ¹H NMR (500 MHz, CD₂Cl₂) δ 16.59 (s, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.07 (s, 4H), 6.98 (d, *J* = 8.3 Hz, 1H), 6.91 (dt, *J* = 16.0, 7.3 Hz, 2H), 4.12 (s, 4H), 3.97 (s, 2H), 2.45 (s, 12H), 2.40 (s, 6H), 1.92 (s, 3H), 1.71–1.59 (m, 6H), 1.54 (s, 6H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 295.64 (Ru=CAr), 295.52 (Ru=CAr), 210.22, 155.90, 145.92, 139.38 40 (bc) 130.12 120.02 123.85 122.21 115.57 82.01 52.24 (bc) 30.31 37.28

(bs), 139.23, 135.49 (bs), 130.13, 129.92, 123.85, 122.21, 115.57, 82.91, 52.24 (bs), 39.31, 37.28, 34.68, 28.79, 21.40, 19.47 (bs); **HRMS** (FAB+) m/z Calcd for C₃₉H₄₈Cl₂N₂ORu [M]⁺ 732.2187, found 732.2184.

2,6-dimethoxy catalyst (32): The title compound was prepared on a 0.2 mmol scale according to the general chelation procedure and was obtained as a green microcrystalline solid (53 mg, 42%, Method A; 69 mg, 55% yield; Method B). ¹H NMR (*trans* isomer, 400 MHz, CD₂Cl₂) δ 17.25 (s, 1H), 7.56 (t, *J* = 8.3 Hz, 1H), 7.08 (s, 4H), 6.51 (d, *J* = 8.3 Hz, 1H), 6.44 (d, *J* = 8.3 Hz, 1H), 4.09 (s, 4H), 3.81 (s, 3H), 3.74 (s, 3H), 2.44 (s, 12H), 2.42 (s, 6H); ¹³C NMR (*trans* isomer, 101 MHz, CD₂Cl₂) δ 286.20 (Ru=CAr), 285.83 (Ru=CAr), 211.18, 155.06,

147.43, 138.90, 138.82, 136.89 (bs), 134.93, 131.73, 129.90, 106.70, 104.74, 59.25, 56.19, 52.35, 21.54, 19.50. Analytical data were in agreement with previously reported data.^{12b}

1-adamantyloxy/dipp catalyst (34): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (103 mg, 64% yield, Method B). ¹H NMR (500 MHz, CD₂Cl₂) δ 16.43 (s, 1H), 7.53 (t, *J* = 7.4 Hz, 2H), 7.43 (ddd, *J* = 8.8, 7.0, 2.1 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 4H), 7.26 (d, *J* = 8.4 Hz, 1H), 6.90–6.78 (m, 2H), 4.21 (s, 4H), 3.60 (s, 4H), 2.29 (s, 6H), 2.12 (s, 3H), 1.60 (s, 6H), 1.25 (d, *J* = 6.9 Hz, 24H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 294.89 (Ru=CAr), 294.77 (Ru=CAr), 214.67, 152.51, 150.16, 146.33, 137.32 (bs), 130.17, 129.21, 124.78, 123.75,

122.40, 117.67, 89.17, 55.19 (bs), 41.49, 36.53, 32.46, 29.49, 27.19, 23.58; **HRMS** (FAB+) m/z Calcd for C₄₄H₅₉Cl₂N₂ORu [M+H]⁺ 803.3049, found 803.3036.

2-adamantyloxy/dipp catalyst (35): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (67 mg, 42% yield, Method B). ¹H NMR (500 MHz, CD₂Cl₂) δ 16.62 (s, 1H), 7.60–7.46 (m, 3H), 7.39 (d, *J* = 7.7 Hz, 4H), 6.90–6.83 (m, 1H), 6.80 (dd, *J* = 7.6, 1.8 Hz, 2H), 4.64 (s, 1H), 4.18 (s, 4H), 3.59 (s, 4H), 2.50 (s, 2H), 2.32 (d, *J* = 12.7 Hz, 2H), 1.82–1.55 (m, 9H), 1.35–1.01 (m, 25H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 293.24 (Ru=CAr), 293.12 (Ru=CAr), 212.23, 154.33, 149.93, 144.36, 137.57 (bs), 130.39, 130.31, 125.07, 123.73, 122.96,

114.59, 88.55, 55.35 (bs), 38.29, 37.70, 31.67, 31.39, 29.46, 28.05, 27.55, 27.03, 23.79; **HRMS** (FAB+) m/z Calcd for C₄₄H₅₉Cl₂N₂ORu [M+H]⁺ 803.3049, found 803.3085.

1-adamantyloxy/*o*-tol catalyst (37): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (53 mg, 40% yield, Method B). ¹H NMR (500 MHz, CD_2Cl_2) δ 16.39 (s, 1H), 8.50 (s, 1H), 7.56–7.42 (m, 4H), 7.38 (s, 3H), 7.30 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 5.3 Hz, 2H), 4.45–3.99 (m, 4H), 2.52 (s, 6H), 2.41–2.13 (m, 9H), 1.63 (s, 6H); ¹³C NMR (125 MHz, CD_2Cl_2) δ 297.91, 211.54, 152.62, 145.99, 142.64, 140.83, 139.24, 138.17, 131.92, 130.70, 129.48, 128.15, 127.62, 123.53, 122.44, 117.71, 88.71, 54.79 (bs), 52.71 (bs), 41.79, 36.55, 32.45, 2MS (FAB+) m/z Calcd for CatHaeClaNaORu [M1⁺ 662 1405 found 662 1437

19.78, 18.32; **HRMS** (FAB+) m/z Calcd for C₃₄H₃₈Cl₂N₂ORu [M]⁺ 662.1405, found 662.1437.

2-adamantyloxy/*o*-tol catalyst (40): The title compound was prepared on a 0.2 mmol scale using the general chelation procedure and obtained as a green microcrystalline solid (44 mg, 33% yield, Method B). ¹H NMR (400 MHz, CD₂Cl₂) δ 16.57 (s, 1H), 8.27 (s, 1H), 7.63–7.17 (m, 8H), 6.98–6.74 (m, 3H), 4.69 (s, 1H), 4.20 (d, *J* = 143.8 Hz, 4H), 2.56 (s, 7H), 2.43–2.21 (m, 3H), 1.88–1.58 (m, 9H), 1.22–0.99 (m, 1H); ¹³C NMR (101 MHz, CD₂Cl₂) δ 296.26, 209.09, 154.52, 143.98, 142.55, 140.59, 138.81, 137.57, 131.85, 131.05, 130.62,

130.26, 129.40, 128.05, 122.86, 114.44, 88.11, 52.95 (bs), 37.98, 37.60, 37.40, 31.66, 27.88, 27.34, 19.67, 18.36; **HRMS** (FAB+) *m/z* Calcd for C₃₄H₃₈Cl₂N₂ORu [M]⁺ 662.1405, found 662.1392.

Analysis of Collective Data

A positive correlation between the initiation rates and the benzylidenes ¹H NMR peaks (Figure **S6**) and a negative correlation between NHC ¹²C NMR and the initiation rates are revealed in the data (Figure **S7**).

A weak positive correlation between the initiation rate and Ru–O bond length was found in the crystal structures (Figure **S8**). However, if the fast-initiating catalyst **27** is omitted, little or no correlation between the initiation rate and the Ru–O bond length would be obtained. As claimed in our earlier work, it seems that the Ru–O bond length would only be indicative of the fast initiation rate when it is exceptionally long, such as that of catalysts **15** (2.347 A) and **27** (2.394 A, entry 12, Table 3, main text). On the other hand, no correlation between the Ru=C bond length and the initiation rate was observed (Figure **S9**).

Figure S6: $\ln(k_{init})$ vs. Benzylidene ¹H NMR Shift

Figure S7: $\ln(k_{init})$ vs. NHC ¹³C NMR Shift

Figure S8: $ln(k_{init})$ vs. Ru–O Bond Length (X-ray)

Figure S9: $ln(k_{init})$ vs. Ru=C Bond Length (X-ray)

X-RAY CRYSTALLOGRAPHY METHODS AND RESULTS

				Exp.(X-		
catalyst	Ar =	$\mathbf{R}^1 =$	$\mathbf{R}^2 =$	Ru–O	Ru=C	CCDC
16	Mes	Et	Η	2.254(2)	1.818(3)	1825291
17	Mes	<i>n</i> -Pr	Η	2.226(1)	1.832(1)	1825292
18	Mes	<i>t</i> -Butyl	Н	2.274(1) 2.280(1)	1.828(1) 1.827(1)	1825279
19	Mes	<i>i</i> -Butyl	Н	2.2388(9)	1.832(1)	1825280
20	Mes	Bn	Н	2.2635(7)	1.831(1)	1825284
21	Mes	PhEt	Н	2.229(3)	1.828(2)	1825287
22	Mes	<i>c</i> -Butyl	Н	2.280(1) 2.244(2)	1.835(5) 1.836(2)	1825286
23	Mes	c-Pentyl	Η	2.2383(9)	1.833(1)	1825275
24	Mes	c-Hexyl	Н	2.268(2)	1.836(2)	1825289
25	Mes	c-Heptyl	Н	2.254(1)	1.830(2)	1825278
26	Mes	c-Octyl	Н	2.260(2) 2.263(2)	1.835(3) 1.848(3)	1825277
27	Mes	CHCy ₂	Н	2.394(2)	1.821(2)	1825288
28	Mes	CH ₂ -1-Ada	Н	2.265(1)	1.828(3)	1825282
32	Mes	Methyl	OMe	2.218(1)	1.839(2)	1825290
33	Dipp	<i>i</i> -Propyl	Н	2.2358(6) 2.2490(7)	1.832(1) 1.831(1)	1825276
34	Dipp	1-Ada	Н	2.2486(9)	1.828(1)	1825281
35	Dipp	2-Ada	Н	2.3233(8)	1.8294(8)	1825283
36	o-Tol	<i>i</i> -Propyl	Η	2.298(1)	1.833(1)	635259
37	o-Tol	1-Ada	Η	2.268(2)	1.827(2)	1825285
38	o-Tol	2-Ada	Н	2.338(3)	1.828(4)	1825293

Table S2: Detailed summary of relevant Ru–O and Ru=C bond lengths from X-ray structures.

X-Ray Structure Determination

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu K_{α} radiation ($\lambda = 1.54178$ Å) from an I μ S micro-source for the structure of **16**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

16 crystallizes in the monoclinic space group C2/c with one molecule in the asymmetric unit along with half a molecule of dichloromethane. The dichloromethane molecule is located near a crystallographic two-fold rotation axis. The dichloromethane did not strictly conform to the two-fold rotation. Therefore, it was disordered about the rotation axis and refined with the help of a similarity distance restraint on the carbon-chlorine distance.

Identification code	P16018	
Empirical formula	C30.50 H37 Cl3 N2 O Ru	
Formula weight	655.04	
Temperature	200(2) K	
Wavelength	$1.54178 \approx$	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	$a = 46.7355(14) \approx$	$\alpha = 90\infty$.
	$b = 8.5018(2) \approx$	$\beta = 98.7514(16)\infty$.
	$c = 15.8550(4) \approx$	$\gamma = 90\infty$.
Volume	6226.4(3) ≈ ³	
Z	8	
Density (calculated)	1.398 Mg/m ³	
Absorption coefficient	6.634 mm ⁻¹	
F(000)	2696	
Crystal size	0.150 x 0.100 x 0.050 mm	1 ³
Theta range for data collection	1.913 to 74.818∞.	
Index ranges	-58<=h<=58, -10<=k<=10), - 19<=1<=19
Reflections collected	60726	
Independent reflections	6386 [R(int) = 0.0841]	

Table S3. Crystal data and structure refinement for 16.

Completeness to theta = 67.679∞ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 100.0 % Semi-empirical from equivalents 0.7538 and 0.6293 Full-matrix least-squares on F² 6386 / 1 / 359 1.033 R1 = 0.0372, wR2 = 0.0729 R1 = 0.0513, wR2 = 0.0778 n/a 0.394 and -0.691 e. \approx -3

Figure S10: X-ray crystal structure of **16** with 50% probability ellipsoids. For clarity, hydrogen atoms and dichloromethane are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker Kappa diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of compound 17. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2013¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups). Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

17 crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit.

Table S4. Crystal data and structure refinement for 17.			
Identification code	A14109		
Empirical formula	C31 H38 Cl2 N2 O Ru		
Formula weight	626.60		
Temperature	100(2) K		
Wavelength	0.71073 ≈		
Crystal system	Monoclinic		
Space group	P 21/n		
Unit cell dimensions	$a = 12.8981(10) \approx$	$\alpha = 90 \infty$.	
	$b = 11.0700(9) \approx$	$\beta = 99.745(4)\infty$.	
	$c = 20.9391(18) \approx$	$\gamma = 90 \infty$.	
Volume	2946.6(4) ≈ ³		
Z	4		
Density (calculated)	1.412 Mg/m ³		
Absorption coefficient	0.740 mm ⁻¹		
F(000)	1296		
Crystal size	0.300 x 0.300 x 0.200 mm	l^3	
Theta range for data collection	1.974 to 30.565∞ .		
Index ranges	-18<=h<=18, -15<=k<=15	5, - 29<=1<=29	
Reflections collected	55877		
Independent reflections	9002 [R(int) = 0.0385]		
Completeness to theta = 25.242∞	99.9 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.7461 and 0.6542		
Refinement method	Full-matrix least-squares on F ²		

Data / restraints / parameters	9002 / 0 / 341
Goodness-of-fit on F ²	1.040
Final R indices [I>2sigma(I)]	R1 = 0.0246, wR2 = 0.0594
R indices (all data)	R1 = 0.0289, wR2 = 0.0617
Extinction coefficient	n/a
Largest diff. peak and hole	0.765 and -0.389 e. \approx -3

Figure S11: X-ray crystal structure of 17 with 50% probability ellipsoids. For clarity, hydrogen atoms are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS KAPPA APEX II diffractometer coupled to a APEX II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of compound **18**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups). Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

18 crystallizes in the monoclinic space group $P2_1/n$ with two molecules in the asymmetric unit along with two molecules of dichloromethane.

Table S5. Crystal data and structure refinement for 18.			
Identification code	A15026		
Empirical formula	C33 H42 Cl4 N2 O Ru		
Formula weight	725.55		
Temperature	100(2) K		
Wavelength	$0.71073 \approx$		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
Unit cell dimensions	$a = 20.3523(12) \approx$	$\alpha = 90 \infty$.	
	$b = 14.3896(9) \approx$	$\beta = 98.786(3)\infty$.	
	$c = 23.6323(15) \approx$	$\gamma = 90 \infty$.	
Volume	$6839.8(7) \approx 3$		
Z	8		
Density (calculated)	1.409 Mg/m ³		
Absorption coefficient	0.799 mm ⁻¹		
F(000)	2992		
Crystal size	0.500 x 0.400 x 0.300 mm	1 ³	
Theta range for data collection	1.740 to 36.390∞ .		
Index ranges	-33<=h<=33, -24<=k<=24	4, -39<=1<=39	
Reflections collected	204312		
Independent reflections	33268 [R(int) = 0.0519]		
Completeness to theta = 25.242∞	100.0 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.7471 and 0.6939		

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	33268 / 0 / 757
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0357, WR2 = 0.0716
R indices (all data)	R1 = 0.0587, WR2 = 0.0803
Extinction coefficient	n/a
Largest diff. peak and hole	0.964 and -0.592 e. \approx -3

Figure S12: X-ray crystal structure of **18** with 50% probability ellipsoids. Two crystallographically inequivalent molecules are present in the unit cell; for clarity, hydrogen atoms and dichloromethane are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker Kappa diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of compound **19**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2013¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups). Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

19 crystallizes in the orthorhombic space group *Pbcn* with one molecule in the asymmetric unit along with two and a half molecules of benzene. The half molecule of benzene is located about a two-fold rotation axis.

<i>Table S6.</i> Crystal da	ta and structure refinement for 1	9.
Identification code	A14175	
Empirical formula	C47 H55 Cl2 N2 O Ru	
Formula weight	835.90	
Temperature	100(2) K	
Wavelength	0.71073 ≈	
Crystal system	Orthorhombic	
Space group	P b c n	
Unit cell dimensions	$a = 14.0951(7) \approx$	$\alpha = 90\infty$.
	$b = 23.0099(13) \approx$	$\beta = 90\infty$.
	$c = 26.1818(15) \approx$	$\gamma = 90\infty$.
Volume	8491.5(8) ≈ ³	
Z	8	
Density (calculated)	1.308 Mg/m ³	
Absorption coefficient	0.532 mm ⁻¹	
F(000)	3496	
Crystal size	0.500 x 0.300 x 0.100 mm	3
Theta range for data collection	1.556 to 36.382∞ .	
Index ranges	-23<=h<=23, -32<=k<=38	3, - 35<=l<=43
Reflections collected	195657	
Independent reflections	20674 [R(int) = 0.0607]	
Completeness to theta = 25.242∞	100.0 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.7471 and 0.6541	

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	20674 / 0 / 486
Goodness-of-fit on F ²	1.067
Final R indices [I>2sigma(I)]	R1 = 0.0332, $wR2 = 0.0770$
R indices (all data)	R1 = 0.0579, wR2 = 0.0917
Extinction coefficient	n/a
Largest diff. peak and hole	0.814 and -0.719 e. \approx -3

Figure S13: X-ray crystal structure of **19** with 50% probability ellipsoids. For clarity, hydrogen atoms and benzene are omitted.

Crystals were mounted on polyimide MiTeGen loops with STP Oil Treatment and placed under a nitrogen stream. Low temperature (100K) X-ray data were obtained with a Bruker AXS KAPPA APEX II diffractometer running at 50kV and 30mA (Mo $K_{\alpha} = 0.71073$ Å; APEX II CCD detector equipped with a graphite monochromator. All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEX2 software.¹⁶ Absorption corrections were applied using SADABS.¹⁷ Space groups were determined on the basis of systematic absences and intensity statistics and the structures were solved by intrinsic phasing using XT and refined by full-matrix least squares on F^2 using XL.¹⁴ All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed at 1.2 times (1.5 times for methyl groups) the U_{eq} value of the bonded atom. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

Compound **20** crystallizes in the monoclinic space group $P2_1/c$ with one molecule and one half a molecule of benzene (on a center) in the asymmetric unit. The benzyl group is disordered over two positions with an 88:12 ratio.

5		
Identification code	a14036	
Empirical formula	C38 H41 Cl2 N2 O Ru	
Formula weight	713.70	
Temperature	100 K	
Wavelength	0.71073 ≈	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	$a = 22.2405(10) \approx$	$\alpha = 90\infty$
	$b = 11.1477(5) \approx$	$\beta = 91.974(2)\infty$
	$c = 13.6169(7) \approx$	$\gamma = 90\infty$
Volume	3374.0(3) ≈ ³	
Ζ	4	
Density (calculated)	1.405 Mg/m ³	
Absorption coefficient	0.656 mm ⁻¹	
F(000)	1476	
Crystal size	0.27 x 0.26 x 0.05 mm ³	
Theta range for data collection	1.832 to 43.981∞ .	
Index ranges	-37<=h<=43, -21<=k<=2	1, -26<=l<=26
Reflections collected	193890	
Independent reflections	26134 [R(int) = 0.0638]	

Table S7. Crystal data and structure refinement for 20.

Completeness to theta = 25.000∞ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 100.0 % Semi-empirical from equivalents 1.0000 and 0.8855 Full-matrix least-squares on F² 26134 / 15 / 432 1.006 R1 = 0.0390, wR2 = 0.0742 R1 = 0.0726, wR2 = 0.0842 n/a 1.149 and -0.966 e. \approx -3

Figure S14: X-ray crystal structure of **20** with 50% probability ellipsoids. For clarity, hydrogen atoms and benzene are omitted.

Crystals were mounted on polyimide MiTeGen loops with STP Oil Treatment and placed under a nitrogen stream. Low temperature (100K) X-ray data were obtained with a Bruker AXS KAPPA APEX II diffractometer running at 50kV and 30mA (Mo $K_{\alpha} = 0.71073$ Å; APEX II CCD detector equipped with a graphite monochromator. All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEX2 software.¹⁶ Absorption corrections were applied using SADABS.¹⁷ Space groups were determined on the basis of systematic absences and intensity statistics and the structures were solved by intrinsic phasing using XT and refined by full-matrix least squares on F^2 using XL.¹⁴ All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed at 1.2 times (1.5 times for methyl groups) the U_{eq} value of the bonded atom. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

Compound **21** crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit. The ruthenium, both chlorines, and the benzyl CH₂ carbon were disordered over two positions with a 78:22 ratio.

Identification code	a14170	
Empirical formula	C36 H40 Cl2 N2 O Ru	
Formula weight	688.67	
Temperature	100.15 K	
Wavelength	$0.71073 \approx$	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	$a = 15.3743(5) \approx$	$\alpha = 90\infty$
	$b = 13.6512(4) \approx$	$\beta = 106.7820(18)\infty$
	$c = 16.2548(5) \approx$	$\gamma = 90\infty$
Volume	$3266.22(18) \approx 3$	
Ζ	4	
Density (calculated)	1.400 Mg/m ³	
Absorption coefficient	0.674 mm ⁻¹	
F(000)	1424	
Crystal size	0.47 x 0.36 x 0.04 mm ³	
Theta range for data collection	1.606 to 37.478∞ .	
Index ranges	-26<=h<=26, -23<=k<=2	23, -27<=l<=26
Reflections collected	162917	
Independent reflections	16536 [R(int) = 0.0530]	

Table S8. Crystal data and structure refinement for 21.

Completeness to theta = 25.000∞	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.8180
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	16536 / 0 / 577
Goodness-of-fit on F ²	1.425
Final R indices [I>2sigma(I)]	R1 = 0.0322, wR2 = 0.0731
R indices (all data)	R1 = 0.0542, wR2 = 0.0799
Extinction coefficient	n/a
Largest diff. peak and hole	0.858 and -0.881 e. \approx -3

Figure S15: X-ray crystal structure of 21 with 50% probability ellipsoids. For clarity, hydrogen atoms are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker Kappa diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **22**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2013¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- and 1,3- distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

22 crystallizes in the triclinic space group P-1 with two molecules in the asymmetric unit along with 3.572 molecules of benzene and 0.428 molecules of pentane at four unique positions. The second molecule (Ru2) is partially disordered. The ellipsoids for many atoms in the second molecule were elongated and the highest residual electron density maxima were located near the Ru and Cl atoms at positions consistent with a second component. Half of the second molecule was modeled as a two-part disorder. One of the four solvent positions was modeled as a mixture of 0.572(3) molecules of benzene and 0.428(3) molecules of pentane.

5		
Identification code	A13168	
Empirical formula	C43.78 H51.30 Cl2 N2 O Ru	
Formula weight	793.53	
Temperature	100(2) K	
Wavelength	0.71073 pprox	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	$a = 13.917(2) \approx$	$\alpha = 80.167(2)\infty$.
	$b = 14.408(2) \approx$	$\beta = 73.341(2)\infty$.
	$c = 21.533(3) \approx$	$\gamma = 75.237(2)^{\infty}$.
Volume	3977.5(10) ≈ ³	
Ζ	4	
Density (calculated)	1.325 Mg/m ³	
Absorption coefficient	0.563 mm ⁻¹	
F(000)	1656	
Crystal size	0.250 x 0.250 x 0.200 mm ³	
Theta range for data collection	1.470 to 30.560∞ .	
Index ranges	-19<=h<=19, -20<=k<=20, -30<=l<=30	

Table S9. Crystal data and structure refinement for 22.

115691
24211 [R(int) = 0.0373]
100.0 %
Semi-empirical from equivalents
0.7461 and 0.7017
Full-matrix least-squares on F ²
24211 / 833 / 1085
1.018
R1 = 0.0317, $wR2 = 0.0751$
R1 = 0.0428, $wR2 = 0.0816$
n/a
1.159 and -0.429 e. \approx -3

Figure S16. X-ray crystal structure of **22** with 50% probability ellipsoids. Two crystallographically equivalent molecules are present in the unit cell; for clarity, hydrogen atoms and benzene are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS KAPPA APEX II diffractometer coupled to an APEX II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **23**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- and 1,3-distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

23 crystallizes in the monoclinic space group C2/c with one molecule in the asymmetric unit along with half a molecule of pentane. One atom in the cyclopentyl group was disordered over two positions. The pentane molecule is located near a crystallographic inversion center and disordered appropriately.

Identification code	A13195	
Empirical formula	C35.50 H46 Cl2 N2 O Ru	
Formula weight	688.71	
Temperature	100(2) K	
Wavelength	0.71073 pprox	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	$a = 29.3054(10) \approx$	$\alpha = 90 \infty$.
	$b = 15.4122(5) \approx$	$\beta = 125.1577(15)\infty$.
	$c = 17.7368(6) \approx$	$\gamma = 90\infty$.
Volume	6549.6(4) ≈ ³	
Ζ	8	
Density (calculated)	1.397 Mg/m ³	
Absorption coefficient	0.672 mm ⁻¹	
F(000)	2872	
Crystal size	0.600 x 0.400 x 0.300 mm ³	
Theta range for data collection	1.571 to 36.412∞ .	
Index ranges	-48<=h<=48, -25<=k<=25, -29<=l<=29	
Reflections collected	250815	
Independent reflections	15972 [R(int) = 0.0362]	

Table S10. Crystal data and structure refinement for 23.

Completeness to theta = 25.242∞ 100.0 %Absorption correctionSemi-emMax. and min. transmission0.7471 aRefinement methodFull-matData / restraints / parameters15972 / 9Goodness-of-fit on F²1.118Final R indices [I>2sigma(I)]R1 = 0.0R indices (all data)R1 = 0.0Extinction coefficientn/aLargest diff. peak and hole1.717 an

100.0 % Semi-empirical from equivalents 0.7471 and 0.6539 Full-matrix least-squares on F² 15972 / 9 / 413 1.118 R1 = 0.0347, wR2 = 0.0730 R1 = 0.0471, wR2 = 0.0850 n/a 1.717 and -0.735 e. \approx -3

Figure S17. X-ray crystal structure of **23** with 50% probability ellipsoids. For clarity, hydrogen atoms and pentane are omitted.
Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker three-circle diffractometer coupled to a Bruker Smart 1000 CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **24**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2013¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups). Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

24 crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit along with one molecule of dichloromethane.

Table S11. Crystal data and structure refinement for 24.		
Identification code	S13028	
Empirical formula	C35 H44 Cl4 N2 O Ru	
Formula weight	751.59	
Temperature	100(2) K	
Wavelength	0.71073 ≈	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	$a = 13.5741(7) \approx$	$\alpha = 90\infty$.
	$b = 10.3883(5) \approx$	$\beta = 91.995(3)\infty$.
	$c = 24.5146(13) \approx$	$\gamma = 90 \infty$.
Volume	3454.8(3) ≈ ³	
Z	4	
Density (calculated)	1.445 Mg/m ³	
Absorption coefficient	0.794 mm ⁻¹	
F(000)	1552	
Crystal size	0.400 x 0.300 x 0.070 mm	1 ³
Theta range for data collection	1.662 to 30.596∞ .	
Index ranges	-19<=h<=19, -14<=k<=14	4, -34<=1<=35
Reflections collected	73040	
Independent reflections	10584 [R(int) = 0.0418]	
Completeness to theta = 25.242∞	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7461 and 0.6303	

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	10584 / 0 / 394
Goodness-of-fit on F ²	1.152
Final R indices [I>2sigma(I)]	R1 = 0.0399, WR2 = 0.0909
R indices (all data)	R1 = 0.0497, WR2 = 0.0969
Extinction coefficient	n/a
Largest diff. peak and hole	1.827 and -0.803 e. \approx -3

Figure S18. X-ray crystal structure of **24** with 50% probability ellipsoids. For clarity, hydrogen atoms and dichloromethane are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS KAPPA APEX II diffractometer coupled to an APEX II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **25**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- and 1,3-distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

25 crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit along with one molecule of benzene. The N-heterocyclic carbene was modeled as a two component disorder.

		-0.
Identification code	A13157	
Empirical formula	C41 H50 Cl2 N2 O Ru	
Formula weight	758.80	
Temperature	100(2) K	
Wavelength	0.71073 ≈	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions	$a = 13.3139(5) \approx$	$\alpha = 90\infty$.
	$b = 10.3981(3) \approx$	$\beta = 91.215(2)\infty$.
	$c = 27.1206(10) \approx$	$\gamma = 90\infty$.
Volume	$3753.7(2) \approx^{3}$	
Ζ	4	
Density (calculated)	1.343 Mg/m ³	
Absorption coefficient	0.594 mm ⁻¹	
F(000)	1584	
Crystal size	0.200 x 0.180 x 0.170 mm ³	
Theta range for data collection	1.502 to 36.379∞ .	
Index ranges	-22<=h<=22, -17<=k<=1	7, - 45<=1<=45
Reflections collected	210943	
Independent reflections	18268 [R(int) = 0.0641]	
Completeness to theta = 25.242∞	100.0 %	

Table S12. Crystal data and structure refinement for 25.

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole Semi-empirical from equivalents 0.7471 and 0.6904 Full-matrix least-squares on F² 18268 / 1485 / 644 1.113 R1 = 0.0388, wR2 = 0.0779 R1 = 0.0571, wR2 = 0.0839 n/a 0.917 and -1.416 e. \approx -3

Figure S19. X-ray crystal structure of **25** with 50% probability ellipsoids. For clarity, hydrogen atoms and benzene are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker three-circle diffractometer coupled to a Bruker Smart 1000 CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **26**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- and 1,3-distances and displacement parameters as well as enhanced rigid bond restraints for anisotropic displacement parameters. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

26 crystallizes in the monoclinic space group $P2_1/c$ with two molecules in the asymmetric unit along with two molecules of benzene. The highest electron density maxima are located near the Ru atoms. A portion of the cyclooctane group is disordered over two positions in both molecules and in one molecule one of the aryl groups is disordered over two positions. Both molecules of benzene were modeled as two component disorders. In addition to the above restraints, all disordered benzene molecules were restrained to be flat.

Identification code	S13032	
Empirical formula	C42 H52 Cl2 N2 O Ru	
Formula weight	772.82	
Temperature	100(2) K	
Wavelength	0.71073 pprox	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	$a = 26.6283(11) \approx$	$\alpha = 90 \infty$.
	$b = 10.7110(5) \approx$	$\beta = 116.1997(19)\infty$.
	$c = 29.9319(13) \approx$	$\gamma = 90 \infty$.
Volume	$7660.0(6) \approx^{3}$	
Ζ	8	
Density (calculated)	1.340 Mg/m ³	
Absorption coefficient	0.583 mm ⁻¹	
F(000)	3232	
Crystal size	0.400 x 0.340 x 0.220 mm	l^3
Theta range for data collection	0.852 to 30.640° .	
Index ranges	-37<=h<=38, -15<=k<=1	5, -42<=l<=42
Reflections collected	220720	

Table S13. Crystal data and structure refinement for 26.

Independent reflections	23406 [R(int) = 0.0988]
Completeness to theta = 25.242∞	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.6750
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	23406 / 2164 / 1122
Goodness-of-fit on F ²	1.070
Final R indices [I>2sigma(I)]	R1 = 0.0694, $wR2 = 0.1719$
R indices (all data)	R1 = 0.1129, $wR2 = 0.1998$
Extinction coefficient	n/a
Largest diff. peak and hole	5.620 and -2.377 e. \approx^{-3}

Figure S20. X-ray crystal structure of **26** with 50% probability ellipsoids. Two crystallographically inequivalent molecules are present in the unit cell; for clarity, hydrogen atoms and benzene are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on Bruker Kappa diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **27**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2013¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

27 crystallizes in the orthorhombic space group *Pbca* with one molecule in the asymmetric unit along with one molecule of diethyl ether. The coordinates for the hydrogen atom bound to C31 was located in the difference Fourier synthesis and refined semi-freely with the help of a restraint on the C-H distance (0.95(4) Å).

5		
Identification code	A14206	
Empirical formula	C45 H64 Cl2 N2 O2 Ru	
Formula weight	836.95	
Temperature	100(2) K	
Wavelength	0.71073 ≈	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	$a = 13.9235(5) \approx$	$\alpha = 90\infty$.
	$b = 14.9583(6) \approx$	$\beta = 90\infty$.
	$c = 40.1267(16) \approx$	$\gamma = 90 \infty$.
Volume	8357.3(6) ≈ ³	
Z	8	
Density (calculated)	1.330 Mg/m ³	
Absorption coefficient	0.542 mm ⁻¹	
F(000)	3536	
Crystal size	0.150 x 0.100 x 0.050 mm ³	
Theta range for data collection	2.030 to 30.575∞ .	
Index ranges	-19<=h<=17, -21<=k<=21, -57<=l<=44	
Reflections collected	76875	
Independent reflections	12759 [R(int) = 0.0895]	
Completeness to theta = 25.242∞	100.0 %	
Absorption correction	Semi-empirical from equivalents	

Table S14. Crystal data and structure refinement for 27.

Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 0.7461 and 0.6447 Full-matrix least-squares on F² 12759 / 1 / 480 1.016 R1 = 0.0467, wR2 = 0.0791 R1 = 0.0860, wR2 = 0.0889 n/a 0.575 and -0.773 e. \approx -3

Figure S21. X-ray crystal structure of **27** with 50% probability ellipsoids. For clarity, hydrogen atoms and diethyl ether are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS KAPPA APEX II diffractometer coupled to a APEX II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **28**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- and 1,3-distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

28 crystallizes in the monoclinic space group $P2_1/c$ with one molecule in the asymmetric unit along with 2.5 molecules of benzene. One of the benzene molecules is located on a crystallographic inversion center. Approximately half of the ruthenium complex was disordered over two positions including the ruthenium and chloride atoms. The occupancy of the two components refine to, 0.8128(12):0.1872(12).

Identification code	A15013	
Empirical formula	C54 H63 Cl2 N2 O Ru	
Formula weight	928.03	
Temperature	100(2) K	
Wavelength	$0.71073 \approx$	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	$a = 19.4578(8) \approx$	$\alpha = 90\infty$.
	$b = 14.5971(6) \approx$	$\beta = 114.788(2)\infty$.
	$c = 18.2439(8) \approx$	$\gamma = 90\infty$.
Volume	$4704.4(4) \approx 3$	
Z	4	
Density (calculated)	1.310 Mg/m ³	
Absorption coefficient	0.487 mm ⁻¹	
F(000)	1948	
Crystal size	0.500 x 0.300 x 0.200 mm	l ³
Theta range for data collection	1.810 to 36.406∞ .	
Index ranges	-32<=h<=30, -24<=k<=24	4, - 30<=1<=30
Reflections collected	147151	
Independent reflections	22890 [R(int) = 0.0560]	

Table S15. Crystal data and structure refinement for 28.

Completeness to theta = 25.242∞ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 100.0 % Semi-empirical from equivalents 0.7471 and 0.6546 Full-matrix least-squares on F² 22890 / 814 / 746 1.080 R1 = 0.0449, wR2 = 0.0929 R1 = 0.0811, wR2 = 0.1104 n/a 1.348 and -0.884 e. \approx -3

Figure S22. X-ray crystal structure of **28** with 50% probability ellipsoids. For clarity, hydrogen atoms and benzene are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker Kappa diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **32**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2013¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

32 crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit.

Table <i>S16</i> .	Crystal data and structure re	finement for 2	32.
Identification code	A14127		
Empirical formula	C30 H36 Cl2 N	N2 O2 Ru	
Formula weight	628.58		
Temperature	100(2) K		
Wavelength	0.71073 pprox		
Crystal system	Monoclinic		
Space group	P 21/n		
Unit cell dimensions	a = 12.9199(9)	\approx	$\alpha = 90\infty$.
	b = 10.5216(8)	\approx	$\beta = 101.442(2)\infty$.
	c = 21.8706(17)	') \approx	$\gamma = 90\infty$.
Volume	$2914.0(4) \approx 3$		
Ζ	4		
Density (calculated)	1.433 Mg/m ³		
Absorption coefficient	0.751 mm ⁻¹		
F(000)	1296		
Crystal size	0.150 x 0.100 x	x 0.050 mm	1 ³
Theta range for data collection	1.698 to 30.50	1.698 to 30.505∞.	
Index ranges	-18<=h<=18, -	-18<=h<=18, -15<=k<=15, -31<=l<=31	
Reflections collected	66594	66594	
Independent reflections	8888 [R(int) =	8888 [R(int) = 0.0732]	
Completeness to theta = 25.242∞	100.0 %	100.0 %	
Absorption correction	Semi-empirica	Semi-empirical from equivalents	
Max. and min. transmission	0.7465 and 0.6	984	

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8888 / 0 / 342
Goodness-of-fit on F ²	1.003
Final R indices [I>2sigma(I)]	R1 = 0.0337, wR2 = 0.0695
R indices (all data)	R1 = 0.0564, wR2 = 0.0769
Extinction coefficient	n/a
Largest diff. peak and hole	0.786 and -0.566 e. \approx -3

Figure S23. X-ray crystal structure of 32 with 50% probability ellipsoids. For clarity, hydrogen atoms are omitted.

Crystals were mounted on polyimide MiTeGen loops with STP Oil Treatment and placed under a nitrogen stream. Low temperature (100K) X-ray data were obtained with a Bruker AXS KAPPA APEX II diffractometer running at 50kV and 30mA (Mo $K_{\alpha} = 0.71073$ Å; APEX II CCD detector equipped with a graphite monochromator. All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEX2 software.¹⁶ Absorption corrections were applied using SADABS.¹⁷ Space groups were determined on the basis of systematic absences and intensity statistics and the structures were solved by intrinsic phasing using XT and refined by full-matrix least squares on F^2 using XL.¹⁴ All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed at 1.2 times (1.5 times for methyl groups) the U_{eq} value of the bonded atom. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

Compound **33** crystallizes in the triclinic space group *P*-1 with two molecules and one half a molecule of dichloromethane (on a center) in the asymmetric unit.

Table 517. Crystar	ata ana structure refinement for	55.
Identification code	a14249	
Empirical formula	C37.25 H50.50 Cl2.50 N2 O Ru	
Formula weight	731.99	
Temperature	100 K	
Wavelength	$0.71073 \approx$	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	$a = 8.5483(5) \approx$	$\alpha = 71.003(3)\infty$
	$b = 19.8913(11) \approx$	$\beta = 83.298(3)\infty$
	$c = 22.4058(13) \approx$	$\gamma = 80.481(3)\infty$
Volume	3544.6(4) ≈ ³	
Z	4	
Density (calculated)	1.372 Mg/m ³	
Absorption coefficient	0.662 mm ⁻¹	
F(000)	1530	
Crystal size	0.48 x 0.25 x 0.10 mm ³	
Theta range for data collection	1.668 to 43.728∞ .	
Index ranges	-16<=h<=16, -38<=k<=3	8, -43<=l<=43
Reflections collected	367490	
Independent reflections	53947 [R(int) = 0.0494]	
Completeness to theta = 25.000∞	100.0 %	

Table S17. Crystal data and structure refinement for 33.

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole Semi-empirical from equivalents 1.0000 and 0.9065 Full-matrix least-squares on F² 53947 / 0 / 1201 1.256 R1 = 0.0354, wR2 = 0.0755 R1 = 0.0537, wR2 = 0.0801 n/a 2.973 and -3.316 e. \approx -3

Figure S24. X-ray crystal structure of 33 with 50% probability ellipsoids. For clarity, hydrogen atoms and dichloromethane are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS KAPPA APEX II diffractometer coupled to a APEX II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **34**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- and 1,3-distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

34 crystallizes in the monoclinic space group $P2_1/c$ with one molecule in the asymmetric unit along with two half molecules of hexane. The two half occupied molecules of pentane are located near crystallographic inversion centers and were disordered accordingly. They were refined with the help of similarity restraints on the 1,2- and 1,3-distances.

Identification code	A14410	
Empirical formula	C49 H70 Cl2 N2 O Ru	
Formula weight	875.04	
Temperature	100(2) K	
Wavelength	0.71073 pprox	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	$a = 11.5662(6) \approx$	$\alpha = 90\infty$.
	$b = 24.6231(13) \approx$	$\beta = 100.300(3)\infty$.
	$c = 16.3227(8) \approx$	$\gamma = 90\infty$.
Volume	4573.7(4) ≈ ³	
Ζ	4	
Density (calculated)	1.271 Mg/m ³	
Absorption coefficient	0.496 mm ⁻¹	
F(000)	1856	
Crystal size	0.300 x 0.250 x 0.200 mm ³	
Theta range for data collection	1.514 to 36.318∞ .	
Index ranges	-19<=h<=19, -41<=k<=41, -27<=l<=27	
Reflections collected	168417	
Independent reflections	22176 [R(int) = 0.0659]	

Table S18. Crystal data and structure refinement for 34.

Completeness to theta = 25.242∞ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 100.0 % Semi-empirical from equivalents 0.7475 and 0.6870 Full-matrix least-squares on F² 22176 / 43 / 553 1.021 R1 = 0.0348, wR2 = 0.0768 R1 = 0.0514, wR2 = 0.0838 n/a 1.012 and -0.755 e. \approx -3

Figure S25: X-ray crystal structure of 34 with 50% probability ellipsoids. For clarity, hydrogen atoms and pentane are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker Kappa diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of **35**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

35 crystallizes in the triclinic space group $P\overline{1}$ with one molecule in the asymmetric unit along with two molecules of ethyl acetate. The carbonyl group in one of the ethyl acetate molecules was disordered over two positions and refined with the help of similarity restraints on the 1,2- and 1,3- distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters.

Identification code	A14271	
Empirical formula	C52 H74 Cl2 N2 O5 Ru	
Formula weight	979.10	
Temperature	100(2) K	
Wavelength	$0.71073 \approx$	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$a = 12.2187(5) \approx$	$\alpha = 88.374(3)\infty$.
	$b = 12.4464(5) \approx$	$\beta = 80.557(2)^{\infty}$.
	$c = 17.9271(8) \approx$	$\gamma = 66.697(2)\infty$.
Volume	2467.99(18) ≈ ³	
Ζ	2	
Density (calculated)	1.318 Mg/m ³	
Absorption coefficient	0.473 mm ⁻¹	
F(000)	1036	
Crystal size	0.400 x 0.300 x 0.050 mm	l^3
Theta range for data collection	1.783 to 36.412∞ .	
Index ranges	-20<=h<=20, -20<=k<=20), - 29<=1<=29
Reflections collected	144904	
Independent reflections	24067 [R(int) = 0.0433]	
Completeness to theta = 25.242∞	100.0 %	

Table S19. Crystal data and structure refinement for 35.

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole Semi-empirical from equivalents 0.7471 and 0.6665Full-matrix least-squares on F² 24067 / 52 / 581 1.037R1 = 0.0293, wR2 = 0.0697 R1 = 0.0390, wR2 = 0.0741 n/a $0.829 \text{ and } -0.714 \text{ e.} \approx^{-3}$

Figure *S26*: X-ray crystal structure of **35** with 50% probability ellipsoids. For clarity, hydrogen atoms and ethyl acetate are omitted.

Crystals were mounted on polyimide MiTeGen loops with STP Oil Treatment and placed under a nitrogen stream. Low temperature (100K) X-ray data were obtained with a Bruker AXS KAPPA APEX II diffractometer running at 50kV and 30mA (Mo $K_{\alpha} = 0.71073$ Å; APEX II CCD detector equipped with a graphite monochromator. All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEX2 software.¹⁶ Absorption corrections were applied using SADABS.¹⁷ Space groups were determined on the basis of systematic absences and intensity statistics and the structures were solved by intrinsic phasing using XT and refined by full-matrix least squares on F^2 using XL.¹⁴ All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed at 1.2 times (1.5 times for methyl groups) the U_{eq} value of the bonded atom. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

Compound **37** crystallizes in the orthorhombic space group $P2_12_12_1$ with one molecule and two thirds of a pentane (on a 2_1) in the asymmetric unit. It is twinned by inversion with a 53:47 ratio.

Table S20. Crys	stal data and structure refinement	for 37 .
Identification code	a14250	
Empirical formula	C37.33 H46 Cl2 N2 O	Ru
Formula weight	710.71	
Temperature	100 K	
Wavelength	0.71073 pprox	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	$a = 7.5671(5) \approx$	$\alpha = 90\infty$
	$b = 15.1815(11) \approx$	$\beta = 90\infty$
	$c = 29.2865(19) \approx$	$\gamma = 90\infty$
Volume	$3364.4(4) \approx 3$	
Z	4	
Density (calculated)	1.403 Mg/m ³	
Absorption coefficient	0.657 mm ⁻¹	
F(000)	1480	
Crystal size	0.49 x 0.05 x 0.04 mm	3
Theta range for data collection	1.511 to 36.970∞ .	
Index ranges	-12<=h<=12, -25<=k<	=25, -48<=1<=49
Reflections collected	186950	
Independent reflections	16795 [R(int) = 0.0768	3]
Completeness to theta = 25.000∞	100.0 %	

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole Semi-empirical from equivalents 1.0000 and 0.9273 Full-matrix least-squares on F² 16795 / 0 / 400 1.277 R1 = 0.0398, wR2 = 0.0750 R1 = 0.0557, wR2 = 0.0783 0.47(2) n/a 0.936 and -0.848 e. \approx -3

Figure S27: X-ray crystal structure of 37 with 50% probability ellipsoids. For clarity, hydrogen atoms and pentane are omitted.

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu K_{α} radiation ($\lambda = 1.54178$ Å) from an I μ S micro-source for the structure of **38**. The structure was solved by direct methods using SHELXS¹³ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- and 1,3-distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

38 crystallizes in the orthorhombic space group *Pbca* with one molecule in the asymmetric unit. One of the aryl groups was disordered over two positions. The occupancy of the two components refined to 0.853(6):0.147(6).

5		
Identification code	P15121	
Empirical formula	C34 H38 Cl2 N2 O Ru	
Formula weight	662.63	
Temperature	100(2) K	
Wavelength	$1.54178 \approx$	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	$a = 18.6198(8) \approx$	$\alpha = 90\infty$.
	$b = 12.7525(5) \approx$	$\beta = 90\infty$.
	$c = 25.1609(10) \approx$	$\gamma = 90\infty$.
Volume	5974.4(4) ≈ ³	
Z	8	
Density (calculated)	1.473 Mg/m ³	
Absorption coefficient	6.121 mm ⁻¹	
F(000)	2736	
Crystal size	0.250 x 0.050 x 0.050 mr	n ³
Theta range for data collection	3.513 to 74.598∞ .	
Index ranges	-22<=h<=20, -13<=k<=1	5, -31<=l<=30
Reflections collected	36700	
Independent reflections	6038 [R(int) = 0.1186]	
Completeness to theta = 67.679∞	99.9 %	

 Table S21.
 Crystal data and structure refinement for 38.

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole Semi-empirical from equivalents 0.7538 and 0.6175Full-matrix least-squares on F² 6038 / 412 / 428 1.013R1 = 0.0469, wR2 = 0.0838 R1 = 0.0761, wR2 = 0.0932 n/a 0.589 and -0.806 e. \approx -3

Figure S28: X-ray crystal structure of 38 with 50% probability ellipsoids. For clarity, hydrogen atoms are omitted.

COMPUTATIONAL METHODS AND RESULTS

3D Structures of the Optimized Geometries of Catalysts 16–38:

S-59

Ar = Mes, $R^1 = c$ -Heptyl, $R^2 = H$

 $\begin{array}{c} 27 \\ \text{Ar} = \text{Mes}, \, \text{R}^1 = \text{CHCy}_2, \, \text{R}^2 = \text{H} \end{array}$

29 Ar = Mes, R^1 = 2–Me-2-Ada, R^2 = H

3.16 2.54 2.39 .11 33 Ar = DIPP, R¹ = *i*-Pr, R² = H

35Ar = DIPP, R¹ = 2-Ada, R² = H

Figure S29: Optimized geometries of catalysts 16–38. Geometries were optimized using B3LYP/LANL2DZ-6-31G(d) in gas phase. All distances are shown in Å.

The Cartesian Coordinates (Å) and M06 single point energies, enthalpies at 298K, and Gibbs free energies at 298K for the optimized structures

	$Ar \qquad A$	ArN NAr CI R^2 O^-R^1	ArN NAr Cl Ru Cl OBu	R^2 $O-R^1$	бови
Α		В	C	D	BVE
	catalyst	Ar =	$R^1 =$	$R^2 =$	
	16	Mes	Et	Н	
	17	Mes	<i>n</i> -Pr	Н	
	18	Mes	<i>t</i> -Bu	Н	
	19	Mes	<i>i</i> -Bu	Н	
	20	Mes	Bn	Н	
	21	Mes	PhEt	Н	
	22	Mes	<i>c</i> -Butyl	Н	
	23	Mes	<i>c</i> -Pentyl	Н	
	24	Mes	<i>c</i> -Hexyl	Н	
	25	Mes	<i>c</i> -Heptyl	Н	
	26	Mes	<i>c</i> -Octyl	Н	
	27	Mes	CHCy ₂	Н	
	28	Mes	CH ₂ -1-Ada	Н	
	29	Mes	2-Me-2-Ada	Н	
	30	Mes	CF ₃	Н	
	31	Mes	CH_2CF_3	Н	
	32	Mes	Me	OMe	
	33	Dipp D:	<i>i</i> -Pr	H	
	34 25	Dipp	I-Ada	H	
	35		∠-Ada ÷ Dr	H	
	30 27	0-101	<i>l</i> -M	П	
	38	0-101 0-Tol	2-Ada	н Н	
	50	0-101	2-1 Iuu	11	

A is the 16-electron ground-state chelated precatalyst,

B is the 14-electron non-chelated complex by dissociation of Ru–O bond,

C is the 14-electron Fischer carbene complex formed from the reaction of A and butyl vinyl ether,

D is the olefin product from the reaction of **A** and butyl vinyl ether.

For Cartesian coordinates listed below, the geometry optimizations were performed with B3LYP/LANL2DZ--6-31G(d). Single point energies listed below were calculated with M06/SDD--6-311+G(d,p) and the SMD solvation model in toluene.

16-A

M06 SC	CF energy: -236	4.33	400	9	a.u	•				
Enthal	py at 298K: -23	363.	69	687	'4 a	.u.				
Gibbs	free energy at	298	Κ:	-2	2363	.81	194	9	a.u.	•
Cartes	sian Coordinates	S								
Ru	0.181716	0	.63	138	300		0.0	00	196	
С	0.300006	-1.	389	975	50	0	.00	00	52	
N	-0.646776	-2.	363	387	11	-0	.00	02	64	
С	-0.087692	-3.	730	015	55	0	.00	04	03	
С	1.427155	-3.	483	176	51	-0	.00	11	71	
Ν	1.513790	-2.	013	175	54	0	.00	01	53	
Н	1.922026	-3.	890	043	37	-0	.88	90	52	
Н	1.924247	-3.	892	222	26	0	.88	46	10	
Н	-0.429419	-4.	278	889	96	-0	.88	39	86	
Н	-0.427760	-4.	27	732	22	0	.88	64	39	
С	2.808966	-1.	384	461	.2	0	.00	00	59	
С	3.461555	-1.	142	231	.1	1	.22	75	89	
С	4.716741	-0.	52	573	35	1	.19	87	21	
С	5.350243	-0.	18	650)1	0	.00	00	27	
С	4.716609	-0.	52	561	.2	-1	.19	87	36	
С	3.461466	-1.	142	208	86	-1	.22	75	73	
Н	5.215093	-0.	31	725	54	2	.14	32	36	
Н	5.214917	-0.	31	708	37	-2	.14	32	81	
С	2.901237	-1.	614	413	32	-2	.54	82	56	
Н	3.251972	-2.	634	457	7	-2	.76	22	89	
Н	1.812165	-1.	60	749)3	-2	.56	50	85	
Н	3.242551	-0.	973	304	4	-3	.36	57	70	
С	2.901497	-1.	614	462	24	2	.54	82	38	
Н	3.243554	-0.	974	417	0 '	3	.36	59	41	
Н	3.251639	-2.	63	540)7	2	.76	516	48	
Н	1.812439	-1.	60	730)7	2	.56	54	26	
С	6.683995	0.	523	325	55	-0	.00	02	20	
Н	7.278207	0.	263	174	17	-0	.88	24	86	
Н	7.270441	0.	27	690)1	0	.89	14	83	
Н	6.550350	1.	613	324	ł O	-0	.01	.03	14	
С	-2.074094	-2.	230	033	33	-0	.00	01	10	
С	-2.759227	-2.	19	632	23	1	.22	86	23	
С	-4.155744	-2.	11	528	31	1	.20	12	59	
Н	-4.695822	-2.	070	676	56	2	.14	49	78	
С	-4.155830	-2.	11	532	28	-1	.20	13	46	
С	-2.759317	-2.	19	639	96	-1	.22	87	84	
Н	-4.695969	-2.	070	684	4	-2	.14	50	30	
С	-4.872140	-2.	07	780)1	-0	.00	00	21	

С	-2.016260	-2.199513	-2.543899
Н	-2.719126	-2.169860	-3.381963
Н	-1.399544	-3.099439	-2.663150
Н	-1.346180	-1.335852	-2.628708
Н	-1.399068	-3.098853	2.663011
С	-2.016134	-2.199181	2.543722
Н	-2.718996	-2.169771	3.381797
Н	-1.346363	-1.335272	2.628517
С	-6.382822	-2.027600	0.000043
Н	-6.767414	-1.512207	0.886579
Н	-6.812077	-3.038588	0.000670
Н	-6.767518	-1.513242	-0.887046
Cl	0.583894	0.821862	2.367530
Cl	0.583817	0.822092	-2.367116
С	-1.641224	0.902545	0.000319
Н	-2.389954	0.112504	0.000521
С	-2.163768	2.249887	0.000150
С	-1.260461	3.341088	0.000060
С	-1.718640	4.657277	-0.000148
С	-3.097729	4.891991	-0.000282
С	-4.012813	3.835227	-0.000196
С	-3.544626	2.524742	0.000036
Н	-4.238907	1.688276	0.000102
Н	-5.079771	4.036667	-0.000335
Н	-3.455372	5.918113	-0.000443
Н	-1.028793	5.492519	-0.000193
0	0.049420	2.968778	0.000272
С	1.080378	3.979812	-0.000335
Н	0.945329	4.602283	0.892101
Н	0.945093	4.601417	-0.893332
С	2.438953	3.306229	-0.000123
Н	3.215728	4.080093	-0.000423
Н	2.564779	2.685707	0.891726
Н	2.564750	2.685077	-0.891539

16-B

M06 SCF energy: -2364.31128584 a.u. Enthalpy at 298K: -2363.674508 a.u. Gibbs free energy at 298K: -2363.791196 a.u. Cartesian Coordinates -0.508855 -0.345544 Ru 0.821893 -0.991575 -1.073947 С -0.083738 Ν -0.242685 -2.207717 -0.144765 С -1.045785 -3.430875 0.056650 С -2.482020 -2.908140 -0.037218 -2.294392 -1.450712 Ν 0.066496 -2.955521 -3.159893 Η -0.993975

Н	-3.124984	-3.270135	0.770099
Н	-0.821435	-3.872126	1.035896
Н	-0.807774	-4.171197	-0.712067
Cl	-0.938731	1.747743	1.808267
Cl	-0.830679	0.737068	-2.717447
С	-3.442119	-0.601175	0.259760
С	-3.823876	-0.285355	1.581556
C	-4.950445	0.516656	1.770516
C	-5 711109	0 991089	0 696283
C	-5 349678	0 595251	-0 592684
C	-4 236273	-0.218202	-0 838857
C	-3 982248	-0 721027	-2 240138
С Н	-2 920079	-0 759953	-2 485770
н	-4 407192	-1 726914	-2 370269
Н	-4 465732	-0 070228	-2 974849
н	-5 956182	0 913673	-1 437848
C	-6 891172	1 904761	0 928844
с н	-6 564940	2 948993	1 022083
н	-7 422104	1 648580	1 852471
н	-7 605642	1 858152	0 100272
н	-5 241260	0 777104	2 785778
C	-3 068951	-0.820195	2 774527
Ч	-2 067128	-0 386083	2 831952
и И	-3 596559	-0 572160	3 700465
и П	-2 965326	-1 912076	2 733466
C	1 184102	-2 357932	-0 189296
C	1 910387	-2 370246	1 015760
C	3 285094	-2 625449	0 954809
C	3 9/1602	-2 859853	-0.257071
C	3 185/6/	-2 8/2120	-1 $/33721$
C	1 907701	-2.601558	-1.433721
C	1 022024	-2.001000	-1.42/33/ 2.717607
	L.UZ3924	-2.003900	-2.717007
п	0.510590	-1.049020	-2.077091
п	1.00/319	-2.104/99	-3.300070
п	1 245206	-3.309037	-2.725295
	1.243390 0.701572	-2.002010	2.342203
п	0./91372	-1.003972	2.333740
п	0.440/5/	-2.000439	2.371137
п	1.975110	-2.131423	J. 1 001770
п	3.034220	-2.043300	1.001//9
H C	3.0/0ZZ3 E 4210E2	-3.025541	-2.386227
	5.431033 5.075155	-3.1U/23U	-U.SUIUSS
п	$\mathbf{D} \cdot \mathbf{y} / \mathbf{D} \mathbf{L} \mathbf{D} \mathbf{D}$	-2.201232	-0.000023
н	5.08/119 5.08/119	-3.888950	-1.025234
п	J. 010005	-3.413256	0.07/218
C	1.333/25	U.821153	-0.222493
Н	1.886/21	0.009065	0.244158

С	2.105002	2.008670	-0.552880
С	1.695027	2.922177	-1.548692
С	2.437070	4.061535	-1.843160
С	3.613435	4.314410	-1.137584
С	4.054818	3.436437	-0.144573
С	3.313195	2.289592	0.155268
Н	4.970903	3.656966	0.390055
Н	4.202962	5.200682	-1.357525
Н	2.105119	4.739958	-2.622999
Н	0.803307	2.692963	-2.123503
0	3.660428	1.401002	1.122326
С	4.816941	1.656598	1.921375
Н	4.717077	2.636095	2.408174
С	4.916725	0.546832	2.952927
Н	5.008670	-0.426610	2.461738
Н	4.025831	0.532103	3.588377
Н	5.795917	0.703448	3.587259
Н	5.711472	1.682536	1.283055

16-D

M06 SCF e	energy: -463.	.264771505	a.u.
Enthalpy	at 298K: -40	53.0579075	a.u.
Gibbs fre	ee energy at	298K: -46	53.1060065 a.u.
Cartesia	n Coordinates	3	
С	1.414013	-1.733390	-0.138000
Н	0.645186	-2.374027	-0.560819
С	1.074755	-0.301578	-0.085015
С	-0.277753	0.106838	-0.211938
С	-0.614442	1.465079	-0.166410
С	0.381682	2.429152	-0.000155
С	1.717777	2.049073	0.117475
С	2.048227	0.696416	0.068777
Н	3.091045	0.399021	0.131048
Н	2.496044	2.797278	0.236181
Н	0.103745	3.479299	0.032576
Н	-1.646817	1.782560	-0.253740
0	-1.185086	-0.902665	-0.381679
С	-2.577807	-0.613606	-0.513275
Н	-2.728735	0.233462	-1.194660
С	2.550913	-2.296517	0.292908
Н	3.348325	-1.729016	0.766182
Н	2.715780	-3.365263	0.192924
С	-3.258472	-0.385056	0.833258
Н	-2.856132	0.492817	1.347484
Н	-4.334992	-0.236080	0.688741
Н	-3.113929	-1.255411	1.481237

17-A

M06 SCF e	energy: -24	03.624817 a.1	J.
Enthalpy	at 298K: -24	402.957811 a	.u.
Gibbs fre	ee energy at	298K: -2403	3.076692 a.u.
Cartesia	n Coordinate:	S	
Ru	-0.143477	0.501295	0.003675
С	-0.050035	-1.503107	0.050154
Ν	0.997917	-2.365340	0.128119
С	0.587159	-3.783653	0.149305
С	-0.932962	-3.689592	0.313452
Ν	-1.188388	-2.257385	0.082994
С	-2.549776	-1.791592	0.016951
С	-3.190707	-1.752243	-1.242040
С	-4.512562	-1.304922	-1.297405
С	-5.218917	-0.930598	-0.148566
С	-4.585986	-1.071257	1.087216
С	-3.264717	-1.523638	1.201307
С	-2.705797	-1.805745	2.575690
С	-2.506704	-2.231539	-2.499533
С	-6.630597	-0.400955	-0.246373
С	2.401720	-2.083722	0.053500
С	3.027608	-2.017447	-1.205803
С	4.408369	-1.794458	-1.242455
С	4.508954	-1.718236	1.156781
С	3.130471	-1.940180	1.248372
С	5.167049	-1.647109	-0.075758
С	2.445159	-1.979595	2.593576
С	2.236366	-2.127644	-2.488041
С	6.663311	-1.444939	-0.145886
Cl	-0.653152	0.676801	-2.346702
Cl	-0.448607	0.676927	2.390296
С	1.637179	0.981231	-0.082504
С	2.015211	2.375879	-0.091769
С	1.004302	3.367301	-0.043435
С	1.323148	4.724088	-0.046728
С	2.669374	5.100449	-0.098572
С	3.688418	4.144502	-0.147526
С	3.359069	2.792552	-0.144575
0	-0.258682	2.861438	0.003114
С	-1.389965	3.754519	0.061913
С	-2.669477	2.934825	0.110114
С	-3.905980	3.839933	0.169082
Н	-1.264100	-3.974119	1.319698
Н	-1.480395	-4.300207	-0.410688

H	1.075659	-4.308927	0.975482
H	0.881399	-4.275365	-0.786089
Н	-5.006406	-1.257946	-2.265555
Н	-5.136011	-0.841841	1.997755
Н	-3.024997	-2.803637	2.910375
Н	-1.618434	-1.755373	2.605230
Н	-3.080343	-1.081648	3.304785
Н	-3.205823	-2.213262	-3.341200
Н	-2.146916	-3.262966	-2.391928
Н	-1.652369	-1.599329	-2.754863
Н	-7.184416	-0.880991	-1.060765
H	-6.633481	0.678876	-0.447085
Н	-7.185599	-0.560784	0.684062
Н	4.901457	-1.729993	-2.210206
Н	5.080643	-1.595377	2.074211
Н	3.174637	-1.859733	3.400289
Н	1.923490	-2.931118	2.757657
Н	1.696418	-1.183622	2.684718
Н	1.701467	-3.082775	-2.560465
Н	2.899989	-2.056631	-3.355073
H	1.486515	-1.331582	-2.566936
H	6.953352	-0.903499	-1.052717
Н	7.192043	-2.407557	-0.160064
H	7.033893	-0.884490	0.718924
H	2.463533	0.274644	-0.133719
Н	4.135471	2.032622	-0.181142
Н	4.727790	4.456070	-0.187421
H	2.918913	6.158081	-0.100799
Н	0.550130	5.482297	-0.010254
H	-1.365628	4.397960	-0.826532
H	-1.287566	4.380053	0.957560
Н	-2.709281	2.293094	-0.777143
Н	-2.633575	2.280749	0.988409
Н	-3.973589	4.488899	-0.712740
Н	-4.818845	3.236692	0.207066
H	-3.895500	4.481328	1.059028

17-в

M06 SCF energy: -2403.602044 a.u. Enthalpy at 298K: -2402.935304 a.u. Gibbs free energy at 298K: -2403.057426 a.u. Cartesian Coordinates -0.560261 0.668271 Ru 0.559765 С -1.133857 -1.111446 -0.066400 -0.456237 -2.284111 -0.195005 Ν -1.320014 -3.394499 -2.726457 -2.799558 С -0.645135 С -0.521515

N	-2.447147	-1.365861	-0.333947
С	-3.528213	-0.416152	-0.395803
С	-3.825374	0.179135	-1.641172
С	-4.885010	1.085272	-1.703726
С	-5.662206	1.396248	-0.582302
С	-5.390363	0.729443	0.613526
С	-4.346448	-0.197360	0.729776
С	-4.197217	-0.985844	2.009483
С	-3.054395	-0.168360	-2.891911
C	-6.766418	2.423243	-0.669332
С	0.956171	-2.531202	-0.132052
С	1.735338	-2.363051	-1.292154
C	3.094863	-2.686804	-1.226096
C	2.877428	-3.325521	1.077955
C	1.512564	-3.020658	1.064120
C	3.684206	-3.170418	-0.054049
C	0 674095	-3 197431	2 307122
C	1 146775	-1 797370	-2 564230
C	5 149161	-3 539689	-0 014411
Cl	-0 766422	1 989723	-1 418989
Cl	-1 029128	0 204868	2 860698
C	1 281446	0.544465	0 532275
C	2 120219	1 594471	1 084274
C	3 380429	1 87/388	0 172769
C	J. 1877/3	2 901816	0.970875
C	3 7668/5	3 6/7933	2 07/105
C	2 5/3581	3 386039	2.074105
C	2.343301	2 372169	2.095020
0	3 703023	1 090497	_0 599742
C	1 952093	1 370860	-0.300742
C	4.052005	2 527643	-1.394343
C	4.014270	2.527045	2.377007
	2 271060	2.209019	-3.340409
н	-3.271900	-3.193101	U.344092 1 /12612
п	-3.339477	-2.95/51/	-1.413013
п	-1.109229	-4.2/2414	-0.010770
п	-1.009191 E 100E42	1 560252	-1.070300
п	-5.109542	1.000000	-2.030110
H	-6.014030	0.920008	1.484344
H	-4./4/00/	-1.935698	1.938426
H	-3.156349	-1.204855	2.250202
H	-4.618094	-0.432143	2.853995
H	-3.531/24	0.280083	-3./68511
H H	-3.012284	-1.252/99	-3.055088
H	-2.028605	0.206945	-2.838910
H	-/.2/6292	2.383562	-1.638418
H	-6.365780	3.439167	-0.555855
H	-7.515026	2.277030	0.116340

Н	3.707667	-2.553708	-2.115213
Н	3.320375	-3.693486	2.001045
Н	1.286443	-3.572275	3.132762
Н	-0.141503	-3.915123	2.148997
Н	0.215929	-2.252510	2.618997
Н	1.893645	-1.791795	-3.363689
Н	0.798345	-0.767597	-2.421053
Н	0.287720	-2.379197	-2.918874
Н	5.711247	-3.036920	-0.808200
Н	5.290066	-4.620662	-0.147911
Н	5.603347	-3.271049	0.945606
Н	1.801461	-0.224096	-0.033496
Н	0.795896	2.130405	2.692149
Н	2.228854	3.962353	3.557524
Н	4.408987	4.440753	2.448997
Н	5.139288	3.133037	0.507133
Н	5.030623	0.447053	-1.938439
Н	5.727183	1.564101	-0.758243
Н	4.436773	3.456260	-1.821388
Н	5.548282	2.673517	-2.937939
Н	2.506224	2.149183	-2.800837
Н	3.334241	3.103538	-4.040105
Н	3.621788	1.359560	-3.930517

17-D

M06 SCF energy: -502.558441 a.u. Enthalpy at 298K: -502.321627 a.u. Gibbs free energy at 298K: -502.373458 a.u. Cartesian Coordinates

0.852508	1.999273	-0.017416
1.254148	0.583692	0.026546
0.269408	-0.431641	-0.080990
0.632496	-1.783043	-0.043608
1.973655	-2.142843	0.103293
2.956569	-1.161225	0.220147
2.588477	0.182412	0.185918
-1.019728	-0.003222	-0.229803
-2.068085	-0.964295	-0.334180
-3.388673	-0.212386	-0.452148
-3.743008	0.605846	0.793481
1.656078	3.050115	-0.230993
-0.208480	2.181591	0.128090
3.351197	0.946779	0.302713
3.999289	-1.437464	0.347109
2.241757	-3.195638	0.131955
-0.120072	-2.557735	-0.131465
-1.902504	-1.597505	-1.217559
	1.254148 0.269408 0.632496 1.973655 2.956569 2.588477 -1.019728 -2.068085 -3.388673 -3.743008 1.656078 -0.208480 3.351197 3.999289 2.241757 -0.120072 -1.902504	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

-2.070195	-1.613043	0.554541
-4.174139	-0.953337	-0.652260
-3.338949	0.440454	-1.332577
-4.695873	1.129541	0.659895
-3.836222	-0.038764	1.676341
-2.971732	1.352828	1.004318
2.721183	2.950912	-0.424432
1.261121	4.061724	-0.228537
	-2.070195 -4.174139 -3.338949 -4.695873 -3.836222 -2.971732 2.721183 1.261121	-2.070195-1.613043-4.174139-0.953337-3.3389490.440454-4.6958731.129541-3.836222-0.038764-2.9717321.3528282.7211832.9509121.2611214.061724

18-A

M06 SCF energy:	-244	12.9	9218	305	73	a.u.	•	
Enthalpy at 298	K: -24	42	.226	531	3 a	.u.		
Gibbs free ener	gy at	298	3K:	_	244	2.34	46264	a.u.
Cartesian Coord	inates	5						
Ru 0.16	2154	(0.38	385	95	(0.000	832
C 0.104	937	-1	.617	716	8	0	.0392	77
N -0.926	147	-2	.500)39	2	0	.1065	46
C -0.488	213	-3	.910	64	8	0	.1117	28
C 1.029	918	-3	.789	957	5	0	.2775	52
N 1.257	542	-2	.349	997	7	0	.0647	90
Н 1.589	028	-4	.380	061	6	-0	.4538	42
Н 1.366	201	-4	.080	018	3	1	.2803	83
н -0.772	681	-4	.397	739	2	-0	.8292	45
Н -0.966	683	-4	.454	170	4	0	.9316	08
C 2.608	998	-1	.854	176	1	0	.0164	36
C 3.307	800	-1	.585	597	7	1	.2106	94
C 4.619	719	-1	.105	528	3	1	.1148	00
C 5.261	712	-0	.937	756	4	-0	.1128	53
C 4.573	973	-1	.312	219	3	-1	.2730	27
C 3.261	048	-1	.787	709	1	-1	.2358	86
Н 5.156	156	-0	.875	512	0	2	.0332	07
Н 5.076	339	-1	.244	174	3	-2	.2356	17
C 2.599	257	-2	.266	538	6	-2	.5052	34
Н 2.266	427	-3	.308	349	4	-2	.4142	93
Н 1.729	769	-1	.654	115	7	-2	.7586	39
Н 3.303	934	-2	.218	317	7	-3	.3410	97
C 2.740	534	-1	.894	136	1	2	.5763	13
Н 3.091	314	-1	.169	942	2	3	.3162	74
Н 3.078	241	-2	.888	332	2	2	.9044	54
Н 1.652	113	-1	.868	320	1	2	.5949	82
C 6.664	211	-0	.381	L10	9	-0	.1909	80
Н 7.244	575	-0	.864	196	5	-0	.9845	26
Н 7.202	306	-0	.513	328	5	0	.7535	39
Н 6.649	859	0	.694	147	7	-0	.4118	40
C -2.335	497	-2	.244	162	8	0	.0418	79
C -3.059	822	-2	.124	120	6	1	.2421	28

С	-4.442435	-1.925247	1.160514
Н	-5.010597	-1.820032	2.082322
С	-4.354966	-1.980756	-1.239628
С	-2.970309	-2.180291	-1.213075
Н	-4.854977	-1.917783	-2.203927
С	-5.109005	-1.854991	-0.067480
С	-2.186132	-2.268410	-2.501223
Н	-2.857351	-2.206320	-3.363104
H	-1.633188	-3.212488	-2.582203
H	-1.452619	-1.457417	-2.581443
Н	-1 818816	-3 102385	2 732060
C	-2 366839	-2 163287	2 583349
с н	-3 095244	-2 073951	3 395008
н	-1 639529	-1 348503	2 681885
C	-6 608825	-1 677238	-0 127220
с ц	-6 983/07	-1 129//3	0.7/3961
и П	-7 121780	-2 6/829/	-0 1/5577
и П	-6 013150	-1 133071	_1 028100
	-0.913139	-1.133071	-1.020199
	0.440000	0.554961	2.399340
CI	1 (22205	0.339203	-2.370433
	-1.622385	0.835566	-0.070940
H	-2.438802	0.110695	-0.113/18
C	-2.023554	2.221532	-0.080914
C	-1.0405/0	3.248379	-0.0404/1
C	-1.442433	4.58/3/1	-0.04/052
C	-2.803146	4.902944	-0.093255
С	-3.782921	3.907989	-0.134339
С	-3.386594	2.576806	-0.128347
H	-4.123698	1.778415	-0.158536
H	-4.835363	4.172245	-0.170181
H	-3.093359	5.950301	-0.097239
Н	-0.723540	5.391838	-0.017233
0	0.238396	2.774048	0.000217
С	1.470985	3.605566	0.066820
С	1.594451	4.446966	-1.209702
Н	0.839156	5.230729	-1.294934
Н	2.577284	4.930919	-1.222119
Н	1.518094	3.795500	-2.085418
С	1.478822	4.411268	1.371906
Н	2.455389	4.894967	1.484719
Н	0.716674	5.192141	1.410444
Н	1.325964	3.735170	2.218495
С	2.609893	2.581330	0.102439
Н	2.532049	1.941758	0.985909
Н	2.604405	1.960702	-0.797917
Н	3.565207	3.116350	0.147085
M06 SCF e	energy: -24	42.89999205	a.u.
-----------	--------------	--------------	---------------
Enthalpy	at 298K: -2	442.205094 a	.u.
Gibbs fre	ee energy at	298K: -244	2.330948 a.u.
Cartesiar	n Coordinate	S	
Ru	-0.623802	-0.657232	0.562741
С	-1.268947	1.114553	-0.028801
Ν	-0.635681	2.313913	-0.117220
С	-1.548848	3.420173	-0.469095
С	-2.929390	2.751786	-0.431831
Ν	-2.593038	1.326685	-0.272084
Н	-3.505944	2.906690	-1.349115
Н	-3.536215	3.092038	0.414947
Н	-1.297387	3.818243	-1.459119
Н	-1.450387	4.233554	0.256054
С	-3.633371	0.336438	-0.380633
С	-4.470515	0.065389	0.719627
С	-5.475953	-0.896516	0.559505
С	-5.693856	-1.549026	-0.655170
С	-4.901475	-1.187731	-1.750399
С	-3.877845	-0.244709	-1.644011
Н	-6.113124	-1.127455	1.410547
Н	-5.085354	-1.650877	-2.717290
С	-3.089094	0.151635	-2.868922
Н	-3.031649	1.241160	-2.982811
Н	-2.068132	-0.237825	-2.820175
Н	-3.560196	-0.252597	-3.770109
С	-4.381318	0.831128	2.018477
Н	-4.787368	0.238353	2.843584
Н	-4.977008	1.753772	1.959282
Н	-3.356264	1.096279	2.279910
С	-6.757402	-2.613225	-0.789008
Н	-7.244981	-2.572648	-1.769435
Н	-7.529300	-2.509584	-0.019296
Н	-6.322802	-3.616114	-0.685009
С	0.771455	2.597106	-0.088639
С	1.366843	3.030037	1.109079
С	2.727265	3.359209	1.084717
Н	3.200648	3.686123	2.007941
С	2.856409	2.871412	-1.261877
С	1.502411	2.526206	-1.290661
Н	3.430924	2.815669	-2.184037
С	3.490120	3.280554	-0.083372
С	0.859779	2.064698	-2.578884
Н	1.591066	2.058912	-3.392271
Н	0.033585	2.718047	-2.886261

Н	0.449716	1.052481	-2.486707
Н	-0.244502	3.859585	2.301855
С	0.577116	3.136842	2.391033
Н	1.220545	3.471150	3.210429
Н	0.132237	2.176243	2.671248
С	4.965956	3.603147	-0.072474
Н	5.225950	4.266278	0.759033
Н	5.278720	4.086807	-1.004537
Н	5.565093	2.689510	0.036577
Cl	-1.153297	-0.189236	2.849515
Cl	-0.771961	-1.995859	-1.414907
С	1.213513	-0.469277	0.529481
Н	1.700846	0.256984	-0.117879
С	2.107050	-1.417720	1.180747
С	3.379920	-1.698380	0.599055
С	4.264779	-2.565059	1.247986
С	3.898753	-3.188842	2.441402
С	2.648104	-2.944169	3.012956
С	1.768262	-2.065232	2.391611
Н	0.817010	-1.829913	2.857093
Н	2.368185	-3.420022	3.948116
Н	4.600747	-3.860630	2.928719
Н	5.245956	-2.739794	0.822659
0	3.707124	-1.056933	-0.560562
С	3.988758	-1.785588	-1.811777
С	3.149283	-3.061433	-1.918333
Н	2.080841	-2.839761	-1.826336
Н	3.320162	-3.524921	-2.896470
Н	3.420377	-3.792642	-1.150543
С	3.580910	-0.782320	-2.894347
Н	3.811839	-1.178561	-3.889152
Н	2.507045	-0.582275	-2.840962
Н	4.120148	0.161388	-2.760611
С	5.492890	-2.079273	-1.904838
Н	6.071202	-1.170200	-1.708929
Н	5.805460	-2.851303	-1.195722
H	5.743631	-2.436898	-2.910162

M06 SCF energy: -541.85257294 a.u. Enthalpy at 298K: -541.5875749 a.u. Gibbs free energy at 298K: -541.6425279 a.u. Cartesian Coordinates C -1.442074 1.923281 -0.011670 H -0.452169 2.349292 -0.145985 C -1.485076 0.451916 0.013178

С	-0.287742	-0.286646	0.200948
С	-0.327928	-1.687195	0.232888
С	-1.534693	-2.364870	0.060746
С	-2.718677	-1.653763	-0.137205
С	-2.681989	-0.262772	-0.157259
Н	-3.598973	0.291930	-0.333594
Н	-3.659680	-2.177312	-0.279716
Н	-1.543205	-3.451396	0.085408
Н	0.576827	-2.253634	0.410361
0	0.841312	0.458475	0.414300
С	2.182155	0.108963	-0.044615
С	-2.482725	2.754955	0.132637
Н	-3.496561	2.408329	0.316511
Н	-2.345908	3.831159	0.081823
С	2.893602	1.469104	-0.051554
Н	3.944688	1.353380	-0.336979
Н	2.412799	2.149679	-0.761506
Н	2.850990	1.923981	0.943296
С	2.871014	-0.819083	0.969430
Н	2.463557	-1.833246	0.960885
Н	3.940782	-0.892042	0.742639
Н	2.761137	-0.413914	1.980442
С	2.164796	-0.481256	-1.459671
Н	1.663825	-1.451308	-1.503296
Н	1.653919	0.197990	-2.150379
Н	3.193504	-0.616491	-1.811430

M06 SCF e	energy: -244	42.91821782 a	a.u.
Enthalpy	at 298K: -24	442.221847 a	.u.
Gibbs fre	ee energy at	298K: -2442	2.343853 a.u.
Cartesiar	n Coordinates	3	
Ru	-0.107912	0.419337	0.051629
С	0.109468	-1.572152	-0.081302
Ν	1.209340	-2.361845	-0.199399
С	0.887608	-3.800500	-0.286655
С	-0.635578	-3.793577	-0.449243
Ν	-0.979654	-2.393179	-0.148691
Н	-1.143059	-4.472372	0.242506
Н	-0.948981	-4.047695	-1.469118
Н	1.212531	-4.314799	0.626074
Н	1.406991	-4.255898	-1.135031
С	-2.366731	-2.015538	-0.059044
С	-3.100779	-1.737206	-1.229329
С	-4.446980	-1.372290	-1.093375
С	-5.083511	-1.330816	0.147967

С	-4.351467	-1.714671	1.277454
С	-3.004613	-2.075488	1.200902
Н	-5.012998	-1.134085	-1.991596
Н	-4.844015	-1.744044	2.246967
С	-2.289045	-2.572180	2.433823
H	-1.882419	-3.580451	2.281379
н	-1 463295	-1 911860	2 710553
н	-2 981878	-2 621628	3 279400
C	-2 528184	-1 021020	-2 61/1858
U U	-2 000237	-1 23/300	-3 333003
и П	-2 728601	-2 0/3652	-2 969066
11	1 151010	1 720175	2.909000
H C	-1.404040	-1.739173	-2.654/01
	-6.526054	-0.899124	0.272080
н	-7.063124	-1.503062	1.012/86
н	-7.054549	-0.982089	-0.682688
H	-6.59811/	0.14/194	0.598162
C	2.593060	-1.995/56	-0.109909
С	3.310932	-1./55582	-1.2961//
С	4.672132	-1.450275	-1.191986
Н	5.234610	-1.252215	-2.102023
С	4.578676	-1.637329	1.201297
С	3.214655	-1.946238	1.152082
Н	5.067572	-1.585532	2.171855
С	5.325350	-1.390741	0.044006
С	2.434375	-2.164912	2.427111
Н	3.098718	-2.118930	3.295328
Н	1.938443	-3.143319	2.443206
Н	1.652860	-1.406221	2.555436
Н	2.185325	-2.765930	-2.854843
С	2.630946	-1.785217	-2.644307
Н	3.349431	-1.572110	-3.441618
Н	1.823419	-1.046071	-2.701928
С	6.805920	-1.097156	0.123664
Н	7.127236	-0.431773	-0.684863
Н	7.396689	-2.019179	0.038658
H	7.072013	-0.628415	1.076946
Cl	-0 414520	0 687334	-2 332933
Cl	-0 562902	0 424324	2 418591
C	1 635680	1 004499	0 160353
с ц	2 502816	1.004499	0.217853
П	1 020671	2 /10050	0.192606
C	1.920071	2.419000	0.102000
C	1 120201	3.303940	0.103086
	1.129201 0.450700	4./22022 E 100404	0.030240
	2.433/02	3.100404	U.1U5U63
	3.51/416	4.264/1/	0.20/466
C	3.251504	2.900797	0.244958
Н	4.061731	2.179016	0.309689

Н	4.540039	4.627231	0.250019
H	2.650447	6.234580	0.069773
H	0.327204	5.446862	-0.021030
0	-0.382243	2.793737	0.116172
С	-1.480488	3.489316	-0.532478
Н	-1.300426	3.441398	-1.610766
H	-1.481132	4.532961	-0.202193
С	-2.807388	2.838731	-0.153047
Н	-2.723038	1.766097	-0.371647
С	-3.911877	3.418449	-1.051441
H	-3.706101	3.237600	-2.112731
Н	-4.018560	4.501646	-0.904319
Н	-4.876582	2.958258	-0.811981
С	-3.130201	3.020286	1.335627
Н	-2.353697	2.578608	1.966117
Н	-4.080587	2.533291	1.582820
H	-3.226580	4.085858	1.586451

M06 SCF energy: -2442.89514184 a.u. Enthalpy at 298K: -2442.199255 a.u. Gibbs free energy at 298K: -2442.325653 a.u. Cartesian Coordinates

Ru	0.700584	0.684704	-0.589512
С	1.210290	-1.124306	0.017436
Ν	0.498550	-2.276809	0.115846
С	1.343745	-3.442046	0.447337
С	2.688333	-2.796286	0.800973
Ν	2.502112	-1.405994	0.351119
Н	3.532471	-3.257708	0.280895
Н	2.895449	-2.818153	1.877929
Н	1.413643	-4.110193	-0.419130
Н	0.906201	-4.005061	1.276917
С	3.582162	-0.464095	0.503775
С	3.771317	0.180664	1.743110
С	4.832165	1.084096	1.861726
С	5.717219	1.331747	0.809946
С	5.552700	0.607947	-0.375290
С	4.509363	-0.306127	-0.548912
Н	4.968492	1.603900	2.807624
Н	6.262093	0.747733	-1.187934
С	4.443007	-1.137827	-1.807392
Н	4.586173	-2.204142	-1.584883
Н	3.485930	-1.028576	-2.322403
Н	5.236145	-0.840917	-2.500135

С	2.931217	-0.131517	2.959331
Н	2.859494	0.741986	3.612390
Н	3.392313	-0.942993	3.541265
Н	1.913609	-0.425762	2.701924
С	6.822397	2.351924	0.948817
н	7.686669	2.095594	0.326675
н	7 161667	2 438349	1 986640
ч	6 178311	3 3/6316	0 635071
C	-0 906926	-2 /05323	-0 072823
C	1 752000	2.495525	1 050604
C	-1.7J2090 2 111272	2 670606	0 070257
	-3.111373	-2.079090	1 720754
H G	-3.7/3446	-2.609407	1.739754
C	-2.768787	-3.130/06	-1.453851
C	-1.39/284	-2.8/2982	-1.33461/
H	-3.162132	-3.413076	-2.42/829
С	-3.641343	-3.034584	-0.366986
С	-0.492000	-2.988828	-2.537546
H	-1.069443	-3.262910	-3.425500
H	0.276488	-3.759804	-2.396095
H	0.027738	-2.047370	-2.745133
H	-0.410815	-2.653683	2.746633
С	-1.216171	-1.992905	2.402265
Н	-2.009036	-2.020261	3.155664
Н	-0.807092	-0.975574	2.377491
С	-5.122274	-3.284475	-0.529803
Н	-5.679194	-2.338666	-0.543492
Н	-5.521810	-3.882653	0.297186
Н	-5.340338	-3.809558	-1.465112
Cl	0.714110	1.893178	1.475250
Cl	1.394890	0.315282	-2.847844
С	-1.135735	0.581712	-0.731500
H	-1 719794	-0 167642	-0 199484
C	-1 917063	1 632849	-1 369273
C	-3 201939	1 953562	-0 850149
C	-3 985304	2 939302	-1 447908
C	-3 51/1593	3 626778	-2 567714
C	-2 252116	3 333567	-3 091064
C	_1 163196	2 352100	-2 /00317
	-1.403100	2.332199	-2.499517
п	-0.302276	2.091009	-2.951254
H	-1.888000	3.860611	-3.968117
H	-4.1349/3	4.389276	-3.031270
H	-4.963250	3.151396	-1.025954
U	-3.690/6/	1.284/45	0.244299
C	-3.358438	1.883047	1.51/0/3
Н	-3.703230	2.928426	1.521731
Н	-2.267692	1.882892	1.644690
С	-4.044609	1.090079	2.626621

-3.707211	0.048533	2.528569
-5.572346	1.117875	2.483119
-5.881918	0.740753	1.503864
-5.954553	2.142026	2.588973
-6.050115	0.504395	3.256197
-3.592203	1.622268	3.994561
-3.894560	2.668695	4.130229
-2.503136	1.571526	4.107006
-4.044933	1.040874	4.805904
	-3.707211 -5.572346 -5.881918 -5.954553 -6.050115 -3.592203 -3.894560 -2.503136 -4.044933	-3.7072110.048533-5.5723461.117875-5.8819180.740753-5.9545532.142026-6.0501150.504395-3.5922031.622268-3.8945602.668695-2.5031361.571526-4.0449331.040874

MU6 SCF e	energy: -541	1.8520645 a.1	u.
Enthalpy	at 298K: -54	41.5857535 a	.u.
Gibbs fre	ee energy at	298K: -541	.6404235 a.u.
Cartesiar	n Coordinates	5	
С	-1.460768	1.938154	-0.314633
Н	-0.480561	2.190286	-0.710288
С	-1.709559	0.499072	-0.128407
С	-0.616566	-0.402018	-0.062371
С	-0.833815	-1.774262	0.105717
С	-2.136180	-2.267239	0.212673
С	-3.225167	-1.399711	0.144989
С	-3.002327	-0.034891	-0.030076
Н	-3.850116	0.638963	-0.114255
Н	-4.239514	-1.781805	0.214371
Н	-2.291344	-3.335091	0.341901
Н	0.002196	-2.461727	0.157832
0	0.625537	0.158482	-0.163978
С	1.776889	-0.680814	-0.134834
С	-2.312699	2.932861	-0.031927
Н	-3.292647	2.761914	0.406607
Н	-2.045170	3.967771	-0.223832
Н	1.730594	-1.403675	-0.962483
Н	1.804278	-1.246287	0.809309
С	3.020859	0.199657	-0.260701
Н	2.910454	0.777092	-1.189388
С	4.271091	-0.683651	-0.383275
Н	4.208606	-1.359618	-1.244626
Н	5.168602	-0.067608	-0.506182
Н	4.412784	-1.296716	0.516343
С	3.136523	1.182604	0.912203
Н	2.239017	1.801846	0.997948
Н	3.268157	0.644011	1.860122
Н	4.000689	1.844211	0.782294

M06 SCF ener	gy: -255	55.	965	555	58 a	a.u	•				
Enthalpy at	298K: -25	555	.27	726	555	a.	u.				
Gibbs free e	nergy at	29	8K :	:	-2	555	.3	95	938	8 a	.u.
Cartesian Co	ordinates	5									
Ru -0	.088935		0.4	114	282	2	-	0.	000	83	7
Cl 0.	098719	0	.63	329	924		2	.3	925	536	
Cl 0.	586075	0	.44	143	889		-2	.3	130)22	
0 0.	161429	2	.80)34	47		-0	.0	986	597	
N 0.	677604	-2	.43	375	88		0	.2	024	157	
N -1.	501151	-2	.29	993	339		0	.3	755	504	:
C -0.	372028	-1	.56	572	244		0	.1	548	866)
C 0.	285810	-3	.80	07	33		0	.6	039	84	:
н О.	642256	-4	.00)58	828		1	.6	211	.27	
Н О.	730459	-4	.54	111	.82		-0	.0	669	913	
C -1.	239382	-3	.74	157	12		0	.5	152	227	
н -1.	633234	-4	.28	352	290		-0	.3	554	43	5
н -1.	735303	-4	.13	377	53		1	.4	077	69)
C 2.	070626	-2	.20)74	40		-0	.0	823	37C)
C 2.	973197	-1	.91	L66	538		0	. 9	559	922	
C 4.	336334	-1	.81	L97	94		0	.6	388	846	
Н 5.	037421	-1	.59	902	268		1	.4	387	81	
C 4.	816225	-2	.02	257	27		-0	.6	524	197	
C 3.	895825	-2	.36	537	86		-1	.6	527	22	
н 4.	253369	-2	.56	507	66		-2	.6	612	226	
C 2.	530262	-2	.47	735	664		-1	.3	938	856)
C 2.	556365	-1	.74	154	29		2	.3	973	878	}
Н 1.	507898	-1	.99	918	826		2	.5	656	515	
Н 2.	679069	-0	.70)52	257		2	.7	157	737	
Н 3.	178560	-2	.37	734	94		3	.0	469	979)
C 6.	287327	-1	.89	945	521		-0	. 9	708	331	
Н б.	509850	-0	.91	L66	506		-1	.4	187	84	:
Н б.	613153	-2	.65	567	00		-1	.6	877	759)
Н б.	903314	-1	.98	399	949		-0	.0	704	155	
C 1.	589729	-2	.90	003	863		-2	.4	947	33	5
Н 1.	004420	-3	.78	356	548		-2	.2	145	590)
Н 2.	152262	-3	.15	505	554		-3	.3	994	179)
Н О.	889858	-2	.09	963	865		-2	.7	402	261	
C -2.	877740	-1	.90)73	334		0	.2	742	211	
C -3.	494155	-1	.88	303	842		-0	. 9	918	887	
C -4.	853719	-1	.55	558	815		-1	.0	573	343	5
н -5.	336265	-1	.52	206	559		-2	.0	318	884	:
C -5.	603509	-1	.27	729	96		0	.0	894	157	
C -4.	957848	-1	.31	L55	514		1	.3	298	31C)
н -5.	523020	-1	.09	908	95		2	.2	319	978	
с –3.	601393	-1	.63	364	16		1	.4	504	18 C)
с –2.	709501	-2	.12	267	87		-2	.2	593	393	5

Н	-1.967891	-1.336918	-2.431142
H	-3.378434	-2.157113	-3.124809
Н	-2.161707	-3.075957	-2.229469
С	-7.078980	-0.958778	-0.004882
Н	-7.338961	-0.540202	-0.982847
Н	-7.386529	-0.242630	0.764810
Н	-7.686028	-1.863540	0.133789
С	-2.936609	-1.656968	2.805899
Н	-2.541336	-2.651697	3.049839
Н	-3.652923	-1.387951	3.588225
Н	-2.095082	-0.956475	2.850305
С	-1.822121	0.999352	-0.228289
Н	-2.686701	0.341250	-0.268908
С	-2.118677	2.402993	-0.389911
С	-3.429482	2.865794	-0.614695
Н	-4.235624	2.137247	-0.646395
С	-3.689541	4.219991	-0.799416
Н	-4.703568	4.566049	-0.975347
С	-2.630945	5.131054	-0.762239
Н	-2.821517	6.190451	-0.911177
С	-1.316782	4.707706	-0.536273
Н	-0.518174	5.438490	-0.516778
С	-1.066189	3.348852	-0.343701
С	1.307301	3.695806	-0.102256
H	1.108763	4.486237	0.629421
H	1.373372	4.143088	-1.100055
С	2.580535	2.978939	0.247125
С	2.998879	2.898955	1.581670
H	2.359390	3.290491	2.367788
С	4.224775	2.317054	1.903400
Н	4.542843	2.265270	2.941135
С	5.043391	1.811763	0.890499
H	6.004922	1.369682	1.138492
С	4.626059	1.874406	-0.440693
Н	5.255478	1.473997	-1.230387
С	3.398598	2.453859	-0.761498
Н	3.064885	2.489733	-1.794482

M06 SCF energy: -2555.946125 a.u. Enthalpy at 298K: -2555.253664 a.u. Gibbs free energy at 298K: -2555.381817 a.u. Cartesian Coordinates Ru 1.097129 -0.914089 0.052942 C 1.416076 0.960417 0.591350 N 0.630950 1.864860 1.228530

С	1.349050	3.114753	1.550621
С	2.659245	2.963916	0.769441
N	2.628190	1.546193	0.371046
Н	3.544741	3.173436	1.376061
Н	2.693392	3.603497	-0.121328
Н	1.510928	3.183405	2.632987
Н	0.760487	3.982166	1.238588
C	3 747115	0 980734	-0 339001
C	3 841055	1 139302	-1 736199
C	J. 9/117/	0 574520	-2 391550
C	5 952127	-0 096337	-1 700893
C	5 872606	-0.153759	-0 305074
C	J.072000 1 705261	-0.133730	-0.303074
	4.793304	0.500007	0.399041 2 172110
п	5.007373	0.626714	-3.4/3119
п	0.070002	-0.020714	1 000262
	4.010224	0.395226	1.909262
н	4.89/313	1.419358	2.297931
H	3.906270	-0.051373	2.328495
H	5.669434	-0.169121	2.283656
C	2.858942	1.968027	-2.530325
H	2.727220	1.555621	-3.533923
H	3.236601	2.995075	-2.640538
H	1.8/2863	2.008604	-2.06/822
С	7.102403	-0.741495	-2.437351
H	8.024600	-0.712200	-1.846785
H	7.294380	-0.247410	-3.395669
Н	6.887312	-1.796735	-2.651566
С	-0.736017	1.743078	1.647558
С	-1.745886	2.177421	0.768250
С	-3.073755	2.098999	1.197270
H	-3.863952	2.405309	0.516333
С	-2.378253	1.207401	3.317582
С	-1.032990	1.262398	2.934924
Н	-2.623473	0.825074	4.306141
С	-3.409610	1.618094	2.467701
С	0.050936	0.790188	3.875082
Н	-0.385441	0.428404	4.810911
Н	0.750420	1.596654	4.130759
Н	0.640147	-0.023049	3.437283
Н	-0.773563	3.567973	-0.590232
С	-1.415605	2.677893	-0.618841
H	-2.328463	2.942302	-1.159013
Н	-0.886310	1.917369	-1.205051
С	-4.853122	1.562931	2,910491
- H	-5.513925	1.315378	2.072949
н	-5,183083	2.531177	3,310707
 H	-5 003393	0 815902	3 696639
	0.0000000	0.010002	5.050055

Cl	0.755679	-0.615257	-2.298782
Cl	2.167561	-1.876364	1.961288
С	-0.680485	-1.181895	0.463316
Н	-1.378347	-0.358736	0.603925
С	-1.289890	-2.504027	0.395420
С	-2.641697	-2.622381	-0.027668
С	-3.264756	-3.866737	-0.091234
С	-2.562260	-5.020197	0.262529
С	-1.230473	-4.930102	0.676339
С	-0.601889	-3.690256	0.740428
Н	0.416914	-3.614128	1.106643
Н	-0.685497	-5.825001	0.962192
Н	-3.056822	-5.986797	0.217180
Н	-4.300828	-3.914545	-0.413486
0	-3.357032	-1.497826	-0.368024
С	-3.262235	-1.128213	-1.758156
Н	-3.532216	-2.002297	-2.370815
Н	-2.226304	-0.860802	-2.005152
С	-4.200447	0.020819	-2.036107
С	-5.965020	2.118867	-2.649535
С	-5.423326	0.138613	-1.363385
С	-3.870381	0.963633	-3.017130
С	-4.749440	2.003930	-3.327036
С	-6.297678	1.184050	-1.665510
Н	-5.677194	-0.586363	-0.596585
Н	-2.919111	0.883733	-3.538266
Н	-4.480511	2.727035	-4.092660
Н	-7.243062	1.266293	-1.135014
Н	-6.648069	2.930508	-2.885801

M06 SCF	energy: -654	4.8998025 a.	u.
Enthalpy	at 298K: -65	54.6370615 a	.u.
Gibbs fr	ee energy at	298K: -654	.6944495 a.u.
Cartesia	n Coordinates	5	
С	-1.874807	1.983648	-0.411118
Н	-0.848756	2.035635	-0.765224
С	-2.388068	0.624006	-0.174165
С	-1.480102	-0.452077	-0.007318
С	-1.946484	-1.752909	0.210714
С	-3.320104	-2.000602	0.269353
С	-4.230596	-0.958617	0.103079
С	-3.758578	0.333722	-0.122197
Н	-4.466865	1.141358	-0.283046
Н	-5.299181	-1.150425	0.134583
Н	-3.670470	-3.015403	0.437692

Н	-1.251893	-2.575172	0.336403
0	-0.153687	-0.123122	-0.070499
С	-2.545866	3.127017	-0.217675
Н	-3.559144	3.155900	0.175230
Н	-2.088480	4.086410	-0.440738
С	0.822842	-1.144008	0.118817
Н	0.656027	-1.626449	1.094211
Н	0.721179	-1.917661	-0.655025
С	2.197175	-0.520509	0.064022
С	3.236034	-1.165748	-0.614508
С	2.461590	0.685792	0.725916
С	4.522766	-0.622740	-0.626516
Н	3.038371	-2.097110	-1.140768
С	3.743565	1.234051	0.706296
Η	1.655362	1.196988	1.243389
С	4.778951	0.579750	0.033207
Н	5.319881	-1.134553	-1.159144
Η	3.935766	2.173156	1.218545
Н	5.777798	1.007655	0.020442

M06 SCF en	ergy: -259	5.262149 a.u	l.
Enthalpy a	t 298K: -25	94.539134 a.	u.
Gibbs free	energy at	298K: -2594.	66809 a.u.
Cartesian	Coordinates		
Ru	-0.288214	0.200186	0.012525
С –	1.255880	-1.558245	0.038106
N -2	2.576393	-1.876781	0.043949
C –	2.826122	-3.329384	0.134592
С –	1.423567	-3.923827	-0.038254
N –	0.560996	-2.733479	0.053397
С	0.869842	-2.889193	-0.003766
С	1.589911	-3.036129	1.202330
С	2.980290	-3.161643	1.130634
С	3.662081	-3.182835	-0.090663
С	2.907525	-3.143950	-1.265398
С	1.513239	-3.022239	-1.251501
С	0.753802	-3.139468	-2.551993
С	0.894792	-3.122650	2.539615
С	5.170411	-3.249859	-0.137530
C –	3.711611	-1.000834	0.045999
C	4.258462	-0.575217	1.270857
C –	5.396343	0.238516	1.234467
C –	5.423322	0.179452	-1.167077
C	4.286193	-0.635277	-1.185592
С –	5.995731	0.623158	0.030167

С	-3.670537	-1.065290	-2.496162
С	-3.619684	-0.939317	2.590148
С	-7.246052	1.472473	0.023658
Cl	0.095964	0.252766	2.397284
Cl	0.197413	0.120456	-2.349140
С	-1.669454	1.422715	-0.057575
С	-1.378232	2.837876	-0.089980
С	-0.027379	3.265061	-0.069813
С	0.303817	4.617870	-0.104262
С	-0.726424	5.562701	-0.157492
С	-2.068603	5.171824	-0.176936
С	-2.387881	3.817749	-0.143732
0	0.870411	2.242089	-0.014956
С	2.285359	2.520947	-0.009997
С	3.047170	1.198143	0.054943
С	4.542884	1.440827	0.064828
С	5.270657	1.480694	-1.132989
С	5.226426	1.657611	1.269937
С	6.644201	1.730929	-1.128036
C	6.599482	1.908846	1.278853
С	7.312736	1.947077	0.078753
Н	-1.291676	-4.411151	-1.011845
Н	-1.166694	-4.646605	0.741885
Н	-3.524471	-3.644825	-0.646660
Н	-3.270483	-3.575433	1.106466
Н	3.542882	-3.255584	2.056869
Н	3.412430	-3.219844	-2.226305
Н	0.571069	-4.199149	-2.783836
Н	-0.201158	-2.615494	-2.529504
Н	1.332138	-2.717628	-3.378308
Н	1.624857	-3.297690	3.335793
Н	0.178320	-3.954490	2.561653
Н	0.352226	-2.203199	2.772766
Н	5.521903	-3.776884	-1.031239
Н	5.577992	-3.759362	0.742268
Н	5.604669	-2.241606	-0.161339
Н	-5.821940	0.582851	2.174710
Н	-5.869766	0.476441	-2.113783
Н	-4.273264	-0.712186	-3.338358
Н	-3.598021	-2.157327	-2.575400
Н	-2.655174	-0.666870	-2.610967
Н	-4.180529	-0.500981	3.421113
Н	-2.585754	-0.579635	2.648208
Н	-3.594304	-2.025009	2.747641
H	-7.282965	2.139007	0.891909
Н	-8.148745	0.847574	0.055560
Н	-7.309495	2.086941	-0.880705

H	-2.725828	1.160670	-0.083517
Н	-3.424934	3.492224	-0.159049
Н	-2.854464	5.919900	-0.218261
Н	-0.469477	6.618188	-0.184040
Н	1.337135	4.943587	-0.090432
Н	2.513899	3.147275	0.860142
Н	2.534615	3.073397	-0.923493
H	2.736928	0.662547	0.958774
Н	2.761684	0.588951	-0.809430
Н	4.755352	1.307072	-2.075277
H	4.677372	1.619764	2.208486
Н	7.192128	1.753322	-2.066591
Н	7.112699	2.069447	2.223520
H	8.382409	2.139285	0.084411

M06 SCF e	energy: -2	2595.242606 a.u	1.
Enthalpy	at 298K: -	-2594.520038 a.	.u.
Gibbs fre	ee energy a	at 298K: -2594	1.650002 a.u.
Cartesia	n Coordinat	tes	
Ru	-0.996924	4 -0.138114	-1.015866
С	-1.501428	-0.845391	0.755268
Ν	-0.857930	-1.682154	1.613102
С	-1.661405	-1.992879	2.813152
С	-3.043153	-1.443938	2.445397
Ν	-2.749810	-0.621568	1.259440
С	-3.762303	0.260672	0.738382
С	-4.764487	-0.235904	-0.117870
С	-5.733963	0.661400	-0.584077
С	-5.756145	2.001287	-0.193035
С	-4.796329	2.437055	0.727261
С	-3.800071	1.589174	1.213501
С	-2.818791	2.089182	2.246132
С	-4.877305	-1.699587	-0.472910
С	-6.787257	2.957612	-0.744484
С	0.502040	-2.143760	1.595938
С	0.784048	-3.421190	1.076328
С	2.101842	-3.883191	1.147916
С	2.804688	-1.864793	2.241011
С	1.502500	-1.354023	2.192837
С	3.125657	-3.122256	1.722160
С	1.204720	0.024350	2.735772
С	-0.293598	-4.277512	0.455497
С	4.543618	-3.643518	1.762101
Cl	-1.835508	-2.029120	-2.216084
Cl	-0.871742	2.217131	-0.636358

С	0.820607	-0.468327	-1.080417
С	1.597413	-0.261563	-2.288906
С	2.992348	0.032913	-2.189300
С	3.741103	0.280358	-3.344878
С	3.130241	0.222240	-4.599206
С	1.773083	-0.080857	-4.722926
С	1.021402	-0.316557	-3.577820
0	3.499708	0.053023	-0.928213
С	4.849324	0.451969	-0.683641
С	5.024319	1.979815	-0.663028
С	4.280564	2.654953	0.470648
С	2.919426	2.970031	0.353894
С	4.935243	2.948872	1.674920
С	2.230720	3.562476	1.413702
C	4.250385	3.542132	2.737356
C	2.894298	3.850558	2.608823
е Н	-3 487057	-0 832216	3 236007
н	-3 752916	-2 239196	2 186888
н	-1 231187	-1 498016	3 692658
н	-1 664152	-3 070746	2 997519
н	-6 500254	0 291113	-1 261707
н	-4 822423	3 466582	1 077406
и П	-2 806339	1 /50396	3 138501
п п	-1 80/09/	2 122599	1 8/0567
П П	-3 086477	3 100581	2 566617
П П	-3 906879	-2 162559	-0 657336
п 11	-5 480754	-1 929770	-1 376207
п u	-5.378963	-1.029770 -2.253111	-1.370207
п	-5.570905	2 527004	1 500205
п	7 106224	J.JZ/094 2 602725	-1.309393
н	-7.100324	2.003/33	U.UII495 1 105272
п	-7.073003	2.427009	-1.103372
н	2.551005	-4.00//49	0.743742
H	3.383261	-1.258/91	2.695901
H	0.488596	-0.006033	3.300930
H	0.779626	0.676552	1.905100
H	2.11/620	0.501249	3.102428
H	-1.094564	-4.505078	1.170900
H	0.123224	-5.230271	0.115248
H	-0.759135	-3./8023/	-0.402193
H	5.027180	-3.551355	0.780575
H	4.573538	-4.704298	2.035909
H	5.154107	-3.090612	2.483498
Н	1.394828	-0.696949	-0.186717
Н	-0.024792	-0.594511	-3.665620
Н	1.308374	-0.138917	-5.702220
Н	3.729242	0.414196	-5.485574
Н	4.795707	0.520805	-3.282177

Н	5.524359	-0.014629	-1.411778
Н	5.077221	0.034996	0.300972
Н	6.100515	2.180737	-0.577804
Н	4.701959	2.389298	-1.627723
Н	2.384145	2.751649	-0.565893
Н	5.994166	2.718766	1.779520
Н	1.175358	3.790385	1.295165
Н	4.778035	3.769811	3.660301
Н	2.360336	4.317775	3.432374

M06 SCF e	energy: -69	4.194941 a.u	•
Enthalpy	at 298K: -6	93.902147 a.	u.
Gibbs fre	ee energy at	298K: -693	.963323 a.u.
Cartesian	n Coordinate	S	
С	3.243737	1.827957	-0.126091
С	3.194871	0.358109	-0.060279
С	1.941271	-0.302491	-0.004914
С	1.872292	-1.698857	0.054498
С	3.045503	-2.456256	0.058710
С	4.288553	-1.828123	-0.002802
С	4.349873	-0.437295	-0.066634
0	0.839011	0.506883	-0.005213
С	-0.457484	-0.080724	0.010296
С	-1.478305	1.059053	-0.031814
С	-2.899658	0.537435	-0.014189
С	-3.564509	0.307293	1.198320
С	-3.568153	0.236582	-1.208961
С	-4.860357	-0.210804	1.218127
С	-4.864133	-0.281397	-1.194373
С	-5.514114	-0.507689	0.020538
С	4.306648	2.601660	0.132724
Н	2.308861	2.307652	-0.402164
Н	5.317213	0.050769	-0.142651
Н	5.202629	-2.414708	-0.012401
Н	2.978589	-3.539986	0.103792
Н	0.913319	-2.201540	0.101329
Н	-0.592621	-0.681970	0.920346
Н	-0.586360	-0.744652	-0.856172
Н	-1.296746	1.715913	0.826739
Η	-1.296046	1.652331	-0.935369
Η	-3.063761	0.543243	2.135092
Н	-3.070092	0.416702	-2.159448
Н	-5.360746	-0.377663	2.168456
Н	-5.367475	-0.503632	-2.131719
Н	-6.524526	-0.907409	0.033798

Н	5.264825	2.201363	0.454197
Н	4.244637	3.681809	0.038940

M06 SCF	energy: -24	41.686094 a.	u.
Enthalpy	at 298K: -2	441.012895 a	a.u.
Gibbs fr	ee energy at	298K: -244	1.131741 a.u.
Cartesia	n Coordinate	S	
Ru	-0.141464	0.406451	0.060794
С	0.022400	-1.590178	-0.074501
Ν	1.100461	-2.408458	-0.205550
С	0.742496	-3.839261	-0.276898
С	-0.781892	-3.796069	-0.417159
Ν	-1.087245	-2.385681	-0.121490
С	-2.464464	-1.976729	-0.018520
С	-3.208476	-1.698828	-1.182839
С	-4.545146	-1.305908	-1.034314
С	-5.164432	-1.235460	0.214614
С	-4.425363	-1.619254	1.339213
С	-3.086847	-2.008103	1.249865
С	-2.365243	-2.502403	2.480303
С	-2.657969	-1.911845	-2.573231
С	-6.595970	-0.772003	0.351402
С	2.494332	-2.078894	-0.138954
С	3.201150	-1.870356	-1.337698
С	4.572193	-1.604007	-1.256482
С	4.508061	-1.763847	1.139820
С	3.135290	-2.033486	1.113405
С	5.244819	-1.551467	-0.030674
С	2.366587	-2.215083	2.401114
С	2.499515	-1.889669	-2.675070
С	6.734295	-1.300737	0.025417
Cl	-0.523881	0.673000	-2.307403
Cl	-0.602259	0.471730	2.423343
С	1.623981	0.946255	0.117072
С	1.952509	2.351450	0.187116
С	0.904004	3.303072	0.210617
С	1.169293	4.669358	0.279249
С	2.500307	5.095417	0.329873
С	3.556729	4.179115	0.309086
С	3.280527	2.817422	0.236825
0	-0.338750	2.747420	0.158576
С	-1.513528	3.570054	0.251504
С	-1.970750	4.336117	-1.011376
С	-2.838079	2.793597	0.242986
С	-3.425351	3.928715	-0.644581

Н	-1.295599	-4.457405	0.286928
Н	-1.116649	-4.049608	-1.430330
Н	1.068062	-4.354541	0.635152
Н	1.238162	-4.313916	-1.128985
Н	-5.118194	-1.068214	-1.928247
Н	-4.905675	-1.626944	2.315273
Н	-3.055016	-2.553040	3.328397
Н	-1.955503	-3.509115	2.327349
Н	-1.540264	-1.839248	2.753277
Н	-3.125974	-1.225733	-3.285055
Н	-2.880458	-2.934604	-2.911312
Н	-1.582382	-1.747607	-2.629331
Н	-7.126322	-1.331307	1.130265
Н	-7.147661	-0.888615	-0.587285
Н	-6.641947	0.289532	0.628727
Н	5.126558	-1.430972	-2.176520
Н	5.012234	-1.715496	2.102744
Н	1.846228	-3.180189	2.436947
Н	1.606400	-1.435019	2.528251
Н	3.042973	-2.174113	3.260225
Н	2.021441	-2.857952	-2.871108
Н	3.211285	-1.703716	-3.485065
Н	1.713281	-1.127315	-2.725995
Н	7.066908	-0.670401	-0.806210
Н	7.296134	-2.242491	-0.036400
Н	7.024449	-0.811423	0.961244
Н	2.475225	0.268150	0.106543
Н	4.086441	2.088155	0.218754
Н	4.583776	4.529396	0.347250
Н	2.708988	6.160556	0.382640
Н	0.365359	5.395456	0.283825
Н	-1.412250	4.211451	1.133547
Н	-1.622932	3.812843	-1.906733
Н	-1.729787	5.401124	-1.087904
Н	-2.732509	1.867052	-0.328493
Н	-3.296670	2.573921	1.209760
Н	-4.078308	3.627523	-1.467372
Н	-3.933370	4.697249	-0.053090

M06 SCF energy: -2441.661447 a.u. Enthalpy at 298K: -2440.988729 a.u. Gibbs free energy at 298K: -2441.111547 a.u. Cartesian Coordinates Ru -0.577090 0.548941 -0.702771 C -1.191708 -1.125090 0.149155

Ν	-0.543566	-2.293655	0.394446
С	-1.434307	-3.336176	0.943586
С	-2.824774	-2.703807	0.805337
Ν	-2.507774	-1.309335	0.451319
С	-3.556178	-0.321054	0.439279
С	-4.406202	-0.200345	-0.677369
C	-5.417226	0.768285	-0.632064
C	-5 626979	1 572206	0 489642
C	-4 819267	1 362433	1 612996
C	-3 790192	0 119756	1 618085
C	-2 98/570	0.186893	2 873/86
C	_1 322304	-1 126482	_1 967423
C	-4.522504	2 620001	-1.007423
C	-0.090201	2.039001	0.495002
	0.865968	-2.364/89	0.369167
	1.428499	-3.186453	-0.758736
C	2.794493	-3.491402	-0.726856
C	2.993496	-2.606180	1.496222
C	1.634911	-2.2/9662	1.514541
С	3.594147	-3.204964	0.382780
С	1.027811	-1.600208	2.720426
С	0.599086	-3.511008	-1.977563
С	5.074030	-3.508457	0.375669
Cl	-1.095173	-0.238786	-2.899966
Cl	-0.746751	2.143676	1.071135
С	1.261230	0.395351	-0.657151
С	2.134618	1.278123	-1.417892
С	3.398216	1.646934	-0.876480
С	4.278810	2.441839	-1.608546
С	3.923113	2.899251	-2.878569
С	2.679075	2.566981	-3.421537
С	1.796790	1.768591	-2.700851
0	3.781461	1.205997	0.367233
С	3.264046	1.959166	1.476306
С	3.704642	1.432844	2.851594
С	3,909502	3.326297	1.813934
C	3.827125	2.913208	3.310349
Н	-3 406647	-2 740297	1 731140
н	-3 417855	-3 168597	0 009048
н	-1 168847	-3 549135	1 986138
и П	-1 328061	-1 262367	0 371451
и П	-6 065105	9.202307	_1 /02571
п	-0.003103	1 0/0025	2 512106
п 11	-3 011000	1.94000J	2 100000
п	-3.UII3UU	-0.0000000	J. 103296
п	-T.333033	0.4/2253	2./30296
н	-3.384695	0./84442	3.698029
H	-4./6/831	-0.659099	-2./50664
Н	-4.884427	-2.051420	-1.673016

Н	-3.295186	-1.392190	-2.120528
Н	-6.271807	3.619783	0.243771
Н	-7.164287	2.733117	1.481833
Н	-7.482254	2.425118	-0.236176
Н	3.243118	-3.964832	-1.597389
Н	3.598865	-2.380304	2.371368
Н	1.768529	-1.503365	3.519523
Н	0.176461	-2.158788	3.127400
Н	0.662276	-0.596207	2.473801
Н	0.144162	-2.610584	-2.404092
Н	-0.218283	-4.204518	-1.740370
Н	1.216985	-3.982834	-2.747457
Н	5.323973	-4.270697	-0.369364
Н	5.415881	-3.863668	1.354253
Н	5.656457	-2.609393	0.135380
Н	1.770907	-0.250146	0.057182
Н	0.852973	1.465548	-3.142377
Н	2.403254	2.916238	-4.412232
Н	4.618298	3.516268	-3.441793
Н	5.239599	2.690575	-1.169129
Н	2.173826	2.040600	1.393184
Н	4.687278	0.955823	2.772770
Н	3.020020	0.771079	3.389772
Н	4.948178	3.355546	1.467814
Н	3.390858	4.233591	1.491870
Н	4.675544	3.171540	3.950050
Н	2.907638	3.271734	3.782706

M06 SCF e	nergy: -54	0.618745 a.u	•
Enthalpy	at 298K: -5	40.37571 a.u	•
Gibbs fre	e energy at	298K: -540	.427386 a.u.
Cartesian	Coordinate	S	
С	1.684868	1.910521	-0.051585
С	1.655717	0.438693	-0.048902
С	0.413126	-0.240414	-0.112049
С	0.364038	-1.638988	-0.115205
С	1.546078	-2.379903	-0.063921
С	2.780043	-1.732408	-0.010998
С	2.822112	-0.339627	-0.007391
0	-0.701853	0.552198	-0.154167
С	-1.972417	-0.030152	-0.391940
С	-2.748393	-0.664322	0.794256
С	-3.097508	1.011329	-0.537890
С	-4.020573	0.056242	0.268903
С	2.707565	2.686429	0.332195

0.769749	2.387821	-0.391166
3.783764	0.165198	0.006078
3.702242	-2.305494	0.018261
1.494542	-3.465450	-0.067426
-0.589700	-2.152795	-0.142365
-1.919340	-0.704940	-1.256407
-2.400503	-0.236936	1.740122
-2.767840	-1.755369	0.879263
-2.846763	1.908450	0.036817
-3.394940	1.303183	-1.549384
-4.682792	0.509066	1.011488
-4.617707	-0.588306	-0.383956
3.638660	2.284920	0.724129
2.637514	3.768666	0.275036
	0.769749 3.783764 3.702242 1.494542 -0.589700 -1.919340 -2.400503 -2.767840 -2.846763 -3.394940 -4.682792 -4.617707 3.638660 2.637514	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

M06 SCF e	energy: -248	31.0058 a.u.	
Enthalpy	at 298K: -24	480.301674 a	.u.
Gibbs fre	ee energy at	298K: -2480	0.423071 a.u.
Cartesia	n Coordinates	3	
Ru	-0.099829	0.312647	0.081187
С	0.247213	-1.659517	-0.086330
Ν	1.394981	-2.379459	-0.185588
С	1.167789	-3.829000	-0.347641
С	-0.350091	-3.956585	-0.169699
Ν	-0.786813	-2.550447	-0.123488
С	-2.190084	-2.260185	0.018762
С	-2.977944	-2.102316	-1.143316
С	-4.338188	-1.821797	-0.986234
С	-4.937852	-1.734906	0.275014
С	-4.149108	-1.993261	1.397738
С	-2.782758	-2.281342	1.297842
С	-2.029823	-2.698928	2.538947
С	-2.407258	-2.303755	-2.526264
С	-6.400250	-1.381689	0.415168
С	2.751130	-1.914647	-0.199140
С	3.366810	-1.607872	-1.427250
С	4.706489	-1.205399	-1.407721
С	4.790238	-1.425856	0.983161
С	3.451958	-1.832950	1.018358
С	5.436213	-1.111608	-0.217255
С	2.772653	-2.123953	2.335768
С	2.601223	-1.658016	-2.728179
С	6.893045	-0.709016	-0.233311
Cl	-0.557984	0.619487	-2.272982
Cl	-0.470211	0.236052	2.461188

С	1.606882	1.011489	0.129007
С	1.803924	2.433661	0.281599
С	0.674431	3.287216	0.355062
С	0.828660	4.665434	0.506384
С	2.118459	5.198511	0.594021
C	3.249289	4.379240	0.526036
C	3 087651	3 006859	0 368023
0	-0.517018	2 633175	0 264194
C	-1 765200	3 379232	0 337351
C	-2 065806	J 1677/3	-0 968358
C	-2 930863	2 3897/5	0.522669
C	-3 301/32	2.303743	_1 586722
C	-3.301432	2 013396	-1.300722
	-4.000244	2.945500	-0.303139
п	-0.023010	-4.400092	0.701303
п	-0.033340	-4.4014/4	-0.999403
H	1.735198	-4.38/999	0.403211
H	1.505964	-4.155858	-1.33/984
H	-4.94/35/	-1.683961	-1.8/69/6
H	-4.606661	-1.984263	2.3848/8
H	-2.163981	-3.//6834	2./12952
H	-0.963908	-2.482845	2.4/6082
H	-2.412003	-2.1/4325	3.418/1/
H	-1.558539	-1.643374	-2.716164
H	-3.169331	-2.102630	-3.285363
H	-2.072561	-3.340854	-2.666046
H	-6.829015	-1.800966	1.331589
H	-6.985468	-1.749318	-0.434832
H	-6.540602	-0.293277	0.458995
Н	5.190115	-0.955014	-2.349687
Н	5.338657	-1.350026	1.919679
Н	3.489517	-2.061784	3.160128
Н	2.330422	-3.127899	2.355836
Н	1.961527	-1.412191	2.532921
Н	2.193638	-2.657154	-2.926515
Н	3.253720	-1.396982	-3.566877
Н	1.755318	-0.960430	-2.722588
Н	7.101704	0.010549	-1.032423
Н	7.541878	-1.578717	-0.403570
Н	7.196094	-0.259092	0.717933
Н	2.517058	0.418631	0.062340
Н	3.951666	2.349641	0.311990
Н	4.242940	4.811675	0.593689
Н	2.234352	6.272484	0.712722
Н	-0.029081	5.325305	0.547290
Н	-1.673438	4.042286	1.202912
Н	-1.201745	4.174116	-1.638120
Н	-2.295863	5.210673	-0.714408

H	-3.198912	2.252944	1.573291
Н	-2.620567	1.412678	0.136689
Н	-3.896162	4.164968	-2.203742
Н	-2.978953	2.647357	-2.218245
Н	-4.589877	3.759451	0.148291
Н	-4.801352	2.177432	-0.614610

M06 SCF energy: -2480.982711 a.u. Enthalpy at 298K: -2480.278795 a.u. Gibbs free energy at 298K: -2480.403005 a.u. Cartesian Coordinates 0.722117 0.510407 -0.766972Ru С 1.343042 -1.104360 0.183718 Ν 0.720528 -2.286459 0.439689 С 1.604703 -3.263138 1.107752 С 2.981477 -2.598139 1.006641 Ν 2.642554 -1.230338 0.577689 С -0.214607 3.664376 0.580761 С 0.571895 1.742083 3.821770 С 1.536228 1.755445 4.830957 С 5.690195 1.725404 0.667591 С 5.554219 0.879277 -0.434398С 4.567431 -0.112867 -0.495719 С -1.655452 4.561467 -1.080284 С 0.371493 2.961076 2.953805 С 6.736556 2.814518 0.689339 С 0.330913 -0.669897 -2.626963 С -1.529735 -2.339057 1.408337 С -2.860283 -2.761297 1.322878 С -2.462949 -3.722413 -0.840376 С -1.119982 -3.330215 -0.800897 С -3.453755 -3.346727 0.208636 С -0.195770-3.653111-1.950091С -1.053030 -1.558260 2.611793 С -4.782030 -3.923390 0.153963 Cl 0.769087 2.174371 0.947756 Cl 1.362673 -0.348873-2.910532 С -1.111257 0.310459 -0.794618 С -1.945256 1.193194 -1.596285 С -3.197973 1.638895 -1.073457 С -4.004732 2.497351 -1.827925С -3.588073 2.916947 -3.093431 С -2.367708 2.495267 -3.621965 С -2.874761 -1.555923 1.647419 0 -3.514952 0.165234 1.182717

С	-4.634630	1.734102	0.891389
С	-4.779769	0.881378	2.165263
С	-4.306286	3.141587	1.413036
С	-3.964452	1.608943	3.275717
С	-3.368489	2.869290	2.601651
Н	3.623756	-3.079266	0.259450
Н	3.519670	-2.578109	1.958813
Н	1.557344	-4.228290	0.595620
Н	1.284136	-3.413581	2.146017
Н	4.947966	2.156653	2.641190
Н	6.243093	0.977781	-1.270632
Н	5.096975	-2.003146	-1.389283
Н	3.552568	-1.345896	-1.974218
Н	5.076117	-0.647722	-2.518637
Н	3.337205	0.958881	3.800930
Н	2.927505	-0.679627	3.274799
Н	1.926625	0.693028	2.766885
Н	7.151215	2.953344	1.694016
Н	6.306578	3.776481	0.380693
Н	7.563335	2.591895	0.006656
Н	-3.532900	-2.542319	2.149639
Н	-2.824324	-4.255408	-1.717132
Н	0.645140	-4.281684	-1.629347
Н	0.230744	-2.745812	-2.391079
Н	-0.733291	-4.197500	-2.732348
Н	-0.220363	-2.054218	3.125668
Н	-1.863122	-1.441368	3.337899
Н	-0.704803	-0.557668	2.329565
Н	-5.444279	-3.254650	0.713968
Н	-4.888065	-4.926143	0.589485
Н	-5.146494	-3.976807	-0.877230
Н	-1.636667	-0.334582	-0.093360
Н	-0.620267	1.284005	-3.287482
Н	-2.052881	2.819168	-4.609218
Н	-4.229868	3.582495	-3.665011
Н	-4.950498	2.850952	-1.435423
Н	-5.527613	1.688086	0.257225
Н	-4.427718	-0.134714	1.966503
Н	-5.839294	0.813167	2.435905
Н	-5.239408	3.611748	1.753851
Н	-3.867346	3.788984	0.648412
Н	-4.625066	1.890628	4.103770
H	-3.182884	0.969185	3.697099
Н	-3.299321	3.721394	3.285423
Н	-2.358785	2.664352	2.229724

M06 SCF ene	ergy: -579	9.937903 a.u	•
Enthalpy at	с 298К : -51	79.663821 a.	u.
Gibbs free	energy at	298K: -579	.718563 a.u.
Cartesian (Coordinates	S	
C	1.539808	2.013304	0.136847
C	1.779036	0.561737	0.078895
C	0.692486	-0.338102	0.234759
C	0.906830	-1.721391	0.183481
C 2	2.194208	-2.224518	-0.014751
C	3.275727	-1.357168	-0.160290
C	3.058315	0.018168	-0.107442
0 - ().529420	0.240241	0.437235
C –	1.704225	-0.572878	0.613100
C -2	2.812712	0.366777	1.144570
C -2	2.231413	-1.076633	-0.743246
C -3	3.748794	0.674170	-0.058329
C -3	3.005379	0.130914	-1.295505
C 2	2.358914	2.973676	-0.312890
H ().593334	2.306670	0.582166
H C	3.903061	0.695650	-0.192407
H 4	4.279645	-1.745900	-0.304151
H 2	2.343659	-3.300412	-0.050782
H (0.078970	-2.412191	0.288356
Н —	1.473245	-1.378406	1.319338
Н —2	2.343921	1.267643	1.550403
Н -3	3.357904	-0.111238	1.965095
Н —2	2.916752	-1.917827	-0.567779
Н —	1.431483	-1.429767	-1.400457
Н –	4.702368	0.145627	0.062932
Н -3	3.983698	1.739923	-0.142512
Н -3	3.677898	-0.130318	-2.119226
Н —2	2.294269	0.876532	-1.670066
H C	3.303252	2.761224	-0.807785
H 2	2.098168	4.022533	-0.206204

24-A

M06 SCF energy: -2520.308059 a.u. Enthalpy at 298K: -2519.573368 a.u. Gibbs free energy at 298K: -2519.6948 a.u. Cartesian Coordinates Ru -0.021145 0.200425 -0.083162 C 0.677729 -1.676798 0.044735 N 1.937704 -2.182544 0.099467 C 1.972136 -3.653437 0.221641 C 0.507474 -4.042879 -0.004373

N	-0.178751	-2.740820	0.052662
Н	0.120622	-4.717347	0.765307
Н	0.344883	-4.511056	-0.982995
Н	2.336544	-3.940313	1.215621
Н	2.649298	-4.081808	-0.523455
С	-1.616433	-2.700622	-0.020606
С	-2.262314	-2.754519	-1.271970
С	-3.662307	-2.705226	-1.295449
С	-4.423672	-2.655826	-0.127024
C	-3.752356	-2.709406	1.100180
С	-2.358691	-2.752031	1.181153
Н	-4.165641	-2.723139	-2.260095
H	-4.328770	-2.732352	2.022514
C	-1.687919	-2.923330	2.522633
H	-1.147344	-3.878303	2.574083
H	-0.978963	-2.117967	2.726151
Н	-2 433995	-2 927110	3 323088
C	-1 519328	-2 971196	-2 569064
с н	-1 994694	-2 422979	-3 386983
Н	-1 536790	-4 038864	-2 832622
н	-0 484030	-2 636848	-2 521949
C	-5 930664	-2559832	-0 182057
н	-6 398648	-3 104068	0 645696
н	-6 324666	-2 962619	-1 121107
н	-6 262606	-1 515240	-0 110353
C	3 185266	-1 478510	0 161514
C	3 885512	-1 232/32	-1 03/150
C	5 124097	-0 587364	-0 951429
ч	5 669017	-0 382092	-1 870508
II C	J.009014 / 951622	-0 162833	1 1/1/37
C	4.9J1022 3.709336	-0.402033	1 /13500
	5.700550	-1.104303	2 402610
H C	5.300907	-0.139120	2.402019
C	3.676063	-0.1904/0	0.274103
	2.940039	-1.330313	2.093273
п	2.JI2032 2.720022	-0.900423	2 057/62
п	2.730033 1 075025	-2.402020	2.007402
н	1.975255	-0.61/500	2.005210
H	3.112654	-2.691591	-2.444/81
	3.306017	-1.613421	-2.3/3/8/
H	3.99/944	-1.350628	-3.181/45
H	2.353375	-1.103038	-2.560948
C	7.033285	0.463944	0.337063
H	1.223/34	1.0/4353	-0.552251
H	/.836030	-0.2834/5	0.394810
H	/.125318	1.10/585	1.218247
CL	-0.259520	0.105389	-2.483200
CT	-0.620092	0.347677	2.2541/2

С	1.522596	1.209866	-0.037567
Н	2.523918	0.800468	0.085089
С	1.455951	2.644790	-0.190021
С	0.190964	3.272195	-0.318309
С	0.094133	4.652977	-0.493907
С	1.264731	5.415909	-0.538226
С	2.524401	4.823220	-0.406527
С	2.613622	3.446380	-0.233358
Н	3.581401	2.961432	-0.133314
Н	3.422207	5.432884	-0.440222
Н	1.184038	6.490915	-0.675456
Н	-0.867634	5.140670	-0.594366
0	-0.858007	2.404302	-0.266848
С	-2.238004	2.876232	-0.255649
С	-4.608890	2.109548	-0.605323
С	-4.086982	3.884380	1.128173
С	-5.012961	2.719440	0.746177
С	-2.607500	3.460166	1.111457
С	-3.128630	1.689658	-0.617489
Н	-4.789918	2.842424	-1.405891
Н	-4.239905	4.715919	0.423312
Н	-4.955301	1.944541	1.523668
Н	-2.419621	2.687713	1.866701
Н	-2.967543	0.895067	0.123061
Н	-2.321977	3.637657	-1.042342
Н	-5.233717	1.238307	-0.836637
Н	-4.345298	4.269973	2.121845
Н	-6.056094	3.059074	0.714138
Н	-1.963379	4.311819	1.357551
Н	-2.833151	1.292132	-1.593417

M06 SCF en	nergy: -252	0.28653 a.	u.
Enthalpy a	at 298K: -25	19.552438 a	.u.
Gibbs free	e energy at 2	298K: -251	9.678504 a.u.
Cartesian	Coordinates		
Ru	0.739309	-0.234259	0.888849
С	1.404251	1.070133	-0.439642
Ν	0.814293	2.146213	-1.022834
С	1.769481	2.968825	-1.793006
С	3.013658	2.076691	-1.849003
Ν	2.705561	1.040133	-0.848569
Н	3.931821	2.607505	-1.582546
Н	3.157182	1.616049	-2.834365
Н	1.954832	3.913837	-1.268637
Н	1.362453	3.201708	-2.781094

С	3.673942	0.002760	-0.594931
С	3.733236	-1.115472	-1.451091
С	4.694821	-2.096475	-1.189751
С	5.606799	-1.980384	-0.138187
С	5.573837	-0.818032	0.638551
С	4.633317	0.193616	0.422661
Н	4.730063	-2.973677	-1.832227
Н	6.307661	-0.685263	1.430416
C	4 707488	1 470691	1 224479
с Н	4 903388	2 335901	0 576759
н	3 780685	1 666409	1 769133
н	5 523976	1 415605	1 950798
C	2 861555	-1 248762	-2 677828
с н	2.665739	-2 301196	-2 898382
н	3 367251	-0 815682	-3 553286
н	1 894808	-0 758641	-2 560536
C C	6 601828	-3 07931/	0 151655
ч	7 516985	-2 683610	0.101000
п п	6 878/16	-3 621624	-0 758853
11 Ч	6 181587	-3 812851	0.750055
C C	-0 553575	2 577063	-0 964947
C	-1 /32663	2.377003	-1 071128
C	-1.432003	2.131004	-1.971120
	2.140024	2.000334	-1.950050
П	-2.205/91	2.239739	-2.727399
C	-2.295461	3 106008	-0.010743
	2 627009	3.490900	0.013374
П	-2.027900	4.034000	-0 977674
C	0 017020	1 000050	1 072515
	-0.01/030	4.000000	1.075515
H	-0.537796	4.685256	1.757807
H	0.818650	4.368334	0.633267
H	0.413900	3.1918/1	1.661324
H	-0.11//51	1.531142	-3.596383
C	-0.977082	1.152578	-3.029360
H	-1./81041	0.954545	-3./44359
H	-0.6/2//8	0.195381	-2.589150
C	-4.643572	3.946932	-0.958085
H	-5.285274	3.192936	-0.483806
H	-5.028033	4.107950	-1.971470
H	-4.762055	4.879244	-0.396610
Cl	0.607222	-2.238022	-0.406381
Cl	1.545182	1.028539	2.753637
С	-1.078572	0.094505	0.932610
Н	-1.598440	0.568009	0.099497
С	-1.945172	-0.436441	1.976809
С	-3.282731	-0.817023	1.664098
С	-4.150582	-1.234659	2.674090

С	-3.714473	-1.308517	3.997021
С	-2.397346	-0.971654	4.320748
С	-1.526425	-0.543807	3.324634
Н	-0.521362	-0.227309	3.582600
Н	-2.054441	-1.024994	5.349879
Н	-4.402389	-1.635379	4.772445
Н	-5.165638	-1.503289	2.399102
0	-3.764085	-0.748587	0.384191
С	-3.320620	-1.770949	-0.554733
С	-3.425857	-4.199406	-1.231479
С	-3.474148	-2.383239	-2.999482
С	-3.943140	-3.797054	-2.621075
С	-3.858554	-1.355772	-1.921525
С	-3.819093	-3.164529	-0.162226
Н	-2.330976	-4.287036	-1.260266
Н	-2.381946	-2.386847	-3.123755
Н	-5.043001	-3.826288	-2.622178
Н	-4.952538	-1.274389	-1.852612
Н	-4.913239	-3.128834	-0.057646
Н	-2.222377	-1.775096	-0.572743
Н	-3.812632	-5.186721	-0.950082
Н	-3.899782	-2.084142	-3.965779
Н	-3.608988	-4.521006	-3.375050
Н	-3.479833	-0.358922	-2.173120
Н	-3.408486	-3.452319	0.812320

M06 SCF energy: -619.2398792 a.u. Enthalpy at 298K: -618.9353942 a.u. Gibbs free energy at 298K: -618.9911872 a.u. Cartesian Coordinates С -2.306831 1.911083 0.113611 Η -1.393565 2.409849 -0.198438 С -2.2944650.444873 -0.019812 С -1.058985 -0.239059 -0.160719 С -1.034266 -1.633567 -0.288047 С -2.359801 -2.226604 -0.285309 С -3.450988 -1.705169 -0.159249С -3.471480 -0.317762 -0.033103 Η -4.424815 0.198046 0.037711 Η -2.266531 -4.380744 -0.168181 Η -2.189285 -3.441270 -0.386508 Η -0.093741 -2.162749 -0.383566 0 0.054996 0.552964 -0.165786 С -3.313291 2.657102 0.588963 2.229011 Η -4.240727 0.961121

Н	-3.232697	3.739325	0.631137
С	1.370264	-0.005701	-0.298963
С	2.263883	1.114461	-0.836686
С	1.889643	-0.533196	1.045083
Н	1.345716	-0.818562	-1.038942
С	3.724786	0.650477	-0.955693
Н	2.195258	1.969493	-0.150259
Н	1.878926	1.451564	-1.806254
С	3.349913	-1.003032	0.930614
Н	1.815322	0.283386	1.776161
Н	1.249434	-1.343903	1.410731
С	4.256635	0.108692	0.380388
Н	4.348952	1.480411	-1.308736
Н	3.795457	-0.137697	-1.719912
Н	3.708115	-1.340441	1.910927
Н	3.402579	-1.877290	0.264553
Н	5.281814	-0.262710	0.257986
Н	4.304750	0.929957	1.110305

M06 SCF energy: -2559.591055 a.u.			
Enthalpy at 298K: -2558.826029 a.u.			
Gibbs fre	ee energy at	298K: -255	8.952011 a.u.
Cartesia	n Coordinates	5	
Ru	-0.078684	-0.146207	-0.131137
С	-0.953491	1.653189	0.036447
Ν	-2.257463	2.031862	0.099521
С	-2.436205	3.492114	0.225487
С	-1.020259	4.024452	-0.014810
N	-0.207167	2.797381	0.043769
С	1.227967	2.906661	-0.004620
С	1.886860	3.041355	-1.243106
С	3.284461	3.143828	-1.239892
С	4.025145	3.168380	-0.057331
С	3.329438	3.138305	1.156944
С	1.938449	3.027017	1.211422
С	1.228973	3.106266	2.541549
С	1.144862	3.188691	-2.550427
С	5.534178	3.239517	-0.081896
С	-3.430784	1.212161	0.189761
С	-4.138074	0.906427	-0.987525
С	-5.310324	0.150814	-0.874621
С	-5.061612	0.036361	1.512005
С	-3.883702	0.789172	1.453876
С	-5.790673	-0.290209	0.363096
С	-3.105934	1.089984	2.713717

С	-3.632745	1.342853	-2.342128
С	-7.079728	-1.073515	0.460306
Cl	0.042446	-0.002920	-2.538178
Cl	0.620538	-0.262636	2.178928
С	-1.518215	-1.295828	-0.043604
С	-1.324188	-2.719078	-0.192477
С	-0.012117	-3.230627	-0.359369
С	0.202488	-4.601179	-0.513829
C	-0.895039	-5.467070	-0.507408
C	-2 198466	-4 987962	-0 344550
C	-2 405521	-3 622079	-0 187347
0	0 954592	-2 270620	-0 364446
C	2 377383	-2 619509	-0 381345
C	2 810730	-3 107222	1 007569
C	3 099773	-1 384617	-0 916116
C	4 198715	-3 777654	0 985420
C	4 633454	-1 503382	-0 985243
C	5 413020	-2 836666	1 127465
C	5 324947	-1 483193	0 390818
н	-0 696019	4 738758	0.747680
н	-0 912932	4 500013	-0 997389
н	-2 816992	3 740091	1 223929
и П	-3 159932	3 852306	-0 511688
п п	3 800302	3 225537	-2 191182
и П	3 992739	3 216219	2.194402
П П	0 565601	3 980615	2.090309
п 11	0.505001	2 212765	2.303333
п u	1 95/888	2.212705	2.750954
11	1 720671	2 705261	2 200520
п	1.730071	2.79JJ01 4 252127	-3.300320
н	0.959467	4.200127	-2.756649
H	0.193000	2.007704	-2.556610
H	5.977957	2.244351	0.054800
H	5.919296	3.8/63/2	0.722443
H	5.902433	3.634080	-1.034636
H	-5.859/32	-0.099941	-1.//9594
H	-5.415647	-0.305295	2.482447
H	-3.623526	0.6855/5	3.588808
H	-2.984360	2.168/02	2.8/3002
H	-2.100392	0.654116	2.681116
H	-4.316091	1.014590	-3.131172
H	-2.639900	0.927719	-2.551783
H	-3.546903	2.434830	-2.412590
Н	-7.263816	-1.657677	-0.447583
Н	-7.940092	-0.404375	0.596046
Н	-7.068015	-1.762048	1.311998
Н	-2.549665	-0.980790	0.104084
Н	-3.409199	-3.224361	-0.060361

H	-3.038212	-5.676202	-0.340187
H	-0.721227	-6.532836	-0.629524
H	1.200227	-5.004072	-0.635816
H	2.493111	-3.432330	-1.109881
H	2.768420	-2.270095	1.712804
H	2.069803	-3.835140	1.356707
H	2.849186	-0.529759	-0.273707
H	2.692431	-1.162609	-1.907802
H	4.292760	-4.355686	0.054284
H	4.248730	-4.518802	1.792390
H	4.988862	-0.644742	-1.567875
H	4.929801	-2.395497	-1.556386
H	5.585714	-2.632268	2.192312
H	6.300980	-3.381610	0.779292
H	6.345657	-1.094290	0.279729
H	4.796136	-0.756308	1.021791

M06 SCF	energy: -25	59.567838 a.	u.
Enthalpy	y at 298K: -2	558.803228 a	.u.
Gibbs fr	ee energy at	298K : - 255	8.93216 a.u.
Cartesia	an Coordinate	s	
Ru	-1.245355	0.728272	-0.546289
С	-1.699803	-1.098388	0.048925
Ν	-0.983710	-2.253981	0.042809
С	-1.780395	-3.425289	0.461600
С	-3.095104	-2.794807	0.935094
Ν	-2.948405	-1.391516	0.514132
С	-4.021551	-0.466910	0.780263
С	-5.024093	-0.281108	-0.195945
С	-6.064600	0.607644	0.090003
С	-6.152506	1.279682	1.313305
С	-5.189359	1.005527	2.286734
С	-4.127457	0.125670	2.054489
С	-3.192834	-0.217552	3.190697
С	-5.034061	-1.057464	-1.490819
С	-7.259797	2.273551	1.573874
С	0.375953	-2.494472	-0.349142
С	0.666260	-2.869521	-1.673246
С	1.989112	-3.205151	-1.984951
С	2.678026	-2.819033	0.282004
С	1.373978	-2.468161	0.644028
С	3.006579	-3.189469	-1.027297
С	1.055543	-2.052017	2.061684
С	-0.401425	-2.912848	-2.739417
С	4,427072	-3.547605	-1.398037

Cl	-2.095191	0.447326	-2.769269
Cl	-1.159079	1.865043	1.547642
С	0.579626	0.653476	-0.811967
С	1.277190	1.791813	-1.391924
С	2.574878	2.148002	-0.909467
С	3.231943	3.265380	-1.437771
C	2.621807	4.034443	-2.431578
C	1 357565	3 702807	-2 917892
C	0 696276	2 594753	-2 397565
0	3 07/953	1 361644	0 078025
C	1 256306	1 75/707	0.070029
C	5 537062	1 3201/3	0.013333
C	1 051330	1 15/369	2 210200
C	4.0JIJJJ	-0 101764	2.210290 0.317754
C	5 20021/	1 127106	0.J1//J4 3 11/53/
C	G 010001	1.12/100	J.IIZJJZ 1 50/05/
C	6.910001 C 17104C	-0.242443	1.004004
	0.1/1046	-0.12/230	2.920332
H	-3.220445	-2.850268	2.022977
H	-3.9/5943	-3.244661	0.46/46/
H	-1.260328	-3.9/4826	1.252280
H	-1.920610	-4.10455/	-0.38/16/
H	-6.833182	0./683/4	-0.662825
H	-5.263034	1.485625	3.260095
Н	-3.580387	-1.077096	3.757274
H	-2.185812	-0.453957	2.846467
H	-3.108288	0.621950	3.885654
Н	-5.902603	-0.777164	-2.094469
Н	-5.099551	-2.138114	-1.305480
Н	-4.135733	-0.874460	-2.085327
H	-7.488071	2.349847	2.642289
H	-8.179776	1.998242	1.046663
Н	-6.974895	3.276254	1.228840
Н	2.225276	-3.494568	-3.006610
Н	3.454292	-2.809954	1.044533
Н	1.956601	-2.077810	2.681917
Н	0.315448	-2.714096	2.528788
Н	0.646640	-1.035558	2.099473
Н	-1.192502	-3.633822	-2.496070
Н	0.029123	-3.211692	-3.699855
Н	-0.881798	-1.937158	-2.867738
Н	4.461278	-4.163347	-2.302626
Н	4.924773	-4.099213	-0.592594
Н	5.025215	-2.647521	-1.591262
Н	1.205000	-0.134338	-0.397385
Н	-0.272158	2.304807	-2.792885
Н	0.894118	4.295021	-3.700916
Н	3.151259	4.896841	-2.828384

4.217342	3.544670	-1.085656
4.248545	2.848012	0.901846
5.352638	1.469656	-1.003608
6.338243	2.035143	0.328226
3.671106	0.132824	2.086106
3.243921	1.718729	2.690229
6.662244	-0.396686	-0.542512
5.203220	-0.804186	0.341091
4.966960	1.156503	4.157573
5.902012	2.035311	2.966124
7.425821	-1.212425	1.559794
7.703011	0.520228	1.543544
6.913951	-0.169870	3.734321
5.528824	-1.010633	3.059644
	4.217342 4.248545 5.352638 6.338243 3.671106 3.243921 6.662244 5.203220 4.966960 5.902012 7.425821 7.703011 6.913951 5.528824	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

M06 SCF e	energy: -65	8.522892 a.u	•
Enthalpy	at 298K: -6	58.188209 a.	u.
Gibbs fre	ee energy at	298K : - 658	.247084 a.u.
Cartesia	n Coordinate	es	
С	2.201501	2.030865	0.077882
С	2.442944	0.578547	0.057054
С	1.357294	-0.318850	0.235408
С	1.576178	-1.702501	0.216916
С	2.864887	-2.207218	0.031297
С	3.944753	-1.341616	-0.134295
С	3.723730	0.034033	-0.114681
0	0.136472	0.265468	0.421698
С	-1.058266	-0.523829	0.595330
С	-1.568984	-1.040292	-0.762684
С	-2.009962	0.398620	1.373276
С	-2.385817	-0.047991	-1.610681
С	-3.503964	0.027084	1.325496
С	-3.883176	-0.016882	-1.256770
С	-4.244749	0.598916	0.103327
С	3.013880	2.978384	-0.409672
Н	1.260212	2.335386	0.526588
Н	4.566559	0.711865	-0.214906
Н	4.949675	-1.731454	-0.267739
Н	3.016332	-3.283396	0.021244
Н	0.751626	-2.394560	0.339043
Н	-0.816609	-1.386766	1.229192
Н	-0.695065	-1.379587	-1.329920
Н	-2.176741	-1.938830	-0.584606
Н	-1.882839	1.415638	0.981706
Н	-1.659842	0.431215	2.411824

Н	-2.294010	-0.341859	-2.664019
Н	-1.947181	0.956700	-1.540404
Н	-3.982886	0.427024	2.228079
Н	-3.635344	-1.063517	1.377138
Н	-4.423744	0.535441	-2.037313
Н	-4.265007	-1.048291	-1.297268
Н	-5.326456	0.483926	0.256479
Н	-4.057462	1.682300	0.068876
Н	3.951317	2.751518	-0.911322
Н	2.754197	4.029881	-0.329490

M06 SCF	energy: -25	98.878177 a.	u.
Enthalpy	at 298K: -25	598.209621 a	.u.
Gibbs fr	ee energy at	298K: -259	8.209621 a.u.
Cartesia	n Coordinates	5	
Ru	-0.178921	0.043420	-0.072983
С	-1.432151	-1.522385	-0.005283
Ν	-2.788844	-1.608516	-0.029639
С	-3.285810	-2.996910	0.043384
С	-2.009218	-3.818455	-0.155913
Ν	-0.953870	-2.802298	-0.001163
С	0.422981	-3.223204	0.040079
С	1.000155	-3.522104	1.295154
С	2.334146	-3.933287	1.329182
С	3.093693	-4.088015	0.163649
С	2.464178	-3.876110	-1.063837
С	1.125822	-3.470668	-1.156034
С	0.467984	-3.420531	-2.514521
С	0.196889	-3.470175	2.572242
С	4.549677	-4.485252	0.236174
С	-3.758736	-0.554346	0.037358
С	-4.166242	-0.067016	1.293642
С	-5.155008	0.922522	1.325865
С	-5.310567	0.913005	-1.071460
С	-4.327050	-0.078196	-1.158519
С	-5.741638	1.422629	0.158070
С	-3.868832	-0.590173	-2.503374
С	-3.524477	-0.548766	2.573684
С	-6.834404	2.464802	0.224790
Cl	0.446062	-0.050667	2.257174
Cl	0.013423	-0.067183	-2.477304
С	-1.334190	1.478553	0.007762
С	-0.825361	2.826750	-0.082279
С	0.573462	3.041355	-0.181351
С	1.088598	4.335617	-0.267073

С	0.208434	5.421916	-0.265916
С	-1.174067	5.236632	-0.173390
С	-1.681627	3.945363	-0.080158
0	1.309485	1.895223	-0.188224
С	2.777118	1.936954	-0.140679
С	3.218688	0.544451	-0.603351
С	3.252791	2.346097	1.268417
С	4.692623	0.176542	-0.375114
C	4.466433	3.296865	1.309098
C	5 764807	0 997687	-1 107854
C	5 830534	2 801015	0 789212
C	5 899526	2 487167	-0 724516
н	-1 953189	-4 269870	-1 154166
н	-1 891279	-4 613510	0 586059
н	-4 036452	-3 174955	-0 732133
н	-3 754845	-3 177432	1 018675
и П	2 788506	-/ 1/8101	2 293956
и П	3 018334	-1 017520	-1 98//99
п п	0 07/125	-1 113621	-2 776179
п ц	-0 3/3590	-2 695576	-2 562071
п п	1 102003	-3 1//217	-3 286480
ц П	0 921500	-3 752496	3 125179
п u	-0 648619	-3.732490 -1.170375	2 538346
п	-0.040019	-4.170373	2.550540
п	-0.195212	-2.400003	2.739000
п u	4.000019	-4.954575	1 057375
п	4./J4J0/	-3.100013	1.0J/J/J
п	J.100904 5 470022	-3.009420	2 200601
п	-J.470952	1 206272	2.290001
п	-3.746957	1.290372	-1.990447
н	-4.413043	-0.092143	-3.310217
H	-4.030031	-1.669/12	-2.60/414
H	-2.797038	-0.416693	-2.654491
H	-3.6148/9	-1.635168	2.695/95
H	-3.999064	-0.0/9514	3.440/5/
H	-2.454190	-0.311055	2.600379
H	-6./28/58	3.101486	1.109595
H	-7.825896	1.995327	0.279175
H	-6.829685	3.108925	-0.661040
H	-2.414546	1.393931	0.111416
H	-2.752692	3.774780	-0.006431
H	-1.842587	6.092204	-0.171798
H	0.616882	6.426601	-0.334990
Н	2.154922	4.511821	-0.330732
Н	3.075466	2.685987	-0.880257
Н	2.947321	0.424204	-1.658076
Н	2.616567	-0.181021	-0.041915
Н	3.438886	1.447278	1.866751
2.422316	2.855895	1.767730	
----------	--	--	
4.905600	0.179550	0.701000	
4.802733	-0.870096	-0.687672	
4.210353	4.215713	0.758934	
4.596840	3.606960	2.354505	
6.730249	0.509434	-0.912983	
5.604547	0.924040	-2.192634	
6.156764	1.928231	1.371392	
6.556998	3.591865	1.016599	
6.862076	2.837068	-1.119193	
5.144204	3.084974	-1.251282	
	2.422316 4.905600 4.802733 4.210353 4.596840 6.730249 5.604547 6.156764 6.556998 6.862076 5.144204	2.422316 2.855895 4.905600 0.179550 4.802733 -0.870096 4.210353 4.215713 4.596840 3.606960 6.730249 0.509434 5.604547 0.924040 6.156764 1.928231 6.556998 3.591865 6.862076 2.837068 5.144204 3.084974	

M06 SCF	energy: -259	8.855242 a.u	•
Enthalpy	at 298K: -2	598.060686 a	.u.
Gibbs fr	ee energy at	298K: -259	8.19019 a.u.
Cartesia	n Coordinate	S	
Ru	-0.962038	-0.038927	-0.972857
С	-1.762681	-0.847402	0.644622
N	-1.370132	-1.903117	1.405732
С	-2.358324	-2.255896	2.445625
С	-3.561260	-1.375848	2.085691
Ν	-3.001690	-0.469474	1.067828
С	-3.767531	0.672866	0.639305
С	-4.780144	0.527247	-0.328365
С	-5.508598	1.666990	-0.693713
С	-5.290151	2.911096	-0.100287
С	-4.335050	2.998267	0.919107
С	-3.571331	1.898722	1.312092
С	-2.587700	2.031293	2.449664
С	-5.163437	-0.812084	-0.911825
С	-6.062283	4.132342	-0.540687
С	-0.095500	-2.562502	1.447028
С	0.082796	-3.767847	0.746048
С	1.319395	-4.415346	0.855915
С	2.130316	-2.724083	2.353413
С	0.916728	-2.035179	2.272988
С	2.356277	-3.909376	1.643835
С	0.722161	-0.743184	3.033563
С	-1.016477	-4.361386	-0.101506
С	3.694192	-4.607193	1.713118
Cl	-2.085699	-1.588503	-2.406639
Cl	-0.443555	2.192231	-0.290875
С	0.771140	-0.679047	-0.951426
С	1.650947	-0.622022	-2.111904
С	3.048815	-0.401766	-1.936701

С	3.913135	-0.468021	-3.031400
С	3.419532	-0.719625	-4.311289
С	2.047690	-0.897115	-4.510598
С	1.177889	-0.846563	-3.426832
0	3.589736	-0.161079	-0.704294
С	3.333663	1.139092	-0.077315
С	3.968885	2.255198	-0.919218
С	3.835340	0.958935	1.360067
С	3.630394	3.692144	-0.452772
С	3.485291	2.110947	2.331565
С	4.736675	4.413861	0.345105
С	4.620810	3.115069	2.627017
С	5.458445	3.610505	1.438315
Н	-3.944991	-0.804077	2.935901
Н	-4.389643	-1.953442	1.659278
Н	-1.955321	-2.034067	3.441047
H	-2.584142	-3.325207	2.403084
H	-6.278658	1.567978	-1.455782
H	-4.178843	3.949345	1.423365
Н	-1.558239	1,966167	2.085900
н	-2 708003	2 999632	2 944825
Н	-2.730595	1.250214	3,206926
Н	-5.627693	-0.685541	-1.894508
н	-5 901706	-1 311899	-0 267993
Н	-4 307250	-1 475874	-1 037271
Н	-5.470687	4.738334	-1.239349
н	-6 315928	4 775541	0 309497
Н	-6.991887	3.858386	-1.050151
н	1 471694	-5 342310	0 307639
Н	2 920458	-2 322210	2 984054
Н	0 556865	0 103492	2 357260
н	-0 140576	-0 785089	3 709326
н	1 603430	-0 519369	3 641759
н	-1 896515	-4 621230	0 501743
Н	-0 671413	-5 278339	-0 588546
Н	-1 351181	-3 664170	-0 876359
н	3 610822	-5 663364	1 437160
н	4 125470	-4 550611	2 718780
н	4 413182	-4 143119	1 025366
и И	1 252637	-0 99/916	-0 025/9/
и П	1202037	-1 0/2/08	-3 571264
и П	1 658177	-1 092796	-5 5053/1
и П	1 106018	-0 767257	-5 152616
т. Ц	7.100010 1 972516	-0 300003	-2 856163
и П	$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$	1 300807	-0 056001
и П	2.24/42/ 3 500601	1.JUUUZ/ 2 126176	-1 $\alpha/2/00$
ц ц	5.JJJJUZI 5.055010	2 000620	-1.942400 -0 066707
11	J.UJJZ4U	2.099030	0.900/2/

4.917409	0.772792	1.342029
3.379571	0.029156	1.717880
3.415278	4.304845	-1.336725
2.692690	3.678539	0.113020
2.596581	2.636492	1.966136
3.183576	1.676694	3.293502
5.504418	4.753419	-0.364908
4.311268	5.327243	0.785028
5.315491	2.643905	3.337340
4.192019	3.978400	3.155592
5.969605	2.754379	0.978386
6.262521	4.242473	1.840189
	4.917409 3.379571 3.415278 2.692690 2.596581 3.183576 5.504418 4.311268 5.315491 4.192019 5.969605 6.262521	4.9174090.7727923.3795710.0291563.4152784.3048452.6926903.6785392.5965812.6364923.1835761.6766945.5044184.7534194.3112685.3272435.3154912.6439054.1920193.9784005.9696052.7543796.2625214.242473

M06 SCF energy: -697.809634 a.u. Enthalpy at 298K: -697.444777 a.u. Gibbs free energy at 298K: -697.505681 a.u. Cartesian Coordinates С 3.059297 1.748968 -0.359609 С 2.849873 0.324946 -0.049478С 1.529477 -0.185386 0.061111 С 1.318262 -1.539773 0.349299 С 2.405746 -2.395253 0.538184 С 3.709273 -1.913491 0.429969 С 3.915671 -0.567893 0.132046 0.727430 -0.116043Ο 0.530083 С -0.860119 0.351781 -0.011380 С -0.376927 -1.327640-1.291863С -1.563046 1.691293 0.269612 С -2.337289 -1.524260 -1.085292 С 1.754883 0.074883 -3.084632 С -3.745922 -1.202248 -0.548076 С -3.958221 0.894789 1.000617 С -0.636413-3.804278 0.891029 С 4.183189 2.449667 -0.156378 Η 2.260245 -0.781713 2.198680 Η 4.929823 -0.195731 0.018316 Η 4.556917 -2.579730 0.561483 Η 2.223833 -3.443603 0.759789 0.313271 -1.936482 0.427583 Η Η -0.964088 -0.312389 0.854233 Η -0.438995-0.811174 -1.763737 Η -1.719400 0.354227 -2.010811 Η -1.104731 2.422777 -0.408641 -1.300287 Η 2.010081 1.286616 -2.453766 -2.033199 -2.051653 Η

Н	-1.881893	-2.267975	-0.413609
Н	-3.381997	2.802508	0.215542
Н	-3.328032	1.525211	-0.970096
Н	-4.265188	-0.525696	-1.241039
Н	-4.312884	-2.141547	-0.578732
Н	-5.005459	1.148300	0.783375
Н	-3.787402	1.193700	2.044581
Н	-4.655351	-1.085797	1.418527
Н	-2.917688	-0.969503	1.445742
Н	5.071001	2.021379	0.302106
Н	4.245132	3.496864	-0.437561

M06 SCF energy: -2794.151889 a.u. Enthalpy at 298K: -2793.229557 a.u. Gibbs free energy at 298K: -2793.365952 a.u. Cartesian Coordinates Cl -0.170280 -0.456579 -2.445929 Cl 0.103433 0.079561 2.302559 Ru -0.360147 -0.084032-0.061385 С 0.216005 -1.556271 -1.666971 Ν -2.906604 -1.779214 0.321664 С -3.914335 -0.761606 0.237458 С -4.370638 -0.1627541.427303 С -3.755221 -0.502809 2.764163 -4.256527 3.567858 Η 0.044985 Η -2.688146 -0.251775 2.791145 -1.573251 Η -3.839249 2.991229 С -5.389629 0.791112 1.336639 1.268691 Η -5.741509 2.248662 С 1.146511 0.110924 -5.963770 С -7.089527 2.153087 0.046587 Η 2.918140 -6.989068 0.823986 Η 1.667109 -8.063347 0.194267 Η -7.122536 2.656982 -0.925082 С 0.523676 -1.048525 -5.489601 Η -5.920937 0.790887 -2.010911 -0.436713 С -1.013138 -4.471846 С -3.970208 -1.064474 -2.291749 Η -2.906727 -0.854301 -2.454012 Η -4.528878 -0.681263 -3.150962 Η -4.086211 -2.155621 -2.284844 С -3.366762 -3.175688 0.458534 Η -3.481742 -0.443148 -3.910441 -3.269652 Η -4.045861 1.311283 С -2.056449 -3.945509 0.646887

Н	-1.926442	-4.308443	1.673503
Н	-1.959764	-4.798613	-0.030992
N	-1.039215	-2.924422	0.340751
С	0.348293	-3.313669	0.354676
С	1.043806	-3.391496	1.578218
С	0.378370	-3.170672	2.916250
Н	0.079103	-4.137598	3.346612
Н	-0.497587	-2.527172	2.850000
H	1 069349	-2 698895	3 620300
C	2 385583	-3 792704	1 552289
с н	2.303303	-3 832008	2 492028
C	3 027651	-4 163707	0 3702/1
C	J. 125761	-1 558960	0.364321
	4.405701	-4.558900	1 254321
п	5 121/01	-4.009000	1.334434
п	J.121401	-3.712370 5.260721	0.072032
H C	4.0/9212	-3.300/31	-0.340103
	2.2//401	-4.1/2581	-0.811552
H	2.740319	-4.518354	-1./33352
C	0.939267	-3.771929	-0.845104
C	0.148125	-3.908695	-2.123495
H	0./8/38/	-4.288436	-2.926313
H	-0.2/0836	-2.952763	-2.4460/1
Н	-0.681039	-4.618802	-2.001792
С	-1.569424	1.299588	-0.182159
Н	-2.628031	1.199107	0.050763
С	-1.174380	2.612267	-0.631671
С	-2.161062	3.579132	-0.921847
H	-3.201569	3.313472	-0.753105
С	-1.823139	4.826696	-1.427636
Н	-2.591900	5.559262	-1.653610
С	-0.475061	5.119370	-1.653370
Н	-0.190836	6.084401	-2.064548
С	0.528856	4.193385	-1.363626
Н	1.556710	4.460883	-1.569434
С	0.193113	2.941798	-0.836577
0	1.079498	1.961776	-0.491410
С	2.515941	2.259862	-0.293880
H	2.664942	3.304543	-0.576022
C	3.360667	1.411536	-1.262425
н	4 389358	1 778347	-1 121843
C	2 992414	1 685807	-2 735816
н	1 956712	1 374603	-2 912411
и П	3 0/7953	2 765339	-2 9379/5
 C	3 901025	2.700000 0 020007	2.337343
	3 600120	1 115600	-J. 726117
п	J. UUYIJO 1 015701	1 202600	-4./JOLL/
п	4.943/21	1.3236UZ	
C	3.92/488	-0.5/6431	-3.406564

2.927790	-0.985422	-3.605693
4.625980	-1.091703	-4.079387
4.298396	-0.851282	-1.941855
5.339842	-0.539458	-1.765633
4.251885	-1.927667	-1.733899
3.369778	-0.101764	-0.971501
2.353515	-0.498383	-1.078294
3.681711	-0.293781	0.062225
2.836536	2.141719	1.209118
2.565803	1.133429	1.542118
4.340967	2.361533	1.488789
4.947873	1.617456	0.960713
4.645423	3.347116	1.101112
4.659077	2.289927	2.992031
4.460834	1.268588	3.348321
5.729558	2.474896	3.151127
3.815004	3.278871	3.806381
4.099197	4.307130	3.534729
4.029494	3.168468	4.877436
2.319468	3.071756	3.533003
2.006889	2.089320	3.911776
1.725069	3.819602	4.073824
1.999626	3.143937	2.032903
2.199246	4.164809	1.668101
0.935203	2.944351	1.882871
	2.927790 4.625980 4.298396 5.339842 4.251885 3.369778 2.353515 3.681711 2.836536 2.565803 4.340967 4.947873 4.645423 4.659077 4.460834 5.729558 3.815004 4.099197 4.029494 2.319468 2.006889 1.725069 1.999626 2.199246 0.935203	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

M06 SCF e	energy: -279	94.132326 a.u	۱.
Enthalpy	at 298K: -27	793.210384 a	.u.
Gibbs fre	ee energy at	298K: -2793	3.350208 a.u.
Cartesiar	n Coordinates	5	
Ru	-1.629325	0.089769	1.014028
С	-2.226374	1.104106	-0.572406
Ν	-1.647651	2.138390	-1.240149
С	-2.515687	2.686538	-2.302543
С	-3.857672	1.998935	-2.031279
N	-3.487448	0.947904	-1.067669
H	-4.591621	2.679052	-1.583141
Н	-4.302708	1.555812	-2.926965
Н	-2.106556	2.438882	-3.289827
Н	-2.570077	3.775702	-2.221620
Cl	-1.579656	-2.174949	0.260691
Cl	-2.446615	1.776647	2.508227
С	-4.441181	-0.085588	-0.752686
С	-4.418206	-1.270435	-1.518515
С	-5.366744	-2.255991	-1.241239

С	-6.335655	-2.092483	-0.245442
С	-6.371179	-0.880484	0.446519
С	-5.452084	0.147253	0.199967
С	-5.621181	1.476455	0.897245
Н	-4.673013	1.891109	1.245193
H	-6 090646	2 210476	0 226736
н	-6 277273	1 370434	1 766462
н	-7 144129	-0 716271	1 194190
C	-7 31/378	-3 198891	0 070354
U U	-6 972307	-3 0250/0	0.070354
п	7 604601	-3.923940 2 7/0510	0.704302
п	-7.004001	-3.740319	-0.031999
H	-8.223766	-2.809510	0.539930
H	-5.345420	-3.1//9/6	-1.81/9/6
С	-3.415144	-1.4/92/4	-2.627209
Н	-2.409/08	-1.621008	-2.220002
H	-3.670353	-2.370058	-3.209321
H	-3.384004	-0.627661	-3.318005
С	-0.292163	2.610998	-1.192942
С	0.677500	1.978258	-1.993329
С	1.969484	2.514144	-2.017853
С	2.308812	3.655662	-1.284752
С	1.315211	4.266297	-0.513445
С	0.008564	3.770437	-0.454270
С	-1.038629	4.477721	0.370651
Н	-1.488182	3.806732	1.109273
Н	-0.599284	5.329468	0.898604
Н	-1.853826	4.864622	-0.255275
С	0.345307	0.747560	-2.805271
Н	-0.047577	-0.059201	-2.176653
Н	-0.412426	0.954449	-3.571485
H	1.235431	0.372269	-3.317897
Н	2.725141	2.030729	-2.633290
н	1 558489	5 160776	0 056051
C	3 713107	4 212588	-1 313537
с н	4 291374	3 875648	-0 443313
и П	3 709716	5 308076	-1 29/0/3
п п	1 253740	3 801240	-2 210026
II C	9.200740	0 344605	1 037014
	0.201204	0.544005	1.037914
П	0.701333	0.020302	0.140319
	0.988728	-0.041910	2.199222
C	0.483050	0.092178	3.512506
C	1.232397	-0.2/1149	4.625096
C.	2.519396	-0.///93/	4.442401
C	3.055552	-0.928110	3.162891
C	2.304410	-0.580884	2.033696
Н	4.063332	-1.310331	3.060378
H	3.125087	-1.054750	5.301552

Н	0.823791	-0.144388	5.622852
Н	-0.498615	0.535894	3.642267
0	2.735734	-0.710699	0.752532
С	3.872665	-1.531167	0.371907
Н	4.317636	-1.973637	1.269206
С	4.917798	-0.598937	-0.277043
С	5.412088	0.462961	0.728336
С	6.120234	-1.371862	-0.859417
Н	4.418334	-0.068407	-1.101106
С	6.458744	1.405400	0.115067
Н	5.859598	-0.047271	1.595749
Н	4.562490	1.040713	1.107390
С	7.175733	-0.431183	-1.465370
Н	6.585531	-1.969898	-0.060189
Н	5.789707	-2.081295	-1.626202
С	7.649682	0.626994	-0.460340
Н	5.989783	1.993138	-0.687745
Н	6.799948	2.125449	0.869979
Н	6.744021	0.072895	-2.342890
Н	8.026479	-1.018944	-1.833032
Н	8.362825	1.311989	-0.936575
Н	8.190546	0.132752	0.360478
С	3.354735	-2.699980	-0.492839
С	2.400116	-3.611459	0.306850
С	2.693573	-2.264773	-1.814408
Н	4.241615	-3.303497	-0.740307
С	1.954195	-4.828194	-0.519047
Н	1.511229	-3.040429	0.602415
Н	2.890359	-3.943335	1.232945
С	2.232896	-3.476403	-2.642300
Н	1.828165	-1.632224	-1.582121
Н	3.385232	-1.654188	-2.410051
С	1.299166	-4.392524	-1.837885
Н	1.255806	-5.437806	0.067301
Н	2.825755	-5.465575	-0.734987
Н	1.733987	-3.132440	-3.557944
H	3.115543	-4.049479	-2.966007
Н	1.024060	-5.271378	-2.435731
Н	0.367842	-3.855237	-1.611756

M06 SCF energy: -893.0857918 a.u. Enthalpy at 298K: -892.5941338 a.u. Gibbs free energy at 298K: -892.6672298 a.u. Cartesian Coordinates C -2.780555 -0.277946 1.762985

Н	-1.850567	0.002038	2.250131
С	-2.636099	-1.151233	0.585580
С	-1.403514	-1.195812	-0.114981
С	-1.255137	-2.037137	-1.224605
С	-2.323770	-2.821569	-1.660284
С	-3.543800	-2.790036	-0.984827
С	-3.682237	-1.969148	0.131743
Н	-4.618160	-1.967816	0.683281
Н	-4.372060	-3.411813	-1.312039
Н	-2.189725	-3.470032	-2.522130
Н	-0.306349	-2.097883	-1.744489
0	-0.402933	-0.410124	0.388920
С	0.689698	0.085947	-0.420222
Н	0.618451	-0.342224	-1.427337
С	-3.932448	0.194157	2.258940
Н	-4.896595	-0.009143	1.799463
Н	-3.944064	0.817140	3.148512
С	2.003765	-0.400118	0.228544
С	2.066843	-1.941223	0.277346
C	3.258901	0.155153	-0.477075
Н	2.008407	-0.038792	1.267335
С	3.358513	-2.447073	0.936712
H	2.014501	-2.334784	-0.750120
H	1.193125	-2.331219	0.809407
C	4.558727	-0.358858	0.165710
H	3.236697	-0.140735	-1.537768
н	3 260456	1 251038	-0 460429
C	4,603700	-1.891468	0.231820
с Н	3 374434	-3 544432	0 933354
н	3 370755	-2 138839	1 992727
н	5 423356	0 026005	-0 390113
и П	J. 638361	0.020000	1 18/632
П Ц	5 515788	-2 222950	1.104052 0 744512
П Ц	1 653378	-2 208155	-0 789/13
C	0 528387	1 616396	-0 561974
C	-0 778824	1 9789/8	-1 296972
C	0.617513	2 382190	0 773458
U U	1 358913	1 95302190	-1 201091
II C	_0 915880	3 195076	-1 506765
U U	-1 633752	1 619336	1.500705
п u	-1.033732	1 150935	-0.710711
11 C	0.020001	1.4J9030 2 000670	-2.204411 0 5716/1
	U.4/1992 _0 177006	2.022012 2.022172	$\begin{array}{c} 0.3/1041 \\ 1 & 1/0006 \end{array}$
п	-U.1/330 1 560225	2.0224/3	1 077054
п	L.J09233	Z.1/2200	1.2//304
	-U.021232	4.200UV 2 710001	
п	-1.00/UJU	3.110321	-2.006835
н	-0.119146	3.844588	-2.180//0

Н	0.503215	4.408950	1.543556
Н	1.333926	4.272582	-0.002224
Н	-0.876521	5.337617	-0.347786
Н	-1.685477	3.991838	0.452258

M06 SCF energy: -2714.370608 a.u. Enthalpy at 298K: -2713.531409 a.u. Gibbs free energy at 298K: -2713.658436 a.u. Cartesian Coordinates С -2.780555-0.277946 1.762985 2.250131 Η -1.850567 0.002038 С -1.1512330.585580 -2.636099С -1.195812 -0.114981 -1.403514 С -1.255137 -2.037137 -1.224605 С -2.323770 -2.821569 -1.660284 С -3.543800 -2.790036 -0.984827 С -3.682237 -1.969148 0.131743 Η -4.618160 -1.967816 0.683281 -1.312039 Η -4.372060 -3.411813 Η -2.189725-3.470032-2.522130Η -0.306349 -2.097883 -1.744489Ο -0.402933 -0.4101240.388920 С 0.689698 0.085947 -0.420222 Η 0.618451 -0.342224 -1.427337 С 2.258940 -3.932448 0.194157 Η -4.896595 -0.009143 1.799463 Η -3.944064 0.817140 3.148512 С 2.003765 -0.400118 0.228544 С 2.066843 -1.941223 0.277346 С 3.258901 0.155153 -0.477075 Η -0.038792 1.267335 2.008407 С 3.358513 -2.447073 0.936712 Η -2.3347842.014501 -0.750120Η 1.193125 -2.331219 0.809407 С -0.358858 4.558727 0.165710 Η 3.236697 -0.140735 -1.537768 Η 1.251038 -0.4604293.260456 С 4.603700 -1.891468 0.231820 Η 3.374434 -3.544432 0.933354 Η 3.370755 -2.138839 1.992727 5.423356 Η 0.026005 -0.390113 Η 4.638361 0.048229 1.184632 Η 0.744512 5.515788 -2.222950 -2.298155 -0.789413 Η 4.653378 С 0.528387 1.616396 -0.561974

-0.778824	1.978948	-1.296972
0.617513	2.382190	0.773458
1.358913	1.953021	-1.201091
-0.915880	3.495076	-1.506765
-1.633752	1.618336	-0.710711
-0.820001	1.459835	-2.264411
0.471992	3.899679	0.571641
-0.177336	2.022473	1.440086
1.569235	2.172206	1.277354
-0.821232	4.255008	-0.175158
-1.867030	3.718321	-2.006835
-0.119146	3.844588	-2.180770
0.503215	4.408950	1.543556
1.333926	4.272582	-0.002224
-0.876521	5.337617	-0.347786
-1.685477	3.991838	0.452258
	-0.778824 0.617513 1.358913 -0.915880 -1.633752 -0.820001 0.471992 -0.177336 1.569235 -0.821232 -1.867030 -0.119146 0.503215 1.333926 -0.876521 -1.685477	-0.778824 1.978948 0.617513 2.382190 1.358913 1.953021 -0.915880 3.495076 -1.633752 1.618336 -0.820001 1.459835 0.471992 3.899679 -0.177336 2.022473 1.569235 2.172206 -0.821232 4.255008 -1.867030 3.718321 -0.119146 3.844588 0.503215 4.408950 1.333926 4.272582 -0.876521 5.337617 -1.685477 3.991838

M06 SCF	energy: -27	14.349239 a.	u.
Enthalpy	at 298K: -2	713.510296 a	.u.
Gibbs fr	ee energy at	298K: -271	3.64158 a.u.
Cartesia	n Coordinate	S	
Ru	-1.442472	-0.079188	0.920310
С	-2.233768	0.717616	-0.702992
N	-1.886584	1.812418	-1.429806
С	-2.821440	2.080932	-2.541222
С	-3.968323	1.101248	-2.265071
N	-3.403349	0.237619	-1.214552
С	-4.114536	-0.946380	-0.806560
С	-5.170025	-0.855308	0.121844
С	-5.833695	-2.035450	0.481073
С	-5.511763	-3.270404	-0.083962
С	-4.522287	-3.306610	-1.073129
С	-3.820630	-2.163649	-1.459721
С	-2.808459	-2.241317	-2.577261
С	-5.670326	0.463836	0.661058
С	-6.213066	-4.534556	0.353991
С	-0.688819	2.599888	-1.361815
С	-0.698367	3.800307	-0.628422
С	0.458668	4.586244	-0.639861
С	1.568374	3.021252	-2.084066
С	0.437547	2.197929	-2.103822
С	1.601036	4.214943	-1.356311
С	0.452383	0.896601	-2.872230
С	-1.910543	4.228976	0.162806
С	2.846285	5.070715	-1.324533

Cl	-2.807659	1.210250	2.405796
Cl	-0.551317	-2.129055	0.062293
С	0.178436	0.791885	1.084305
C	0 997888	0 649354	2 275987
C	2 122836	0 673989	2 15/891
C	2.422050	0.073303	5.104001
C	$2 \epsilon 20020$	0.250120	J. 293033
C	2.029020	0.330129	4.545747
	1.241034	0.324120	4.000022
C	0.440161	0.468078	3.561427
0	2.892747	0.84/323	0.892067
С	4.280288	0./39908	0.54/062
С	4.631532	-0.610188	-0.095024
С	6.127792	-0.577591	-0.496100
С	4.405527	-1.797511	0.873024
С	3.782251	-0.842223	-1.369238
С	6.532058	-1.903040	-1.175082
С	4.805606	-3.124948	0.194117
С	4.183911	-2.166420	-2.049997
С	6.296652	-3.072796	-0.197205
С	5.675162	-2.112769	-2.440868
С	3.946620	-3.333825	-1.070143
Н	-4.244898	0.507374	-3.141336
Н	-4.869172	1.604496	-1.893954
Н	-2.328664	1.892702	-3.502828
н	-3 139927	3 127376	-2 523136
н	-6 635308	-1 977159	1 214422
и П	-1 290111	-1 251018	-1 560335
и П	-3 015629	-1 505088	-3 364462
11	1 705700	2 062062	2 205511
п	-1.795709	-2.003903	2 020/00
п	-2.0200J2	-3.233333	-3.030490
н	-6.104601	0.330343	1.000/00
H	-6.461540	0.862584	0.009422
H	-4.8/9932	1.209224	0./4/1/4
H	-6.348612	-5.229130	-0.482460
Н	-/.19/428	-4.320348	0./83308
Н	-5.628723	-5.060697	1.120341
H	0.464615	5.514249	-0.072046
H	2.445458	2.718336	-2.652035
H	1.410620	0.763082	-3.382582
Н	-0.335268	0.857462	-3.634707
Н	0.300792	0.036930	-2.208960
Н	-2.791403	4.357199	-0.479465
Н	-1.725026	5.184966	0.661717
Н	-2.173349	3.487346	0.925294
Н	3.466492	4.833018	-0.449953
Н	2.599595	6.136304	-1.264919
Н	3.463452	4.914205	-2.215530

Н	0.650174	1.298025	0.245715
Н	-0.640260	0.492350	3.662188
Н	0.789261	0.200808	5.667126
Н	3.269784	0.235754	5.416918
Н	4.301610	0.525680	3.219587
Н	4.921482	0.943119	1.410907
Н	4.445451	1.543569	-0.179869
Н	6.751384	-0.408707	0.394409
Н	6.313960	0.264560	-1.179183
Н	3.352729	-1.838937	1.176332
Н	4.999990	-1.653432	1.787032
Н	3.929536	-0.002247	-2.065257
Н	2.718773	-0.860265	-1.104389
Н	7.594372	-1.857438	-1.449866
Н	4.635852	-3.951435	0.896293
Н	3.570502	-2.310210	-2.949203
Н	6.920092	-2.946713	0.699374
Н	6.598819	-4.019755	-0.665451
Н	5.850715	-1.295936	-3.155487
Н	5.969547	-3.044723	-2.942940
Н	4.208259	-4.287668	-1.549112
Н	2.883854	-3.388337	-0.800552

С

С

M06 SCF energy: -813.305276 a.u. Enthalpy at 298K: -812.896408 a.u. Gibbs free energy at 298K: -812.958089 a.u. Cartesian Coordinates С 2.789498 2.001830 -0.124638 С 3.297120 0.621314 -0.065033 С 2.385823 -0.463918 -0.002922 С 2.852292 -1.782608 0.049539 С 4.224849 -2.039704 0.040815 С 5.137566 -0.988271 -0.027159С 4.667105 0.322328 -0.084588 Ο 1.060119 -0.133315 0.011088 С -1.170784 0.081676 0.034013 С -1.317713 -0.552326 0.015723 С -1.540651 0.289909 -1.264399 С -2.361387 -1.697139 0.038314 С -1.546604 0.346942 1.255392 С -1.281181 -2.969028 0.871542 С -3.793118 -1.121516 0.021390 С -2.975364 0.927946 1.238844

-0.281402

1.766760

-1.257458

-0.041055

-3.993040

-3.173164

С	-3.999583	-0.225232	1.260246
С	3.480185	3.115818	0.153529
Н	1.747086	2.098637	-0.415402
Н	5.376127	1.141080	-0.166993
Н	6.205490	-1.185326	-0.047295
Н	4.573148	-3.068377	0.080925
Н	2.155601	-2.610772	0.101673
Н	0.212355	-1.780061	0.941131
Н	0.217676	-1.826238	-0.839617
Н	-1.380556	-0.339828	-2.152017
Н	-0.800459	1.097465	-1.310225
Н	-2.217631	-2.315224	0.936494
Н	-2.212669	-2.355579	-0.829881
Н	-0.805011	1.154349	1.268281
Н	-1.391665	-0.242732	2.170954
Н	-3.106364	1.467459	-2.193199
Н	-4.514843	-1.948864	0.038164
Н	-3.117791	1.563890	2.122578
Н	-3.870662	-0.913617	-2.148098
Н	-5.015813	0.118985	-1.288347
Н	-2.461075	2.603358	-0.058157
Н	-4.181126	2.204225	-0.053729
Н	-5.022365	0.176304	1.267878
Н	-3.882189	-0.817035	2.178849
Н	4.513556	3.100642	0.490735
Н	3.019457	4.094841	0.060357

M06 SCF e	energy: -271	4.362453 a.	u.
Enthalpy	at 298K: -27	13.523599 a	.u.
Gibbs fre	ee energy at	298K: -271	3.649557 a.u.
Cartesia	n Coordinates		
Ru	-0.294307	0.009213	-0.034178
С	-1.490826	1.611328	-0.059687
Ν	-2.841753	1.741912	-0.147228
С	-3.290104	3.148922	-0.131887
С	-1.977919	3.919698	-0.295610
Ν	-0.966925	2.872791	-0.065919
С	0.419114	3.254855	0.031557
С	1.179334	3.468383	-1.136721
С	2.516911	3.858918	-0.991988
С	3.093637	4.088338	0.258715
С	2.281838	3.963087	1.391303
С	0.944691	3.567657	1.305638
С	0.090363	3.539210	2.549561
С	0.582137	3.397541	-2.522024

С	4.549382	4.471742	0.387140
С	-3.857141	0.729543	-0.088987
С	-4.404549	0.247005	-1.293024
С	-5.427661	-0.703671	-1.217352
С	-5.359146	-0.655415	1.182985
С	-4.332748	0.296261	1.163093
C	-5.920423	-1.166188	0.007878
C	-3 732557	0 796635	2 455804
C	-3 887794	0 711094	-2 633854
C	-7 051983	-2 167025	0 058175
Cl	-0 099217	0 0/8561	-2 /58099
	0.095571	0.075531	2.450055
C	-1 100012	-1 37009/	0 063002
C	1 065201	2 725240	0.003992
C	-1.00J301	-2.733340	0.223017
	0.311136	-3.099032	0.104273
	0.648929	-4.440800	0.303/90
C	-0.340306	-5.40/381	0.581817
C	-1.692642	-5.062549	0.62/0/4
C	-2.040812	-3./324//	0.446992
0	1.192180	-2.06//96	-0.015120
С	2.547392	-2.250590	-0.662874
С	3.555060	-2.940903	0.304803
С	3.079965	-0.810359	-0.911157
С	3.673544	-2.153778	1.628414
С	4.951925	-3.012127	-0.363640
С	3.232819	-0.020297	0.407849
С	4.478244	-0.872676	-1.577388
С	4.216709	-0.738116	1.349152
С	5.477531	-1.594628	-0.651689
С	5.602419	-0.827069	0.679859
С	2.293128	-2.990176	-1.981547
Н	-1.863379	4.730837	0.429205
Н	-1.862164	4.340020	-1.302103
Н	-3.794366	3.371646	0.816591
H	-3.999299	3.331639	-0.944291
H	3,113713	4.006978	-1.889762
н	2 695463	4 190909	2 371213
н	-0 806486	4 161491	2 435193
н	-0.232632	2 521913	2 786046
п п	0.252052	3 925981	3 101629
п u	1 3/6172	3 135264	-3 250807
п	1.340172	J.13J204 1 270510	-3.239097
п	U.1/000 0.210755	4.3/3043	-2.000090
п	-U.ZIU/33	2.0042/4	-2.000311
н	4./13/31	3.14/UIU	1.233981
H	4.916448	4.965159	-0.519051
H 	5.1/6/05	3.585735	0.553627
Н	-5.848678	-1.092520	-2.142163

Н	-5.727101	-1.005619	2.145076
Н	-4.257731	0.365371	3.313397
Н	-3.799859	1.888137	2.543899
Н	-2.671553	0.532334	2.538079
Н	-2.820282	0.492257	-2.750538
Н	-4.011254	1.794021	-2.764559
Н	-4.431165	0.218090	-3.445678
Н	-6.991507	-2.883285	-0.768492
Н	-8.026516	-1.666377	-0.018645
Н	-7.048753	-2.729966	0.997351
Н	-2.579297	-1.237829	0.032634
Н	-3.083172	-3.425371	0.474988
Н	-2.452996	-5.818267	0.798628
Н	-0.037384	-6.442133	0.719103
Н	1.676206	-4.772581	0.337638
Н	3.248129	-3.965287	0.523666
Н	2.382104	-0.299479	-1.580330
Н	4.348921	-2.696533	2.304247
Н	2.698845	-2.087472	2.123801
Н	4.917847	-3.607832	-1.283977
Н	5.633625	-3.535752	0.320485
Н	2.274702	0.099537	0.918197
Н	3.594220	0.988816	0.169298
Н	4.438738	-1.363015	-2.557003
Н	4.812739	0.156566	-1.763367
Н	4.291434	-0.183961	2.293415
Н	6.458930	-1.656613	-1.140981
Н	5.998290	0.182017	0.497253
Н	6.317389	-1.336453	1.341891
Н	1.911508	-4.001506	-1.821101
Н	1.558463	-2.429961	-2.567990
Н	3.206453	-3.078669	-2.572013

M06 SCF energy: -2714.347983 a.u. Enthalpy at 298K: -2713.509401 a.u. Gibbs free energy at 298K: -2713.638328 a.u. Cartesian Coordinates 1.359307 -0.077438 -0.965475 Ru С 2.148973 0.829934 0.600603 1.762385 Ν 1.943476 1.282334 2.332486 С 2.726658 2.331363 С 3.929087 1.429416 2.037950 Ν 3.372369 0.461539 1.077132 4.136605 -0.708989 С 0.729897 С 5.157936 -0.629586 -0.236689

С	5.884840	-1.792718	-0.521333
С	5.654320	-2.995896	0.147907
С	4.688608	-3.014571	1.160282
С	3.926263	-1.888828	1.475246
С	2.925877	-1.945804	2.604340
С	5.545798	0.668202	-0.904871
С	6.424210	-4.245918	-0.207834
С	0.510186	2.645656	1.244901
С	0.394148	3.809117	0.462956
С	-0.817417	4.509030	0.500925
С	-1.729210	2.949383	2.080482
С	-0.541305	2.211159	2.075062
С	-1.888758	4.098798	1.299265
С	-0.415273	0.966421	2.923432
С	1.532669	4.302662	-0.396290
С	-3.172542	4.895066	1.343285
C1	2.480624	1.379355	-2.501977
Cl	0.839686	-2.267321	-0.165148
C	-0.378201	0 548677	-0 971236
C	-1.257709	0.379582	-2.118284
C	-2 647042	0 092973	-1 911169
C	-3 496977	-0 001399	-3 020506
C	-2 992487	0 147746	-4 314209
C	-1 638642	0 397623	-4 534080
C	-0 785101	0 509285	-3 442152
0	-2 998085	-0 083810	-0 613861
C	-4 310536	-0 476770	-0 094207
C	-4 025522	-0 689306	1 422692
C	-4 785052	-1 843284	-0 669772
C	-2 932896	-1 764714	1 622966
C	-5 305081	-1 152831	2 157365
C	-3 690184	-2 916487	-0 471001
C	-6 069645	-2 304457	0 062396
C	-3 406474	-3 107063	1 032672
C	-5 789329	-2 492094	1 566095
C	-4.693461	-3.562139	1.750133
C	-5 274937	0 696134	-0 324201
н	4 305635	0 913036	2 925847
н	4 761375	1 977488	1 580545
н	2 297820	2 153361	3 324974
и И	2 9623/3	2.10001	2 251379
и И	6 662118	-1 7/5823	-1 280771
н Н	1 521861	-3 93170/	1 7200771
ч Ч	3 057006	-1 115107	3 300111
и П	1 902510	_1 905/01	2 210605
и И	7 038058 1.902910	-2 878086	2.219090
ц П	5.030030	-2.0/0300 0 /7//67	-1 QEOGOE
11	0.000900	0.4/440/	T.000000

Н	6.241319	1.235220	-0.269176
Н	4.684329	1.300692	-1.124151
Н	6.634345	-4.854184	0.678993
Н	7.377084	-4.007575	-0.691902
Н	5.851257	-4.873895	-0.902716
Н	-0.922023	5.401965	-0.111549
Н	-2.549156	2.616724	2.713584
Н	-1.352322	0.765507	3.450621
Н	0.372068	1.063029	3.681661
Н	-0.173990	0.085048	2.319443
Н	2.422426	4.531850	0.204722
Н	1.246583	5.218617	-0.921988
Н	1.830419	3.556027	-1.139511
Н	-3.357875	5.407796	0.393679
Н	-3.136333	5.663775	2.127006
Н	-4.034991	4.254696	1.557515
Н	-0.853970	0.912007	-0.062119
Н	0.261994	0.749998	-3.592074
Н	-1.253840	0.517844	-5.542111
Н	-3.676919	0.064908	-5.154723
Н	-4.551184	-0.198845	-2.894137
Н	-3.682776	0.269179	1.834217
Н	-5.012054	-1.751541	-1.735679
Н	-2.736136	-1.874895	2.698680
Н	-1.994701	-1.461924	1.150449
Н	-6.099174	-0.398088	2.098795
Н	-5.073725	-1.274444	3.224193
Н	-2.769411	-2.636498	-0.993109
Н	-4.035403	-3.860426	-0.914385
Н	-6.890107	-1.591781	-0.090092
Н	-6.399252	-3.254377	-0.379551
Н	-2.618637	-3.859252	1.161261
Н	-6.709390	-2.808326	2.075462
H	-5.036803	-4.524581	1.345301
Н	-4.496291	-3.717701	2.820117
Н	-4.843232	1.605718	0.107463
Н	-5.454494	0.883721	-1.385468
Н	-6.245350	0.524534	0.145875

M06 SCF energy: -813.301727 a.u. Enthalpy at 298K: -812.893654 a.u. Gibbs free energy at 298K: -812.954759 a.u. Cartesian Coordinates C 2.659784 1.894974 -0.432065 C 2.847944 0.447663 -0.236493

С	1.731753	-0.421634	-0.284679
С	1.905986	-1.803597	-0.138330
С	3.175019	-2.336380	0.083832
С	4.285878	-1.491383	0.140336
С	4.117489	-0.120820	-0.032152
0	0.497839	0.115125	-0.569180
С	-0.567123	0.210843	0.441482
С	-1.369232	-1.120026	0.509224
С	-1.511938	1.304362	-0.126378
С	-1.839896	-1.522490	-0.906535
С	-2.615075	-0.952503	1.413971
С	-1.983448	0.908332	-1.544429
С	-2.757695	1.472963	0.774701
С	-2.758385	-0.424249	-1.483196
С	-3.536915	0.143832	0.844275
С	-3.993404	-0.258525	-0.573190
С	0.056562	0.607529	1.782931
С	3.511419	2.864396	-0.070877
Н	1.724936	2.172394	-0.911698
Н	4.987740	0.529372	-0.028296
Н	5.280000	-1.901224	0.295646
Н	3.295990	-3.410730	0.194340
Н	1.045210	-2.457696	-0.218444
Н	-0.727317	-1.903125	0.931405
Н	-0.953858	2.248609	-0.171541
Н	-2.381469	-2.477054	-0.851990
Н	-0.977615	-1.673070	-1.564347
Н	-2.325423	-0.712552	2.444438
Н	-3.152206	-1.909886	1.458567
Н	-1.123349	0.819175	-2.214532
Н	-2.629754	1.701826	-1.944660
Н	-2.478510	1.806101	1.781855
Н	-3.395740	2.261569	0.353304
Н	-3.079581	-0.709241	-2.493812
Н	-4.412308	0.263620	1.496346
Н	-4.666321	0.507392	-0.983592
Н	-4.564040	-1.197070	-0.532322
Н	0.724979	-0.177796	2.150568
Н	0.641029	1.526769	1.672427
Н	-0.703845	0.779427	2.547360
Н	4.446629	2.665345	0.446548
Н	3.289757	3.907120	-0.278695

M06 SCF energy: -2622.775283 a.u. Enthalpy at 298K: -2622.190296 a.u.

Gibbs	free	energy	at	298K:	-2622.	.31132	a.u.
Cartes	sian (Coordina	ates	5			

Ru	-0.179590	0.358056	0.000330
С	-0.126909	-1.642274	-0.002061
Ν	0.897468	-2.532117	-0.004433
С	0.449482	-3.939773	-0.003811
С	-1.081254	-3.813585	-0.012247
Ν	-1.286211	-2.355637	-0.003717
Н	-1.548593	-4.266697	0.868701
Н	-1.537423	-4.254407	-0.905365
Н	0.828451	-4.455679	0.885076
Н	0.838136	-4.459751	-0.885958
С	-2.626992	-1.829126	-0.001460
С	-3.295298	-1.629328	-1.228112
С	-4.590602	-1.103365	-1.195902
С	-5.245092	-0.813646	0.004196
С	-4.588963	-1.112720	1.201394
С	-3.293835	-1.638669	1.227760
Н	-5.102484	-0.925265	-2.139317
Н	-5.099606	-0.941895	2.146830
С	-2.704117	-2.075013	2.548014
Н	-3.026042	-3.100620	2.781780
Н	-1.615515	-2.041756	2.551359
Н	-3.050156	-1.429375	3.359716
С	-2.708171	-2.055774	-2.552749
Н	-3.048400	-1.398551	-3.357584
Н	-3.038246	-3.076142	-2.797715
Н	-1.619344	-2.031102	-2.555349
С	-6.623938	-0.196888	0.007965
Н	-7.200669	-0.507448	0.885938
Н	-7.190158	-0.473075	-0.888026
Н	-6.562892	0.899232	0.029885
С	2.307883	-2.276255	-0.001950
С	2.988422	-2.177473	-1.229897
С	4.371717	-1.968716	-1.200251
Н	4.906891	-1.879681	-2.143288
С	4.368540	-1.971529	1.202534
С	2.985164	-2.180296	1.228067
Н	4.901221	-1.884557	2.147181
С	5.080237	-1.866931	0.002185
С	2.243908	-2.248532	2.542476
Н	2.941330	-2.163281	3.381163
Н	1.703232	-3.196271	2.658663
Н	1.504819	-1.443092	2.629447
Н	1.707691	-3.189864	-2.663892
С	2.250603	-2.243578	-2.546312
Н	2.950521	-2.160066	-3.383099

H	1.513756	-1.436255	-2.635067
С	6.579670	-1.676713	0.004407
Н	6.916236	-1.128193	-0.881771
Н	7.100720	-2.643519	0.004797
Н	6.913703	-1.128877	0.891972
Cl	-0.591473	0.535707	-2.357670
Cl	-0.605860	0.532295	2.355855
С	1.607985	0.808463	0.006283
Н	2.424506	0.088885	0.010667
С	2.025982	2.199374	0.006146
С	1.070139	3.235181	0.003115
С	1.419890	4.577344	0.002372
С	2.780397	4.904492	0.004673
С	3.761273	3.909629	0.007784
С	3.385150	2.569847	0.008599
H	4.134946	1.783377	0.010928
H	4.812408	4.181724	0.009573
Н	3.067106	5.952052	0.004027
Н	0.670393	5.357734	0.000093
0	-0.236633	2.747584	0.001335
С	-1.333211	3.573200	-0.003520
F	-2.410158	2.801318	-0.004784
F	-1.351630	4.362140	-1.088466
F	-1.357545	4.366704	1.078043

С

С

M06 SCF energy: -2622.767547 a.u. Enthalpy at 298K: -2622.182489 a.u. Gibbs free energy at 298K: -2622.300607 a.u. Cartesian Coordinates Ru -0.694738 -0.771152 0.340193 С -1.197193 1.123553 0.082927 -0.473190 2.268541 0.154739 Ν С -1.2921863.475258 -0.081156С -2.721640 2.923438 -0.054615 Ν -2.500577 1.468238 -0.118872 С -3.624723 0.582781 -0.286834 С -4.400173 0.203020 0.825378 С -5.484709 -0.657190 0.608021 С -1.100560 -5.836744 -0.667227 С -0.626130 -5.099745 -1.759211 С -1.599248-4.003328 0.221620 С -3.283701 0.764230 -2.810578 С -4.170225 0.758980 2.210944

-2.063014

2.434254

-0.869929

0.248124

-6.983028

0.949037

С	1.527228	2.661430	1.508140
С	2.910731	2.871520	1.567714
С	3.092865	2.660497	-0.818093
С	1.719255	2.435531	-0.931998
С	3.709336	2.870911	0.421631
С	1.104880	2.135028	-2.279693
С	0.696566	2.649988	2.769595
С	5.204680	3.066986	0.503108
Cl	-1.193321	-0.823081	2.671158
Cl	-0.945014	-1.615423	-1.863987
С	1.147548	-0.722775	0.422084
С	1.915511	-1.923070	0.730442
С	3.286820	-2.023543	0.400622
С	4.034888	-3.163561	0.665664
С	3.421824	-4.259847	1.273652
С	2.070056	-4.198651	1.622593
С	1.333706	-3.049344	1.360063
0	3.947865	-0.908804	-0.141118
С	4.141210	-0.869415	-1.484317
F	4.785480	-1.956460	-1.949021
F	4.891564	0.206699	-1.748984
F	2.988216	-0.766218	-2.166507
Н	-3.326586	3.257294	-0.902429
Н	-3.253010	3.181250	0.869596
Н	-1.030051	3.923029	-1.047421
Н	-1.104439	4.217856	0.699363
Н	-6.075032	-0.974227	1.465202
Н	-5.387488	-0.922635	-2.765369
Н	-3.280560	1.862003	-2.819187
Н	-2.246271	0.422186	-2.844622
Н	-3.777790	0.429080	-3.727361
Н	-4.422570	0.017204	2.974099
Н	-4.816771	1.632891	2.376601
Н	-3.134797	1.053244	2.380456
Н	-7.546614	-1.830821	-1.780533
Н	-7.678186	-2.044420	-0.024200
Н	-6.615929	-3.092831	-0.970788
Н	3.373409	3.031270	2.539042
Н	3.701108	2.644654	-1.718783
Н	1.855293	2.224175	-3.070352
Н	0.282932	2.818371	-2.524683
Н	0.700316	1.116553	-2.315094
Н	0.186946	1.689409	2.906067
Н	-0.077755	3.428034	2.755265
Н	1.326763	2.830369	3.645562
Н	5.729040	2.202984	0.077899
Н	5.538550	3.190982	1.537854

H	5.524815	3.951024	-0.062441
H	1.727356	0.160426	0.170238
H	0.298159	-2.992771	1.682413
H	1.593753	-5.042492	2.112490
H	4.003497	-5.152816	1.482962
H	5.085732	-3.180793	0.399386

M06 SCF e	energy: -72	1.720958 a.u	•
Enthalpy	at 298K: -7	21.720958 a.	u.
Gibbs fre	e energy at	298K: -721	.616508 a.u.
Cartesian	Coordinate	S	
С	0.897645	1.971679	-0.335029
С	1.243237	0.547176	-0.199038
С	0.279380	-0.449950	-0.427869
С	0.562393	-1.808813	-0.323895
С	1.848204	-2.212497	0.030433
С	2.834546	-1.249782	0.262894
С	2.535072	0.103489	0.141201
0	-1.006087	-0.061956	-0.852887
С	-1.997801	-0.051148	0.073274
F	-3.099952	0.406336	-0.521946
F	-1.711608	0.741301	1.122259
F	-2.259107	-1.280072	0.564919
С	1.611611	3.003890	0.131066
H	-0.032397	2.174869	-0.858255
Н	3.318140	0.839406	0.295564
Н	3.843273	-1.555856	0.525294
Н	2.079313	-3.270322	0.113405
Н	-0.222463	-2.529490	-0.523674
Н	2.532943	2.879377	0.693977
Н	1.280177	4.025317	-0.028529

31-A

M06 SCF energy: -2662.064624 a.u. Enthalpy at 298K: -2661.448867 a.u. Gibbs free energy at 298K: -2661.569169 a.u. Cartesian Coordinates 0.121856 Ru 0.226961 0.044913 -0.400677 -1.705139 С -0.099786 -1.609313 -2.311354 -0.235146 Ν С -1.511417 -3.782617 -0.325221 -0.006412 -4.006201 С -0.499897 Ν 0.548549 -2.681637 -0.171100 С 1.976306 -2.524133 -0.056978

С	2.574624	-2.720841	1.208491
С	3.958110	-2.572387	1.315909
С	4.760122	-2.264911	0.210058
С	4.147100	-2.165456	-1.039020
С	2.763697	-2.316641	-1.206234
С	2.200121	-2.354392	-2.606930
С	1.766508	-3.138323	2.413727
С	6.247828	-2.055117	0.367942
С	-2.920383	-1.739593	-0.128230
С	-3.509092	-1.593330	1.142571
С	-4.811407	-1.086294	1.210596
С	-4.913023	-0.897785	-1.181952
С	-3.613448	-1.401736	-1.305151
С	-5.531092	-0.736510	0.062590
С	-2.971189	-1.542813	-2.664578
С	-2.747913	-1.913992	2.407841
С	-6.950206	-0.226027	0.163152
Cl	0.781468	0.161837	2.369147
Cl	0.354521	0.449002	-2.328215
С	-1.504405	1.073326	0.230520
С	-1.573551	2.520299	0.245477
С	-0.381118	3.275577	0.216198
С	-0.393061	4.665367	0.215314
С	-1.625955	5.324933	0.260163
С	-2.825770	4.608129	0.296268
С	-2.797420	3.216926	0.284607
0	0.763943	2.506833	0.170148
С	1.958832	2.962675	0.801644
С	2.983100	3.413866	-0.225931
F	2.542771	4.460961	-0.958746
F	4.099381	3.810640	0.425807
F	3.317161	2.430756	-1.071352
Н	0.260468	-4.279299	-1.528375
Н	0.395037	-4.770254	0.171795
Н	-2.100908	-4.152810	-1.168812
Н	-1.903018	-4.242198	0.590920
Н	4.422785	-2.706645	2.290262
Н	4.757949	-1.980180	-1.920200
Н	2.362109	-3.349546	-3.045879
Н	1.136370	-2.123766	-2.640159
Н	2.703927	-1.626621	-3.249389
Н	2.416307	-3.246504	3.287362
Н	1.273880	-4.106160	2.249333
Н	0.998346	-2.400765	2.656042
Н	6.782983	-2.253068	-0.566665
Н	6.664896	-2.705369	1.144923
Н	6.469932	-1.019721	0.658446

Н	-5.272865	-0.960384	2.187839
Н	-5.454423	-0.623439	-2.084877
Н	-3.664329	-1.228569	-3.450744
Н	-2.684187	-2.581386	-2.873546
Н	-2.062226	-0.935287	-2.743465
Н	-3.389854	-1.786537	3.284584
Н	-1.875775	-1.260055	2.527146
Н	-2.377311	-2.946075	2.416883
Н	-7.119554	0.307156	1.104700
Н	-7.671789	-1.053127	0.124361
Н	-7.191874	0.452996	-0.661451
Н	-2.460082	0.559550	0.320741
Н	-3.720415	2.643402	0.307445
Н	-3.774483	5.135384	0.327555
Н	-1.642100	6.411145	0.254992
Н	0.529344	5.228434	0.142904
Н	2.357392	2.117980	1.366648
H	1.747139	3.785078	1.488854

M06 SCF e	energy: -260	52.048288 a.1	J.
Enthalpy	at 298K: -26	561.432725 a	.u.
Gibbs fre	ee energy at	298K: -266	1.554552 a.u.
Cartesiar	n Coordinates	5	
Ru	-0.924131	0.756103	-0.532756
С	-1.373507	-1.101564	-0.033446
Ν	-0.649508	-2.249366	-0.099301
С	-1.416965	-3.430467	0.346003
С	-2.847808	-2.890399	0.425387
Ν	-2.639213	-1.433893	0.350425
С	-3.749436	-0.548146	0.591450
С	-4.664813	-0.260535	-0.439694
С	-5.735470	0.594698	-0.148128
С	-5.939793	1.121595	1.127906
С	-5.060765	0.741199	2.148331
С	-3.969407	-0.095376	1.910497
С	-3.078262	-0.516969	3.054038
С	-4.590281	-0.907195	-1.802900
С	-7.078704	2.074453	1.404667
С	0.752913	-2.426275	-0.350270
С	1.176396	-2.779641	-1.642556
С	2.543040	-3.008579	-1.846536
С	3.011974	-2.570377	0.467553
С	1.660396	-2.327875	0.723429
С	3.474187	-2.907489	-0.810471
С	1.209613	-1.928693	2.110346

С	0.201583	-2.900900	-2.789343
С	4.945708	-3.153176	-1.050356
Cl	-1.553494	0.488684	-2.822456
Cl	-1.092786	1.896616	1.548118
С	0.917100	0.736468	-0.639196
С	1.631521	1.914914	-1.112146
С	2.907363	2.244885	-0.571648
С	3.565063	3.412862	-0.958611
С	2.981348	4.259727	-1.905772
C	1.745758	3.948141	-2.470338
С	1.081548	2.791361	-2.072013
0	3.418187	1.363027	0.343973
С	4.575347	1.734528	1.054363
С	4.942469	0.591313	1.984725
F	3.922701	0.229472	2.779585
- न	5.342305	-0.501668	1.300724
- F	5.970895	0.980829	2.767189
- H	-3.357050	-3.156957	1.355844
H	-3.468783	-3.224818	-0.414642
H	-1.043248	-3.777691	1.317204
Н	-1.305848	-4.247012	-0.372905
Н	-6.435251	0.839626	-0.944330
Н	-5.227785	1.106459	3.159200
Н	-2.959756	-1.606785	3.098847
H	-2.083208	-0.072881	2.959963
Н	-3.503975	-0.190080	4.007572
Н	-5.070702	-0.275094	-2.555628
H	-5.124595	-1.868391	-1.797761
Н	-3.566174	-1.082069	-2.133100
Н	-7.504281	1.913070	2.401387
Н	-7.882072	1.965603	0.668610
Н	-6.735544	3.116613	1.364145
H	2.884418	-3.269348	-2.845885
H	3.723677	-2.472222	1.282031
Н	2.073900	-1.758899	2.757597
Н	0.590506	-2.704345	2.579836
Н	0.619252	-1.006059	2.095135
Н	0.720756	-3.207314	-3.702488
Н	-0.308615	-1.951726	-2.985819
Н	-0.575717	-3.648633	-2.585080
H	5.170093	-3.233929	-2.118569
H	5.278870	-4.081936	-0.569174
Н	5.550904	-2.340017	-0.634152
 H	1.524606	-0.061210	-0.219101
H	0.135092	2.522894	-2.531624
Н	1.302313	4.598372	-3.218011
Н	3.507063	5.163696	-2.200756
		· · · · ·	

Н	4.526656	3.677881	-0.534383
H	4.403279	2.633308	1.659640
Н	5.433495	1.907219	0.392664

M06 SCF energy: -761.004052 a.u. Enthalpy at 298K: -760.818447 a.u. Gibbs free energy at 298K: -760.873156 a.u. Cartesian Coordinates 1.533171 1.967629 0.117174 С С 1.873492 0.536169 0.058864 С 0.842899 -0.431700 -0.011297 С 1.134886 -1.797053-0.060774С 2.465095 -2.223289 -0.041109С 3.498356 -1.2910850.034051 С 3.195238 0.068353 0.088499 0 -0.437399 0.066248 -0.037056 С -1.515430 -0.836531 -0.034269 С -2.791896 -0.013520 0.002983 F 0.756368 -2.857124 1.102813 F -2.904015 0.785468 -1.071350F -3.852079 -0.851597 0.014405 С 2.360868 2.988110 -0.143295Н 0.504291 2.188487 0.387161 Η 4.000655 0.791391 0.176289 -1.618782 4.533370 Η 0.061954 Η 2.683847 -3.286780 -0.078786 -2.533270 Η 0.341058 -0.119414Η -1.502447 -1.490410 0.847283 -1.457950 Η -1.534751 -0.938936 3.391257 2.846997 -0.459586 Η Η 2.020793 4.015689 -0.057285

32-A

M06 SCF energy: -2439.525611 a.u. Enthalpy at 298K: -2438.882958 a.u. Gibbs free energy at 298K: -2439.002416 a.u. Cartesian Coordinates Ru -0.40471000 0.69195800 0.05066900 С -0.78315800-1.27917200-0.01129400Ν 0.03091400 -2.36657300 -0.05612400 С -0.70237400 -3.64849700 -0.05650100 С -2.16127000 -3.20395000 -0.20453100 Ν -2.06758000 -1.74422700 -0.03721100 Η -2.81879400 -3.63711800 0.55545900

Н	-2.57547500	-3.44427800	-1.19113800
Н	-0.51800200	-4.18796300	0.88033000
Н	-0.36167600	-4.28093900	-0.88219700
С	-3.27909600	-0.96593000	-0.04432400
С	-3.87264500	-0.60071900	-1.26938800
С	-5.05629000	0.14651200	-1.23351300
С	-5.67919000	0.49384300	-0.03341500
С	-5.11540400	0.03041800	1.16037500
С	-3.93285800	-0.71355600	1.18227400
Н	-5.50670800	0.45019800	-2.17639900
Н	-5.61585900	0.24071000	2.10315600
С	-3.42827700	-1.28586300	2.48475000
Н	-3.44214900	-2.38421300	2.46486500
Н	-2.40785700	-0.96171300	2.70029300
Н	-4.06716300	-0.96595500	3.31351800
С	-3.34363000	-1.06897000	-2.60447000
Н	-3.50956000	-0.31115700	-3.37494000
Н	-3.87365500	-1.98062500	-2.91749500
Н	-2.27378800	-1.27280500	-2.58303400
С	-6.93341200	1.33645800	-0.02237400
Н	-7.58394000	1.07679200	0.81997000
Н	-7.50738700	1.21439600	-0.94715400
Н	-6.69140400	2.40352300	0.07212700
С	1.46240800	-2.43762500	-0.01028900
С	2.17588700	-2.50654500	-1.22047100
С	3.56238500	-2.68577900	-1.15977000
Н	4.12448500	-2.73686800	-2.08997300
С	3.49836100	-2.71117300	1.24135500
С	2.11118300	-2.53344200	1.23547400
Н	4.01141500	-2.78201700	2.19832800
С	4.23927800	-2.80160700	0.05804300
С	1.34726400	-2.41456500	2.53295300
Н	2.02397400	-2.51514900	3.38694600
Н	0.57785700	-3.19110100	2.62908200
Н	0.83782000	-1.44696000	2.61146300
Н	0.73089500	-3.14950600	-2.71095600
C	1.47533600	-2.35886000	-2.55048800
Н	2.19530000	-2.41320600	-3.37273600
Н	0.94608300	-1.40120300	-2.61984000
C	5.73071700	-3.04682800	0.09825900
Н	6.21784900	-2.71610700	-0.82547700
Н	5.95449500	-4.11555300	0.21727100
Н	6.20198000	-2.52617200	0.93966000
Cl	-0.79690100	1.03515400	-2.30117400
Cl	-0.75397300	0.91770600	2.42853200
C	1.44684100	0.76070000	0.01848700
Н	2.09009300	-0.11431900	-0.00103600

С	2.11689800	2.03862900	0.00743200
С	3.53006000	2.18278100	-0.05311500
С	4.11244700	3.45533300	-0.06771200
С	3.29474600	4.58593500	-0.02321000
С	1.90308500	4.49151300	0.03601300
С	1.33820700	3.21908200	0.05020500
Н	1.29219300	5.38512400	0.06747500
Н	3.75640200	5.56945400	-0.03578600
Н	5.18764600	3.57627000	-0.11399700
0	4.23677400	1.02678000	-0.09743300
С	5.65242600	1.09251000	-0.17788000
Н	5.99355500	0.05712500	-0.21251100
Н	6.08170900	1.58939400	0.70147900
Н	5.97773700	1.61513700	-1.08636500
0	0.00246800	2.96809200	0.10742100
С	-0.93943700	4.04000300	0.15972600
Н	-0.76332600	4.65528200	1.04777000
Н	-0.87599800	4.64465100	-0.75055800
Н	-1.91688100	3.56491900	0.22570400

M06 SCF e	energy: -53	8.460335 a.u	
Enthalpy	at 298K: -5	38.247684 a.	u.
Gibbs fre	ee energy at	298K: -538	.298289 a.u.
Cartesian	n Coordinate	S	
С	-0.027314	1.971601	0.000027
С	0.021382	0.502982	0.00038
С	1.295234	-0.126685	0.000195
С	1.433634	-1.518779	0.000117
С	0.291890	-2.315414	-0.000098
С	-0.977683	-1.745634	-0.000207
С	-1.109992	-0.350957	-0.000096
0	2.371475	0.717384	0.000499
С	3.676107	0.166246	-0.000291
0	-2.327908	0.264411	-0.000153
С	-3.501196	-0.531048	0.000242
С	-1.079893	2.806473	-0.000196
Н	0.958729	2.425359	0.000134
Н	-1.851678	-2.384674	-0.000414
Н	0.393124	-3.397291	-0.000197
Н	2.412638	-1.981177	0.000284
Н	3.859432	-0.443453	0.894338
Н	4.358625	1.018420	-0.000528
Н	3.858440	-0.443206	-0.895283
Н	-4.336379	0.172071	0.000589
Н	-3.561370	-1.164007	-0.894705

Н	-3.560678	-1.164097	0.895167
Н	-2.108600	2.475664	-0.000293
Н	-0.903849	3.879311	-0.000251

M06 SCF e	energy: -20	639.37114 a.u	
Enthalpy	at 298K: -2	2638.524401 a	.u.
Gibbs fre	ee energy at	t 298K: -263	8.652743 a.u.
Cartesiar	n Coordinate	es	
Ru	-0.204729	0.879459	-0.002058
Cl	-0.282378	1.128271	2.390671
Cl	0.551659	1.294999	-2.241245
0	-1.153710	3.067709	-0.108655
Ν	1.894545	-1.170229	0.381673
Ν	-0.065400	-2.162457	0.413077
С	0.550315	-0.961194	0.209879
С	2.171857	-2.498985	0.963111
Н	2.317875	-2.409080	2.046014
Н	3.071159	-2.937443	0.528506
С	0.896237	-3.261589	0.629934
Н	0.989700	-3.866512	-0.282375
Н	0.558553	-3.910442	1.441351
С	2.994556	-0.267368	0.116708
С	3.583424	0.459924	1.179593
С	4.676683	1.287705	0.885803
Н	5.135624	1.860804	1.685338
С	5.193137	1.374574	-0.400422
Н	6.039518	2.025084	-0.606062
С	4.640770	0.606231	-1.420927
Н	5.069816	0.660224	-2.415632
С	3.548887	-0.237525	-1.191465
С	3.154113	0.308906	2.637023
Н	2.160913	-0.145959	2.656751
С	3.035310	1.652009	3.379901
Н	4.009286	2.140457	3.504928
Н	2.621566	1.483579	4.380327
Н	2.362874	2.334681	2.855824
С	4.141604	-0.613078	3.388295
Н	4.254445	-1.587998	2.901075
Н	3.798806	-0.783416	4.416128
Н	5.138126	-0.157648	3.438287
С	3.061491	-1.143189	-2.322850
Н	2.006592	-1.363113	-2.142330
С	3.154246	-0.502992	-3.719820
Н	2.675793	0.477870	-3.739182
Н	2.644445	-1.144449	-4.448223

Н	4.193478	-0.401240	-4.055984
С	3.847422	-2.474501	-2.331762
Н	4.913061	-2.291826	-2.516178
Н	3.477158	-3.130179	-3.129441
Н	3.768221	-3.020977	-1.386821
С	-1.438269	-2.532133	0.192060
С	-1.851169	-2.894088	-1.111979
C	-3.178451	-3.305319	-1.289924
с Н	-3 521128	-3 578781	-2 283901
C	-4 062873	-3 373691	-0 217194
е н	-5 088124	-3 697787	-0 376945
C	-3 629239	-3 036607	1 061815
ч	-1 322817	-3 102993	1 89/889
C	-2 31/331	-2 61/678	1 208/13
C	_0 010375	-2 961247	-2 320062
	0.910373	2.001247	1 000602
П	0.034111	-2.400331 1.277410	-1.909002
C II	-0.702809	-4.277419	-2.093093
H	-0.330302	-4.9/264/	-2.132045
H	0.024494	-4.248/36	-3./13536
H ~	-1.635481	-4.693969	-3.292177
C	-1.415/11	-1.8969/3	-3.414668
Н	-2.402026	-2.191321	-3.793167
H	-0.719833	-1.901847	-4.261531
Н	-1.472598	-0.869994	-3.042766
С	-1.877097	-2.286541	2.722687
H	-0.895154	-1.809010	2.671879
С	-2.820227	-1.282653	3.410959
H	-2.890306	-0.354265	2.838034
Н	-2.430190	-1.028810	4.402802
Н	-3.828677	-1.692636	3.546024
С	-1.748245	-3.573290	3.565612
Н	-2.717402	-4.075100	3.676385
Н	-1.378466	-3.334789	4.569816
Н	-1.056770	-4.294138	3.112830
С	-1.984190	0.529182	-0.336421
H	-2.389426	-0.469006	-0.490884
C	-2.944186	1.606342	-0.409297
C	-4.321155	1.364776	-0.585848
е Н	-4 657368	0 334985	-0 676660
C	-5 231375	2 414760	-0 635120
ч	-6 290723	2 218532	-0 769642
C	-1 767896	3 727907	-0 509825
С Ц	-5 170300	J . 12 / JU / A 5561 A7	-0 517110
11 C	2 100101	4.0050014/	0.24/140
	-3.400404	4.000223	-0.339044
п	-3.U8U1/9	2.033322	-0.249838
	-2.499/12	2.94/219	-0.28/642
C	-0.501682	4.377401	-0.1451/0

Н	-1.103565	5.044748	0.482738
С	0.867889	4.200805	0.493305
Н	0.773606	3.775531	1.495818
Н	1.360098	5.177308	0.564680
Н	1.496125	3.542840	-0.116125
С	-0.429793	4.887416	-1.581815
Н	0.143551	4.183961	-2.192089
Н	0.064520	5.865619	-1.598310
Н	-1.423122	5.000196	-2.026318

M06 SCF e	energy: -26	39.349362 a.	u.
Enthalpy	at 298K: -2	638.502898 a	.u.
Gibbs fre	ee energy at	298K: -263	8.634188 a.u.
Cartesian	n Coordinate	S	
Ru	-0.246329	-1.175765	-0.256757
Cl	-0.639379	-2.373474	1.776222
Cl	-0.501683	-0.933936	-2.602624
0	4.106110	-0.318681	-1.100832
Ν	-2.413442	0.662219	0.384592
Ν	-0.551285	1.418265	1.292259
С	-1.063663	0.454937	0.475222
С	-2.880021	1.692129	1.331281
Н	-3.375436	1.216714	2.186047
Н	-3.592717	2.364506	0.849364
С	-1.577528	2.384399	1.733221
Н	-1.434531	3.345563	1.223411
Н	-1.498681	2.554127	2.809968
С	-3.357044	0.040615	-0.519883
С	-4.112676	-1.079760	-0.100352
С	-5.019386	-1.636753	-1.013338
Н	-5.599114	-2.505922	-0.719296
С	-5.203223	-1.090166	-2.277470
Н	-5.907475	-1.543756	-2.970064
С	-4.506169	0.056868	-2.643664
Н	-4.683344	0.499445	-3.619016
С	-3.585126	0.654548	-1.778017
С	-4.065205	-1.633772	1.321132
Н	-3.153771	-1.270986	1.802479
С	-4.013435	-3.171377	1.374536
Н	-4.943416	-3.626166	1.012625
Н	-3.868910	-3.498637	2.409914
Н	-3.179623	-3.561540	0.785654
С	-5.278984	-1.120177	2.128245
Н	-5.334067	-0.025400	2.140295
Н	-5.221749	-1.469240	3.166373

Н	-6.218906	-1.489586	1.700407
С	-2.953770	1.985963	-2.180214
Н	-2.124906	2.185049	-1.495308
С	-2.375308	1.998341	-3.606651
Н	-1.651212	1.192693	-3.742695
Н	-1.874522	2,956697	-3.792769
H	-3.160669	1.894420	-4.364552
C	-3 983577	3 128505	-2 025727
с Н	-4 819030	2 992412	-2 722574
ч	-3 51867/	1 097/28	-2 2/5162
ч		3 175866	-1 0160/1
C C	0 922467	1 770119	1 5/087/
C	1 472042	$1 \cdot 7 / 2 \pm 10$	1.540074
C	1.4/2942	2.040470	0.059290
	2.771356	3.008104	0.952630
H Q	3.290446	3./3933/	0.2/4336
C	3.403694	2.64/296	2.119045
H	4.409997	2.989/54	2.346832
C	2./41801	1./96050	2.998096
H	3.238776	1.479306	3.910182
С	1.440964	1.345071	2.737240
С	0.815041	3.166217	-0.637873
Н	-0.173434	2.707643	-0.721054
С	0.617799	4.695643	-0.586003
H	0.045865	5.004007	0.297011
Н	0.081003	5.041015	-1.477424
Н	1.579821	5.220676	-0.553778
С	1.594998	2.764762	-1.905105
Н	2.589626	3.226546	-1.923592
Н	1.056513	3.101475	-2.798470
Н	1.715969	1.680070	-1.976116
С	0.738810	0.455325	3.757734
Н	-0.179713	0.077555	3.301835
С	1.581933	-0.775059	4.139706
H	1.839774	-1.363567	3.255294
Н	1 008681	-1 422255	4 812436
н	2 507111	-0 493590	4 657479
C	0 359167	1 262273	5 017688
U U	1 251560	1 63902275	5 532475
ц П	-0 102050	0 629543	5 703001
п	-0.192030	0.029343	J.723224
H G	-0.269825	2.12/992	4.777510
	1.5/1292	-0.855606	-0.139093
H	1.984559	0.144218	-0.024060
	2.525994	-1.925105	-0.3/956/
C	2.199164	-3.2/9683	-0.138140
H	1.233247	-3.507617	0.301829
C	3.099874	-4.307677	-0.388/10
H	2.823660	-5.337097	-0.182769

С	4.362846	-3.998055	-0.894300
Н	5.079488	-4.789448	-1.098045
С	4.728982	-2.674489	-1.143577
Н	5.714966	-2.470391	-1.542095
С	3.829259	-1.631779	-0.889803
С	5.371074	0.089681	-1.664890
Н	6.168469	-0.509943	-1.207870
С	5.361973	-0.099361	-3.181829
Н	5.178265	-1.141330	-3.459309
Н	6.325126	0.204588	-3.607559
Н	4.574492	0.515167	-3.630910
С	5.562689	1.545006	-1.255831
Н	4.774697	2.170434	-1.687128
Н	6.531671	1.910835	-1.612592
Н	5.526156	1.646661	-0.167329

M06 SCF	energy: -29)10.820282 a.	u.
Enthalp	y at 298K: -2	2909.83086 a.	u.
Gibbs f	ree energy at	298K: -290	9.966944 a.u.
Cartesi	an Coordinate	es	
Cl	0.410876	0.306509	-2.400259
Cl	0.478280	-0.419861	2.282351
Ru	0.090694	-0.304564	-0.095999
С	-1.587133	0.741175	0.199326
С	-3.790219	1.469805	0.651999
Н	-4.473753	1.246789	1.474616
Н	-4.384714	1.661659	-0.251376
Ν	-2.871504	0.337544	0.422516
С	-3.470650	-0.958545	0.244426
С	-3.958973	-1.322527	-1.032512
С	-3.815387	-0.431667	-2.264076
Н	-3.242537	0.455194	-1.979388
С	-3.026035	-1.124919	-3.391603
H	-2.018356	-1.392804	-3.062074
Н	-2.922394	-0.447381	-4.246739
H	-3.536289	-2.029979	-3.742561
С	-5.193935	0.040362	-2.771494
Η	-5.800969	-0.803703	-3.119885
H	-5.073233	0.732139	-3.613403
H	-5.763165	0.553473	-1.987358
С	-4.602270	-2.560461	-1.160766
H	-4.977749	-2.865172	-2.133605
С	-4.771169	-3.403552	-0.066027
Н	-5.276050	-4.358601	-0.187277
С	-4.300634	-3.017239	1.185704

Н	-4.444601	-3.676353	2.036665
С	-3.646896	-1.792188	1.372441
С	-3.174692	-1.401951	2.769620
Н	-2.548006	-0.511429	2.677852
С	-2.299252	-2.490725	3.417630
H	-2 861127	-3 415478	3 597859
ч	-1 923/56	-2 136863	1 38/002
п п	-1 $/32181$	-2 720079	2 792501
	1 275262	1 050070	2.79201
	-4.3/5265	-1.059970	2.07/244
H	-4.993709	-0.258/43	3.254941
H	-4.026692	-0./34130	4.664329
Н	-5.023876	-1.932615	3.822125
С	-2.821136	2.601688	0.966909
Н	-3.107996	3.556838	0.525241
H	-2.700324	2.740719	2.047288
N	-1.563082	2.101393	0.377963
С	-0.471645	3.021473	0.137750
С	-0.330958	3.586431	-1.158886
С	-1.326172	3.334997	-2.292416
Н	-1.771796	2.349479	-2.138078
С	-0.688808	3.329319	-3.693986
Н	-0.378894	4.334141	-4.006612
H	-1 424895	2 979355	-4 426967
н	0 173294	2 661356	-3 736206
C	-2 152699	1 393931	-2 263612
U U	-2 005000	4.333331 A A12125	_1 312067
п	-2.990000	4.412125	-1.512907
H	-3.180331	4.19/4/6	-3.060520
H	-2.042303	5.398159	-2.424353
С	0./1/133	4.489422	-1.3/06/3
Н	0.857719	4.91/445	-2.35/334
С	1.576971	4.859247	-0.341405
H	2.385042	5.561003	-0.532480
С	1.378989	4.355096	0.937704
Н	2.024855	4.684655	1.745242
С	0.349191	3.443932	1.213654
С	0.099149	3.049595	2.668396
Н	-0.523089	2.151175	2.679419
С	1.385278	2.706357	3.442300
Н	1.963161	1.933763	2.930404
н	1.124378	2.320011	4,433892
H	2 020852	3 587371	3 591918
C	-0 649433	4 186919	3 402096
с н	-0 028672	5 N89610	3 155201
 U		3 80/7//	A 100670
11	U.UOYYOZ 1 503500	J.U04/44 A A6A710	4.4200/9
п	-1.003022	4.404/10 1 (07002	2.9U1/93
U	2.09/883	-1.00/993	-0.298909
C	1./423/3	-2.922158	-0.409712

С	2.598934	-4.026222	-0.465030
Н	3.670150	-3.911513	-0.405600
С	2.067874	-5.312029	-0.598064
Н	2.753042	-6.154653	-0.639223
С	0.690245	-5.528846	-0.679201
Н	0.295437	-6.534731	-0.784272
С	-0.163879	-4.435524	-0.617925
Н	-1.241440	-4.570233	-0.668225
С	0.336529	-3.125194	-0.476145
С	-0.563563	-2.002120	-0.377152
Н	-1.619112	-2.242024	-0.493053
С	3.484395	-1.090478	-0.210908
С	3.326141	0.439051	-0.127619
Н	2.723440	0.691413	0.752248
Н	2.794121	0.793837	-1.016124
С	4.292516	-1.422919	-1.480190
Н	3.753586	-1.036130	-2.353035
Н	4.405725	-2.500940	-1.623446
С	4.185251	-1.581245	1.069626
Н	4.291317	-2.670081	1.082458
Н	3.570155	-1.306880	1.934243
С	4.713762	1.109944	-0.025949
Н	4.570034	2.195990	0.033844
С	5.546026	0.757720	-1.274133
Н	5.056734	1.144360	-2.177872
Н	6.536625	1.229607	-1.215975
С	5.692751	-0.773565	-1.365235
Н	6.276282	-1.039606	-2.255993
С	6.404288	-1.300642	-0.100060
Н	7.412467	-0.870196	-0.031271
Н	6.528130	-2.391293	-0.161200
С	5.585361	-0.927933	1.154860
Н	6.093194	-1.302131	2.052987
С	5.438290	0.604200	1.237030
Н	4.871835	0.881206	2.135995
Н	6.427578	1.074827	1.321305

M06 SCF energy: -2910.802022 a.u. Enthalpy at 298K: -2909.812978 a.u. Gibbs free energy at 298K: -2909.950363 a.u. Cartesian Coordinates Cl 0.204806 1.837697 -1.768899 Cl 2.061937 -2.385631 -1.502643 Ru 0.867343 -0.349447 -1.111495 C 1.847321 -0.128877 0.584567
С	2.741714	-0.417720	2.747961
Н	2.991698	-1.342511	3.273915
Н	2.473394	0.340406	3.493936
Ν	1.614246	-0.647278	1.822187
С	0.365615	-1.093277	2.384675
С	-0.488510	-0.134417	2.979035
C	-0.142858	1.351928	3.051175
С Н	0 817795	1 502250	2 553186
C	-1 160385	2 238577	2 310770
с ц	-1 226323	1 968517	1 252364
п п	-0 855936	3 290508	2 369000
п п	-2 159466	2 159409	2 754430
II C	0 017610	2.1JJ400 1.914024	<i>L</i> 514706
	0.017019	1 7//025	4.JI4/00 5.061615
п	-0.929749	1./440JJ 2.050516	J.00101J
H	0.340037	2.059516	4.550420
H	0./53/34	1.206406	5.053/19
С	-1.6/9494	-0.58/286	3.559770
Н	-2.35/450	0.130296	4.013246
С	-2.004693	-1.940674	3.573443
H	-2.936118	-2.271459	4.025060
С	-1.129964	-2.870565	3.020570
Н	-1.383664	-3.925847	3.053089
С	0.073430	-2.474760	2.422058
С	1.032012	-3.531943	1.884292
Н	1.797441	-3.024312	1.292297
С	0.343692	-4.540310	0.947002
Н	-0.403204	-5.147180	1.473411
Н	1.090248	-5.223937	0.528158
Н	-0.146482	-4.033438	0.111539
С	1.730635	-4.268681	3.047624
Н	2.259711	-3.575936	3.713227
н	2.461161	-4.988171	2.659374
н	1 007103	-4 821749	3 659120
C	3 851400	0 049797	1 805713
с н	4 415357	0 902988	2 187397
н	4 556610	-0.756772	1 578523
N	3 100592	0./10835	0 589611
C	3 72/216	1 246044	-0 /22950
C	3 121075	2 634790	-0 113578
C	2.424073	2.034790	-0.443370
C II	2.40/4/9	3.293793	0.367706
H	1.733864	2.338814	0.854299
C	1.728635	4.514266	0.011//8
н	2.39106/	5.3/4319	-0.145002
Н	0.964578	4.827235	0.733074
Н	1.229084	4.273997	-0.928880
C	3.264440	3.720600	1.834313
Н	3.766113	2.880579	2.325117

Н	2.585374	4.177462	2.564763
Н	4.033281	4.461205	1.583205
С	4.075077	3.431167	-1.390618
Н	3.848570	4.490502	-1.439266
С	5.009690	2.895395	-2.271631
Н	5.499871	3.535809	-3.000359
С	5.326346	1.545374	-2.205216
Н	6.075650	1.139227	-2.877184
С	4.704648	0.692925	-1.281513
С	5.176871	-0.757059	-1.201389
Н	4.451013	-1.323001	-0.612529
С	5.250989	-1.441067	-2.579388
Н	4.296958	-1.370421	-3.107085
Н	5.482694	-2.504334	-2.450785
Н	6.036039	-1.007902	-3.210561
С	6.552643	-0.836223	-0.502026
Н	7.319823	-0.316882	-1.088947
Н	6.865761	-1.881593	-0.392355
Н	6.540069	-0.378645	0.493862
0	-3.616622	-1.078070	-0.187707
С	-3.094086	-1.743071	-1.263278
С	-3.914942	-2.542281	-2.066329
Н	-4.964937	-2.631020	-1.813933
С	-3.391743	-3.229818	-3.160628
Н	-4.048815	-3.841493	-3.773416
С	-2.029319	-3.143741	-3.457008
Н	-1.614575	-3.683248	-4.303301
С	-1.193562	-2.397571	-2.636132
Н	-0.125543	-2.400067	-2.823068
С	-1.688494	-1.688484	-1.512449
С	-0.798293	-0.982286	-0.599641
Н	-1.222793	-0.751340	0.377379
С	-4.414311	0.138833	-0.377581
С	-5.789802	-0.145326	-1.013761
Н	-6.310881	-0.916732	-0.431047
Н	-5.665066	-0.524751	-2.034033
С	-3.667319	1.181904	-1.223698
Н	-3.512445	0.799314	-2.240426
Н	-2.672333	1.372894	-0.805219
С	-4.624027	0.669123	1.048132
Н	-3.646376	0.831156	1.513437
Н	-5.142601	-0.095216	1.641488
С	-6.619597	1.159544	-1.055638
Н	-7.595988	0.944278	-1.509165
С	-5.870185	2.208466	-1.903166
Н	-5.747301	1.845039	-2.932605
Н	-6.456971	3.135556	-1.959615

С	-4.491560	2.489120	-1.270372
Н	-3.947725	3.227519	-1.872081
С	-4.687260	3.026481	0.162654
Н	-5.254022	3.967509	0.138500
Н	-3.713116	3.252173	0.616163
С	-5.439804	1.978248	1.009087
Н	-5.571333	2.351687	2.033262
С	-6.817820	1.697875	0.375431
Н	-7.371800	0.967614	0.981554
H	-7.418783	2.617121	0.351932

35-A

M06 SCF energy: -2910.819091 a.u. Enthalpy at 298K: -2909.829432 a.u. Gibbs free energy at 298K: -2909.966916 a.u. Cartesian Coordinates Cl -0.284399 0.460697 2.426647 Cl -0.579047 -0.161156 -2.273035 0.027429 Ru -0.1015020.354254 -0.829927 С 1.495081 0.168056 Ν -0.543701 0.279011 2.824657 С 3.520767 0.699871 0.077604 С 3.871104 1.477490 1.205406 С 3.489527 1.082125 2.628679 Η 0.267494 2.568200 2.763491 С 2.228209 3.394598 2.803694 Η 3.480741 3.075825 3.557316 4.377619 Η 2.476537 1.872161 Η 1.917354 2.582132 2.861402 4.723500 3.405421 С 0.575155 Η 5.210434 -0.267719 2.900221 Η 4.432606 0.244761 4.409568 1.366777 3.517768 Η 5.474551 С 4.615640 2.644531 0.990304 Η 4.892291 3.261433 1.840210 С 5.009035 3.026548 -0.289227Η 5.587505 3.935699 -0.432431 С 4.668196 2.237753 -1.384434 Η 4.984948 2.538553 -2.379034 С 3.926437 1.059395 -1.229382 С 3.600036 0.221995 -2.463668 -2.154879 Η 2.952882 -0.603596 С 2.818327 1.023194 -3.522814 Η 1.868047 1.387737 -3.123242 2.587902 0.381345 -4.380583 Η Η 1.876990 -3.892384 3.398722

С	4.881255	-0.382823	-3.075694
Н	5.551649	0.400290	-3.449390
Н	4.628638	-1.034836	-3.920093
Н	5.443481	-0.974997	-2.344072
С	3.654096	-1.759744	0.398781
Н	4.438842	-1.615584	1.144706
н	4 127409	-1 988711	-0 565437
C	2 6213/1	-2 801071	0.805201
U U	2.021341	-3 777102	0.344886
11	2.770303	2 020270	1 002220
П N	2.J0J0IJ 1. 266120	-2.930270	1.090000
IN C	1.300139	-2.100400	0.320200
	0.193253	-3.016693	0.152911
C	-0.572092	-3.406807	1.280007
С	-0.201181	-3.042/59	2./1619/
H	0.483416	-2.191694	2.689234
С	-1.409068	-2.607911	3.566396
H	-1.956219	-1.793120	3.087430
H	-1.061309	-2.245039	4.540010
H	-2.099536	-3.438906	3.754558
С	0.508463	-4.234240	3.399728
H	-0.171402	-5.089600	3.495719
H	0.838591	-3.954100	4.407433
Н	1.384346	-4.576894	2.837899
С	-1.671501	-4.251367	1.069361
Н	-2.275028	-4.554721	1.918948
С	-1.992956	-4.719625	-0.198115
Н	-2.853254	-5.369306	-0.338168
С	-1.192432	-4.379377	-1.284130
Н	-1.431523	-4.778715	-2.263838
С	-0.078291	-3.545321	-1.138484
С	0.840514	-3.327249	-2.341084
Н	1.356395	-2.374580	-2.201553
C	0.096892	-3.245217	-3.686701
H	0.793881	-2.920560	-4.467891
Н	-0 722085	-2 525050	-3 645427
н	-0 299039	-4 220386	-3 995819
C	1 897684	-1 152739	-2 127050
U U	2 518002	-1 525010	_1 520113
ц П	2.510002	-1 281740	-3 280651
п	2.304000	-4.201740 5 406670	-3.200031
П	1.414003	- 3.420073	-2.309700
	1 725020	1.990037	-0.273018
H G	L./3583U	2.141379	-0.44/113
	-U.11/445	3.203918	-0.306946
C	0.509394	4.45/495	-0.468382
H	1.588849	4.4//432	-0.595417
C	-0.221670	5.638172	-0.449088
Н	0.273700	6.596657	-0.570032

С	-1.605482	5.573293	-0.266593
Н	-2.193702	6.486846	-0.245563
С	-2.262039	4.349355	-0.115382
Н	-3.336093	4.344468	0.012043
С	-1.527260	3.159182	-0.142224
0	-2.057541	1.906510	-0.013693
С	-3.477237	1.780578	0.332240
Н	-3.676086	2.574166	1.061708
С	-3.749739	0.431915	1.016511
Н	-3.055390	0.319342	1.855085
С	-3.610522	-0.749842	0.036564
Н	-2.585177	-0.831670	-0.339581
Н	-3.826744	-1.684997	0.570108
С	-5.208585	0.483933	1.534583
Н	-5.431924	-0.449037	2.068561
Н	-5.329359	1.300608	2.260358
С	-4.394983	1.940580	-0.898396
Н	-4.159968	2.874492	-1.421726
С	-4.228163	0.753604	-1.869253
Н	-3.202021	0.712454	-2.249067
Н	-4.892232	0.904137	-2.731781
С	-4.577511	-0.564953	-1.149941
Н	-4.462636	-1.403030	-1.848783
С	-6.029372	-0.510334	-0.631095
Н	-6.728283	-0.391975	-1.471220
Н	-6.289243	-1.453157	-0.129524
С	-6.184392	0.669255	0.352121
Н	-7.215351	0.708553	0.728383
С	-5.850773	1.987320	-0.377064
Н	-5.992021	2.842184	0.300388
Н	-6.534212	2.137180	-1.223331

35-в

M06 SCF er	nergy: -29	10.796876 a.u	•
Enthalpy a	at 298K: -2	909.807387 a.u	۱.
Gibbs free	e energy at	298K: -2909	.945481 a.u.
Cartesian	Coordinate	S	
Ν	2.972515	-0.754376	0.521341
С	3.970345	-0.308278	1.510484
С	3.221452	0.793358	2.262297
Ν	2.068317	1.066353	1.379070
С	1.934788	0.125556	0.397934
Н	4.861884	0.070459	0.996597
Н	4.270350	-1.138767	2.153888
Н	3.817054	1.699817	2.393298
Н	2.873109	0.466468	3.249122

Ru	0.756006	0.091540	-1.183740
Cl	2.198367	1.612569	-2.329471
Cl	-0.276381	-2.046899	-1.193389
С	3.139927	-2.043794	-0.111443
С	3.916313	-2.162433	-1.285957
С	4.075447	-3.440902	-1.838668
С	3.515235	-4.563359	-1.240719
С	2.804139	-4.432699	-0.051901
Н	2.393672	-5.318121	0.424723
Н	4.658415	-3.555732	-2.747255
Н	4.249175	-0.061100	-1.499448
С	4.653914	-0.985881	-1.918135
С	2.610348	-3.182835	0.543890
С	1.915158	-3.114942	1.901841
H	1.748956	-2.061232	2.144043
С	1.153231	2.099589	1.802350
С	0.154450	1.777234	2.753903
С	-0.682065	2.803759	3.208880
С	-0.527838	4.111523	2.760349
C	0.487871	4.417291	1.861239
С	1.355841	3.431392	1.372456
Н	0.618246	5.444482	1.535086
Н	-1.460422	2.574152	3.930940
С	-0.018135	0.377478	3.338966
C	2.506209	3.844172	0.460460
H	2.927418	2.940292	0.014710
H	0.637246	-0.304389	2.790366
С	-0.685104	1.082253	-0.616575
H	-0.959529	1.114684	0.438661
C	-1.641277	1.684576	-1.544190
C	-3.042675	1.527683	-1.326333
C	-3.952577	2.236073	-2.118979
C	-3,493379	3.051044	-3.156454
C	-2.129792	3.165988	-3.424351
C	-1.216739	2.483314	-2.624719
H	-0.150896	2.584356	-2.799044
H	-1.777682	3.789561	-4.240477
Н	-4 217404	3 588450	-3 763490
Н	-5.017989	2.149000	-1.944576
0	-3 391555	0 661542	-0 339432
C	-4 767664	0 264220	-0 151516
С Н	-5 375595	1 174945	-0 048067
C	-4.824909	-0.531856	1.165072
C	-5 314177	-0 610084	-1 303972
Ч Н	-4 403515	0 089488	1 965145
C	-4 025695	-1 847758	1 036518
C	-6 303005	-0 855/06	1 470851
\smile	0.0000000	0.000400	T 1 0001

Н	-5.250759	-0.063285	-2.250630
С	-4.513677	-1.923913	-1.416785
С	-6.795010	-0.926698	-0.990824
Н	-4.066523	-2.387661	1.992798
Н	-2.972118	-1.638771	0.824724
С	-4.617445	-2.711304	-0.095052
Н	-6.884078	0.071063	1.588031
Н	-6.368806	-1.393850	2.425826
С	-6.895271	-1.713397	0.332658
H	-3.462528	-1.718143	-1.647999
H	-4.916787	-2.518515	-2.247980
H	-7.381155	0.001476	-0.924725
Н	-7 222439	-1 512561	-1 815402
Н	-4 046052	-3 644073	-0 179276
C	-6 096206	-3 028020	0 210038
н	-7 948522	-1 936085	0 549284
н	-6 522298	-3 653005	-0.587257
н	-6 175958	-3 603105	1 143354
C	4 461513	-0 903247	-3 443501
н	4 931368	0.009219	-3 826456
и П	4.991900	-1 75/126	-3 961367
и П	3 101721	-0 865400	-3 709225
C	6 158220	-1 052118	-1 573777
U U	6 622051	-1 9/20/7	-2 004020
п u	6 680853	-1.940047	-2.004020
п u	6 330152	-0.170309 -1.092770	-1.970000
П	0.550152	-1.002770	-0.491309
	2.021019	-3.700003	2 022046
п	2.995275	-4.//////	2.033040
H	3.803134	-3.220878	3.03/646
H	2.352210	-3.598624	3.98/826
C	0.538126	-3.803518	1.916556
H 	-0.116352	-3.383053	1.149409
H	0.624267	-4.882233	1./40/22
H	0.066034	-3.6/12//	2.898296
С	0.400033	0.344965	4.825082
H	-0.263037	0.971510	5.433220
H	0.344168	-0.677889	5.216247
H	1.422261	0.710988	4.973923
С	-1.452093	-0.160074	3.182599
Н	-1.775657	-0.145234	2.138930
Н	-1.506641	-1.195598	3.537649
Н	-2.169338	0.427356	3.767961
С	3.614499	4.549459	1.272989
H	3.248306	5.486062	1.711103
Н	3.983842	3.927005	2.096609
Н	4.465317	4.792169	0.625370
С	2.049987	4.743932	-0.702579

Н	1.711284	5.726908	-0.352929
Н	2.885269	4.908389	-1.391922
Н	1.239853	4.276578	-1.267616
Н	-1.189154	4.894115	3.122968
Н	3.647900	-5.543789	-1.690705

36-A

M06 SCF e	energy: -22	46.449104 a.	u.
Enthalpy	at 298K: -2	245.900502 a	.u.
Gibbs fre	ee energy at	298K: -224	6.001359 a.u.
Cartesiar	n Coordinate	S	
Ru	-0.067865	-0.427482	-0.122822
Cl	0.109553	-0.379172	-2.537613
Cl	-1.005962	-0.988660	2.021489
0	0.902974	-2.592758	-0.170599
Ν	-2.144174	1.632818	-0.057571
Ν	-0.195378	2.641658	-0.077149
С	-0.799972	1.419401	-0.075603
С	-2.505674	3.060011	-0.000775
Н	-2.907020	3.317462	0.985451
Н	-3.262394	3.292755	-0.755357
С	-1.161298	3.743349	-0.268744
Н	-1.079049	4.125041	-1.294753
Н	-0.959492	4.567209	0.420725
С	-3.159947	0.626569	-0.184322
С	-4.074757	0.391219	0.862636
С	-5.077665	-0.559813	0.641944
Н	-5.785904	-0.762971	1.441543
С	-5.174593	-1.265425	-0.558565
Н	-5.963252	-2.001451	-0.690416
С	-4.255863	-1.026520	-1.578687
Н	-4.316991	-1.566972	-2.518966
С	-3.255988	-0.069992	-1.394743
Н	-2.536708	0.135130	-2.180721
С	-3.974743	1.093175	2.194599
Н	-4.564581	0.563624	2.948718
Н	-4.355384	2.122655	2.151217
Н	-2.936419	1.119321	2.539103
С	1.190204	2.939219	-0.295967
С	1.927574	3.571285	0.725058
С	3.264884	3.893868	0.457325
Н	3.853718	4.374063	1.235375
С	3.853295	3.602582	-0.774201
Н	4.894098	3.861257	-0.949961
С	3.106008	2.975345	-1.772004
Н	3.556487	2.734867	-2.730599

С	1.770678	2.650735	-1.535402
Н	1.182009	2.133731	-2.286257
С	1.321982	3.869198	2.076608
Н	0.675510	4.756980	2.049845
Н	2.104619	4.064579	2.815981
Н	0.711180	3.034401	2.435430
С	1.663982	-0.092231	0.408831
Н	2.026985	0.885885	0.727088
С	2.634674	-1.161326	0.454199
С	3.984595	-0.933117	0.785092
Н	4.295898	0.082712	1.014949
С	4.902376	-1.977550	0.809776
Н	5.941226	-1.790811	1.064350
С	4.473036	-3.272569	0.504926
Н	5.181169	-4.096630	0.523179
С	3.139931	-3.537037	0.177079
Н	2.836489	-4.551788	-0.048537
С	2.224850	-2.483985	0.148779
С	0.271091	-3.901903	-0.338594
Н	0.948864	-4.499643	-0.958927
С	-1.022630	-3.670706	-1.105160
Н	-1.734599	-3.096541	-0.503425
Н	-1.476804	-4.640180	-1.340043
Н	-0.830737	-3.130690	-2.036067
С	0.051818	-4.551380	1.025058
Н	0.993124	-4.704014	1.561755
Н	-0.428136	-5.528128	0.894228
Н	-0.592940	-3.913193	1.636377

36-в

M06 SCF e	energy: -2240	5.426483 a.u	l .
Enthalpy	at 298K: -22	245.878588 a	.u.
Gibbs fre	ee energy at	298K: -224	5.983056 a.u.
Cartesia	n Coordinates	5	
Ru	-0.462031	-0.708851	-0.620337
Cl	-0.732796	-0.262763	-2.962850
Cl	-0.838520	-1.960035	1.379991
0	3.649078	-0.621007	1.313088
Ν	-2.642463	0.981705	0.240496
Ν	-0.829865	2.223096	0.091148
С	-1.315501	0.957863	-0.054231
С	-3.115063	2.314408	0.652215
Н	-3.338545	2.329023	1.724614
Н	-4.022828	2.583213	0.104762
С	-1.917024	3.203615	0.300707
Н	-2.072704	3.773621	-0.624116

Н	-1.661810	3.905136	1.098366
С	-3.551927	-0.121329	0.102270
С	-4.175196	-0.683007	1.234469
С	-5.087729	-1.721656	1.018798
Н	-5.571039	-2.176315	1.879988
С	-5.367463	-2.202972	-0.261236
Н	-6.073521	-3.019012	-0.388563
С	-4.732813	-1.642842	-1.367868
Н	-4.936089	-2.009823	-2.369559
С	-3.833567	-0.591195	-1.185762
Н	-3.336831	-0.136371	-2.036475
С	-3.856801	-0.228438	2.637604
H	-4.192236	-0.973668	3.364699
Н	-4.354429	0.717569	2.890867
Н	-2.778203	-0.097104	2.767799
С	0.450211	2.735388	-0.308016
С	1.287076	3.322612	0.661050
C	2.502236	3.869132	0.226904
H	3.167609	4.315015	0.962193
C	2.877344	3.839243	-1.115887
H	3.829445	4.265062	-1.420433
C	2.033011	3.255512	-2.061242
H	2.317232	3.221107	-3.108930
C	0 814876	2 710555	-1 658687
е Н	0 155496	2 234110	-2 376566
C	0 913997	3 362604	2 124592
е н	0 263621	4 217380	2 357500
Н	1 807519	3 463676	2 748228
н	0 382063	2 456219	2 431027
C	1 299325	-0 287561	-0 2745027
с н	1 576081	0 528200	0 396292
C	2 101736	-1 130771	-0 710398
C	2.380369	-1 809562	-1 951070
н	1 516116	-1 684062	-2 596578
C	3 468681	-2 563726	-2 376796
н	3 436844	-3 061171	-3 341694
C	1 607304	-2 659/50	-1 571202
ч	5 163290	-3 2/1/62	-1 902587
C	J. 405250 / 650153	-2 013158	-0 335136
с ц	5 522622	-2 081110	0.307027
С	3 561103	-2.001110	0.307027
C	2.201132	1 170/0/	0.100004 2 128575
С Н	2.000009 1 861501	-1 265626	2.420J/J 2 Nangas
 C	1.001JUI	-0 100000	2.030323
	2.091100 2 015016	-U.IUZ340 0 110570	J.JUJ/03 J QADETO
п u	2 310000		3.0233/3
п U	2.313000	-0.430314	4.3/3009
п	440030	0.021030	J.IZØIØZ

С	3.512818	-2.488903	2.903274
Н	3.527123	-3.235152	2.102644
Н	2.928404	-2.900725	3.733561
Н	4.540849	-2.325444	3.247697

37-A

M06 SCF e	energy: -25	17.898431 a.	u.
Enthalpy	at 298K: -2	517.207239 a	.u.
Gibbs fre	ee energy at	298K: -251	7.315455 a.u.
Cartesia	n Coordinate	S	
Ru	0.403953	0.012448	-0.004437
Cl	0.231603	-0.156022	2.412787
Cl	-0.057685	0.804640	-2.236549
0	-1.566387	-1.342230	-0.179013
Ν	2.049549	2.431273	0.095782
Ν	3.375991	0.699852	0.325024
С	2.078568	1.067450	0.140088
С	3.332956	3.036741	0.492054
Н	3.264551	3.408047	1.523374
Н	3.593258	3.874575	-0.159116
С	4.296247	1.855358	0.356994
Н	4.986878	1.765420	1.199800
Н	4.881202	1.906323	-0.568679
С	0.868648	3.249142	0.106555
С	0.031700	3.223517	1.227175
Н	0.256703	2.542377	2.041815
С	-1.089799	4.054050	1.283398
Н	-1.737918	4.025957	2.154818
С	-1.356768	4.921832	0.226212
Н	-2.222347	5.578223	0.260392
С	-0.509517	4.948633	-0.883678
Н	-0.729525	5.619204	-1.710709
С	0.613540	4.118957	-0.973114
С	1.486682	4.136597	-2.202564
Н	1.046103	4.771499	-2.977181
Н	1.591020	3.124535	-2.605826
Н	2.492295	4.526087	-1.994903
С	3.903484	-0.610619	0.560628
С	4.725190	-1.225244	-0.405265
С	5.263613	-2.482071	-0.095813
Н	5.894986	-2.975524	-0.831099
С	4.994502	-3.113447	1.118936
Н	5.423366	-4.090094	1.326892
С	4.167784	-2.493429	2.057144
Н	3.940181	-2.981220	3.000485
С	3.629249	-1.237783	1.780769

H	2.961438	-0.748071	2.481815
С	4.995762	-0.590235	-1.749633
Н	4.109930	-0.073620	-2.134024
Н	5.290581	-1.348800	-2.481308
Н	5.811961	0.143329	-1.701889
С	1.094691	-1.627427	-0.467583
H	2.152686	-1.816508	-0.654824
С	0.223211	-2.762759	-0.652620
С	0.748320	-4.027850	-0.983997
H	1.825797	-4.123826	-1.091479
С	-0.080963	-5.127445	-1.163435
Н	0.333979	-6.098197	-1.416852
С	-1.459782	-4.962405	-1.012785
H	-2.126124	-5.809845	-1.150460
С	-2.015443	-3.722454	-0.685873
H	-3.086695	-3.646099	-0.581304
С	-1.183210	-2.613993	-0.501317
С	-2.960788	-0.878931	0.012077
С	-2.827091	0.619592	0.336468
H	-2.318551	1.122451	-0.493292
H	-2.210752	0.736738	1.234123
С	-4.223881	1.238457	0.564465
Н	-4.098035	2.304210	0.792877
С	-4.914306	0.524248	1.742839
H	-4.334231	0.665088	2.664467
H	-5.909927	0.954829	1.917931
С	-5.036457	-0.978023	1.420616
Н	-5.520615	-1.499899	2.256036
С	-5.872706	-1.163193	0.135564
Н	-5.980150	-2.232479	-0.096125
Н	-6.886206	-0.768276	0.288621
С	-5.194579	-0.428587	-1.041386
Н	-5.790650	-0.562064	-1.953237
С	-3.786089	-1.024672	-1.280093
H	-3.881803	-2.070079	-1.587259
H	-3.268945	-0.495743	-2.089186
С	-3.626289	-1.580262	1.210943
H	-3.000898	-1.430146	2.098794
Н	-3.713050	-2.659452	1.056363
С	-5.073160	1.071727	-0.710811
Н	-6.070996	1.507351	-0.563020
Н	-4.607601	1.606585	-1.548952

37-в

M06 SCF energy: -2517.879853 a.u. Enthalpy at 298K: -2517.189505 a.u.

Gibbs	free	energy	at	298K:	-251	7.300614	a.u.
Cartes	sian (Coordina	ates	S			

Ru	-1.373688	0.138765	1.001153
С	-2.186515	0.364229	-0.762516
Ν	-1.913919	1.223028	-1.782612
С	-2.825361	1.026419	-2.930783
С	-3.919274	0.133082	-2.337847
Ν	-3.265358	-0.385436	-1.123888
Н	-4.213983	-0.680482	-3.005231
Н	-4.819812	0.697281	-2.061107
Н	-2.299820	0.537037	-3.758493
Н	-3.201471	1.991583	-3.279836
С	-3.986349	-1.283115	-0.262903
С	-4.675431	-0.765681	0.838776
С	-5.413951	-1.616720	1.663407
С	-5.478267	-2.976136	1.365720
С	-4.797464	-3.481027	0.255660
С	-4.035787	-2.655315	-0.577533
Н	-5.936634	-1.211981	2.525097
Н	-4.840980	-4.545210	0.037860
С	-3.257962	-3.232517	-1.733705
Н	-3.577024	-2.823448	-2.701005
Н	-2.190515	-3.018389	-1.614644
Н	-3.385924	-4.318135	-1.778990
С	-0.977748	2.309283	-1.815588
С	-1.193843	3.414405	-0.984667
С	-0.332796	4.508593	-1.039826
Н	-0.499206	5.357303	-0.382908
С	0.941316	3.402684	-2.766480
С	0.098626	2.283712	-2.724232
Η	1.783836	3.395843	-3.453804
С	0.734163	4.505597	-1.939272
С	0.374017	1.095245	-3.616104
Η	1.432666	1.058098	-3.889775
Η	-0.199067	1.142187	-4.552294
H	0.120096	0.151939	-3.121647
CL	-2.610706	1.941906	1.988901
CL	-0.761423	-2.159181	0.792822
С	0.287817	0.873252	0.665752
Н	0.670494	0.955817	-0.351693
С	1.240729	1.220237	1.707960
C	2.638171	1.212593	1.424638
C	3.550332	1.616646	2.403878
C	3.106546	1.989207	3.6/3439
C	1./42238	1.9/9444	3.9/6988
C	0.823104	1.608153	3.002874
Н	-0.240941	1.660791	3.212377

Н	1.396546	2.284416	4.960288
Н	3.830130	2.300161	4.422577
Н	4.605456	1.654112	2.157512
0	3.054532	0.878406	0.164902
С	3.695001	-0.413184	-0.107974
С	5.207266	-0.352329	0.180372
С	3.061746	-1.571182	0.678921
С	3.474339	-0.632278	-1.612824
Н	5.378866	-0.192592	1.251396
Н	5.644648	0.499687	-0.356509
С	5.871683	-1.678636	-0.256606
Н	1.980891	-1.613932	0.500463
Н	3.204367	-1.417441	1.756294
С	3.724636	-2.899670	0.245047
Н	3.896766	0.217927	-2.164631
Н	2.396486	-0.651699	-1.814084
С	4.130603	-1.956703	-2.054844
Н	6.948118	-1.626821	-0.046819
С	5.239518	-2.844457	0.532617
С	5.644800	-1.896653	-1.766586
Н	3.267392	-3.720594	0.810811
С	3.497696	-3.121216	-1.264793
Н	3.963299	-2.101346	-3.130326
Н	5.415889	-2.711535	1.608882
Н	5.712946	-3.793238	0.245132
Н	6.107876	-1.081873	-2.340556
Н	6.127877	-2.829312	-2.088380
Н	3.944438	-4.075215	-1.576832
Н	2.422151	-3.183508	-1.476329
Н	-2.018722	3.391086	-0.280728
Н	1.410196	5.354627	-1.991222
Н	-4.618596	0.296893	1.052513
Н	-6.053194	-3.648214	1.997072

38-A

M06 SCF energy: -2517.89657 a.u. Enthalpy at 298K: -2517.204843 a.u. Gibbs free energy at 298K: -2517.313609 a.u. Cartesian Coordinates 0.357463 Ru -0.020906 0.038628 -0.201037 -0.765507 Cl -2.190798 Cl 0.314141 0.178199 2.452866 0 -1.533046 1.590749 -0.001467 1.834191 -2.543962 3.286314 -0.901093 Ν 0.103133 Ν 0.189233 С 1.956555 -1.186112 0.106920

С	3.101928	-3.225441	0.420394
Н	3.253688	-4.095174	-0.223403
Н	3.087773	-3.565353	1.464620
С	4.127194	-2.116549	0.177707
Н	4.888870	-2.055896	0.959526
Н	4.628719	-2.227200	-0.790612
С	0.611289	-3.288631	0.228042
С	0.214414	-4.154390	-0.811241
С	-0.930695	-4.931291	-0.602045
Н	-1.259223	-5.599391	-1.394331
С	-1.659703	-4.861144	0.586961
С	-1.252290	-3.998465	1.602814
Н	-1.809192	-3.934613	2.533264
С	-0.109256	-3.216653	1.425161
C	3.915717	0.370889	0.381871
С	3.742451	1.030386	1.603767
C	4.376188	2.250133	1.835196
H	4.226079	2.763987	2.780196
C	5 198130	2 801056	0 850744
C	5.368009	2.137007	-0.364430
н	5 996458	2 576951	-1 135329
C	4 732303	0 915780	-0 629419
C	1 158154	1 553826	-0 471892
н	2 198475	1 625754	-0 791445
C	0 423140	2 793925	-0 506590
C	1 082134	4 010066	-0.780101
с ч	2 146604	3 978587	-0 997792
C	0 403075	5 221359	-0 748158
с ч	0.403075	6 151817	-0 95//59
C C	-0 959578	5 224438	-0 /39693
с u	-1 506322	6 162979	-0 405015
	-1 6/9/29	0.102979 A 037136	_0 178243
U U	-2 705370	4.037130	-0.170243
II C	-0 967112	2 816282	-0 220501
C	-2 932955	2.010202 1 53730 <i>1</i>	0.220301
с u	-3 0/0703	2 351/22	1 156751
	-3 01/175	1 720056	_0 7/5228
U U	-3.914473	2 632073	-0.745220
П	-5 331574	2.032073	-1.300002
	-J.JJJ/4	1.04/033	-0.137939
н	-3.300000	2.720200	0.042621
п С	-0.UJ0JL0 5 601000	2.U14//9 0 560/2/	-0.943031
	-0.00100U	0.000434	0.030102
п С	-0.004201	0.03/301	1.0/0140
	-4.04481/	U.34681/	1./01/U0
п		-0.304644	2.320921
п	-4.6809/5	L.L&U6L3	2.4//UL6
C	-J.ZZ4991	U.ZI3900	⊥.⊥⊃644/

Н	-2.485995	0.080284	1.953115
С	-3.207155	-0.989815	0.192004
Н	-2.213607	-1.134256	-0.244698
Н	-3.438113	-1.901997	0.757786
С	-4.234200	-0.776256	-0.936396
Н	-4.203990	-1.630513	-1.624315
С	-5.647133	-0.639744	-0.331896
Н	-5.921522	-1.561152	0.200816
Н	-6.390691	-0.498487	-1.129138
С	-3.860412	0.509843	-1.700236
H	-2.858961	0.409042	-2.132932
Н	-4.560750	0.679275	-2.529883
Н	-2.544021	-5.479857	0.714821
Н	5.700789	3.748947	1.023442
С	0.968459	-4.230917	-2.115185
Н	1.980691	-4.636749	-1.986966
Н	0.444664	-4.879789	-2.823557
Н	1.058338	-3.235012	-2.560280
С	4.896285	0.248863	-1.975520
Н	5.663287	-0.537030	-1.954927
Н	3.960922	-0.211293	-2.311279
Н	5.206098	0.977816	-2.730673
Н	3.077344	0.596917	2.343409
Н	0.223672	-2.538307	2.204002

38-B

M06 SCF energy: -2517.878764 a.u. Enthalpy at 298K: -2517.187494 a.u. Gibbs free energy at 298K: -2517.29871 a.u. Cartesian Coordinates -1.372729 0.263521 -0.985859 Ru Cl -0.659112 -2.017193 -1.026899 Cl -2.701624 2.119884 -1.727762 0 3.114923 0.736317 -0.439461 Ν -3.170867 -0.517798 1.138254 Ν -1.825245 1.040966 1.917122 С -2.118909 0.287711 0.822450 С -3.792475 -0.144121 2.420342 Η -4.041073 -1.030171 3.009597 Η -4.716776 0.418283 2.233586 С 0.715264 -2.700573 3.065043 Η -3.086553 1.634576 3.513292 Η -2.142412 0.163334 3.828950 С -3.903521 -1.340688 0.213808 С -3.902998 -2.739750 0.378588 С -4.682955 -3.492969 -0.505171

Н	-4.690511	-4.575161	-0.402427
С	-5.428534	-2.892063	-1.521814
С	-5.413160	-1.507108	-1.671737
Н	-5.987030	-1.027458	-2.459188
С	-4.657861	-0.728521	-0.792640
С	-0.905945	2.136029	2.031288
С	-1.146437	3.301813	1.294590
С	-0.299171	4.399903	1.428233
Н	-0.485047	5,296220	0.843740
C	0.778259	4.340492	2.313172
C	1.008290	3.178610	3.048245
H	1 857319	3 129202	3 725716
C	0 180380	2 053983	2 924907
C	0 284799	1 003821	-0 664694
с Н	0 716931	1 036069	0 337263
C	1 177423	1 400977	-1 742873
C	0 692616	1 960405	-2 948293
с н	-0 377384	2 108416	-3 059702
C	1 563318	2 384928	-3 946157
н	1 167946	2 828549	-4 855177
C	2 9/3680	2 259822	-3 764715
ч	3 628980	2.239022	-1 537832
C	3 450678	1 698086	-2 592168
U U	1 519718	1 501130	-2 /38050
П	4.JI9/IO 2.586072	1 261049	-2.430030 -1.597591
C	2.030552	_0 710203	-1.307301
	2 046197	-0.710295	-0.204952
П	2.040107 1 1/1129	-1 443300	-0.020344 -1 0/2531
	4.141120	-1.443390	-1.042JJI 2 111256
П	4.043492	-1.213740	-2.111330
	3.957629	-2.902///	-0.010304
н	2.9//4/3	-3.200200	-1.193496
H	4./1/992	-3.511559	-1.390623
C	4.083550	-3.284/65	0.685159
H	3.956560	-4.364223	0.840839
C	2.985/66	-2.519672	1.453374
H	3.045693	-2.745500	2.52/201
H	1.9916/1	-2.835325	1.11039/
C	3.165492	-1.000596	1.236314
H	2.380625	-0.450509	1./69554
С	4.555124	-0.561113	1.743541
H	4.678524	0.519696	1.607295
H	4.634385	-0.765040	2.820694
C	5.652929	-1.32/266	0.975140
Н	6.641890	-1.016520	1.337898
С	5.472571	-2.844659	1.194828
Н	5.576030	-3.086458	2.262202
H	6.260560	-3.398347	0.665050

С	5.529813	-1.008044	-0.529494
Н	5.675757	0.065757	-0.696849
Н	6.311904	-1.533119	-1.095067
Н	-6.016345	-3.509168	-2.195944
Н	1.443424	5.192146	2.426005
С	-3.057151	-3.416428	1.428102
Н	-3.312147	-3.094956	2.445848
Н	-3.186660	-4.501934	1.384418
Н	-1.998314	-3.191160	1.261045
С	0.481788	0.805970	3.722564
Н	-0.086264	0.772472	4.662260
Н	0.242610	-0.102096	3.159695
Н	1.542312	0.767979	3.989330
Н	-1.979749	3.323791	0.600356
Н	-4.638763	0.352119	-0.889991

Mes-C

M06 SCF	energy: -	-2211.97056191	a.u.
Enthalp	y at 298K:	-2211.359315	a.u.
Gibbs f:	ree energy	at 298K: -22	211.474863 a.u.
Cartesia	an Coordina	ates	
Ru	0.386698	0.837894	-0.537314
С	0.772725	-0.938566	0.212287
Ν	-0.016366	-1.998142	0.537262
С	0.757970	-3.174563	0.979722
С	2.173192	-2.604559	1.141230
Ν	2.061492	-1.289441	0.489476
Н	2.937214	-3.214243	0.649993
Н	2.456226	-2.482132	2.193888
Н	0.708655	-3.965650	0.221482
Н	0.348297	-3.573261	1.912741
С	3.219113	-0.440485	0.371218
С	3.625184	0.346938	1.468243
С	4.757401	1.154368	1.316083
С	5.504881	1.170499	0.136166
С	5.121850	0.313677	-0.900828
С	3.996324	-0.509349	-0.805697
Н	5.063725	1.781528	2.150563
Н	5.718642	0.276046	-1.809492
С	3.666457	-1.466024	-1.925730
Н	3.547156	-2.493121	-1.558192
Н	2.738390	-1.182799	-2.431570
Н	4.470687	-1.470581	-2.667714
С	2.940073	0.283488	2.812819
Н	3.032948	1.237957	3.337673
Н	3.409310	-0.486900	3.442207

H	1.875168	0.066154	2.730066
С	6.695532	2.087358	-0.016822
Н	7.456958	1.651129	-0.672494
Н	7.161241	2.306377	0.949917
Н	6.396298	3.046609	-0.459456
С	-1.438547	-2.117971	0.413306
С	-2.240706	-1.792843	1.523770
С	-3.626242	-1.948375	1.405963
Н	-4.256411	-1.692842	2.255303
С	-3.389153	-2.732733	-0.853226
С	-1.997681	-2.596399	-0.786596
Н	-3.834094	-3.093211	-1.778268
С	-4.219258	-2.420680	0.229293
С	-1.138557	-2.915886	-1.986959
Н	-1.753558	-3.294096	-2.809021
Н	-0.386866	-3.681449	-1.758775
Н	-0.599849	-2.029708	-2.343056
Н	-0.887786	-1.923170	3.219200
С	-1.633431	-1.241138	2.792487
Н	-2.405589	-1.079064	3.550565
Н	-1.126653	-0.285321	2.610820
С	-5.715152	-2.618016	0.140220
Н	-6.252359	-1.919866	0.790942
Н	-5.997916	-3.633047	0.449664
Н	-6.078383	-2.478983	-0.883541
Cl	0.425864	2.122720	1.496378
Cl	0.784197	0.348468	-2.853199
С	-1.452639	0.815632	-0.644396
Н	-2.147633	0.102828	-0.188124
0	-2.049908	1.804076	-1.284607
С	-3.494085	1.936706	-1.210775
С	-3.879018	2.983110	-0.172856
Н	-3.925023	0.954425	-0.979293
Н	-3.806240	2.230311	-2.216611
С	-5.398245	3.194511	-0.100173
Н	-3.492483	2.672597	0.806785
Н	-3.377909	3.926851	-0.421932
С	-5.797091	4.251686	0.935122
Н	-5.774659	3.490912	-1.089423
Н	-5.889759	2.241339	0.141806
Н	-6.884411	4.382305	0.969239
Н	-5.461232	3.968336	1.939692
Н	-5.349822	5.224371	0.698638

DIPP-C

M06 SCF energy: -2447.710947 a.u.

Enthalpy	at	2981	<:	-2	44	6.	91	9	20	1	a.	u	•					
Gibbs fre	e e	energ	JЛ	at	2	98	8K:		-	24	47	. ()4	63	92	2	a.	u.
Cartesiar	n Co	ordi	Lna	ite	S													
Ru	-0	.067	737	8		C).6	59	69	98			1	.1	5	44	23	3
С	-0.	6643	391		_	0.	19	99	67	1		-().	48	32	29	5	
Ν	0.	0127	779)	_	0.	84	19	78	3		-1	l.	47	5	83	1	
С	-0.	8869	962		_	1.	33	34	98	6		-2	2.	54	0	13	0	
С	-2.	1480	68	8	_	0.	51	4	46	2		-2	2.	28	5	61	5	
N	-1.	9745	584		_	0.	11	.3	78	9		-().	87	6	51	3	
H	-3.	0697	77C)	_	1.	08	32	36	9		-2	2.	42	0	11	9	
H	-2.	1902	214			0.	37	73	65	2		-2	2.	92	72	26	9	
Н	-1.	0573	398	8	_	2.	41	4	33	0		-2	2.	42	8	65	6	
Н	-0.	4481	L91		_	1.	15	53	72	9		-3	3.	52	42	22	1	
С	-3.	0992	235)		0.	37	73	31	1		-().	10	6	68	0	
С	-3.	5372	285)		1.	71	1	86	0		-().	26	2	61	3	
С	-4.	6486	517			2.	12	28	99	4		().	48	3.	54	5	
С	-5.	3216	588	8		1.	25	56	65	8		-	l.	32	92	27	8	
С	-4.	9139	957	,	_	0.	07	0	24	0		-	l.	42	4	04	5	
С	-3.	8130	010)	_	0.	54	17	96	9		().	70	5	75	3	
Н	-4.	9945	591			3.	15	53	29	2		().	39	0	23	7	
Н	-5.	4635	567	,	_	0.	74	19	37	8		2	2.	06	6	61	1	
С	-3.	4891	188	8	_	2.	04	11	20	6		().	75	3	40	6	
Н	-2.	4306	502		_	2.	16	53	97	2		().	50	9.	57	3	
С	-2.	9273	335)		2.	68	32	58	0		-1	l.	27	1.	56	2	
Н	-1.	9334	105)		2.	31	6	79	7		-1	l.	54	3.	51	2	
С	1.	3739	991		-	1.	30)9	61	1		-1	l.	48	1	16	1	
С	2.	3520	016	5	_	0.	54	10	43	4		-2	2.	15	3	62	3	
С	3.	6651	L73))	_	1.	02	28	66	5		-2	2.	17	8	33	2	
Н	4.	4356	598	8	-	0.	45	55	30	3		-2	2.	68	5	35	5	
С	3.	0157	715)	-	2.	99	91	77	9		-().	93	8	14	3	
С	1.	6856	516	5	-	2.	55	542	22	0		-().	88	4	34	3	
Н	3.	2818	325)	-	3.	94	10	78	4		-().	48	1	05	1	
С	3.	9990)26	5	-	2.	23	86	94	8		-1	l.	57	22	29	9	
С	0.	6398	345)	-	3.	43	88	25	9		-().	20	8	40	6	
H	-0.	3130)81		-	2.	90)1'	74	7		-().	20	9	68	1	
С	2.	0212	266)		0.	76	56	02	1		-2	2.	86	9	69	1	
H	1.	0017	717			1.	04	19	71	6		-2	2.	59	5.	53	3	
Cl	0.	3751	L92			2.	80	0	00	7		().	09	11	03	0	
Cl	-0.	8779	984		-	0.	72	20	31	7		2	2.	89	0	82	1	
С	1.	6908	38C)		0.	16	50	09	4		-	l.	26	3	94	8	
H	2.	2329	979)	-	0.	52	21	47	9		().	60	1	49	9	
0	2.	4224	190)		0.	63	31	72	3		2	2.	25	7.	48	8	
С	3.	8355	580)		0.	30)5	62	8		2	2.	33	3	62	7	
С	4.	6768	304			1.	48	37	65	3		-	l.	87	02	28	9	
Н	4.	0238	362		_	0.	59	90	14	2		-	l.	72	8	59	2	
Н	4.	0198	868	8		0.	06	56	97	1			3.	38	4	72	1	
С	6.	1811	L95)		1.	22	25	63	2		2	2.	03	2	64	4	

Н	4.442665	1.702515	0.819307
Н	4.383573	2.374357	2.446118
С	7.038177	2.410910	1.575348
Н	6.400769	0.999701	3.085590
Н	6.461767	0.329088	1.461638
Н	8.105876	2.199212	1.700254
Н	6.863164	2.640999	0.517630
Н	6.805322	3.312918	2.153504
С	-3.801603	2.739461	-2.545768
Н	-4.791456	3.153108	-2.318312
Н	-3.334669	3.383573	-3.300716
Н	-3.957979	1.750593	-2.991115
С	-2.738814	4.105454	-0.714091
Н	-2.188598	4.713541	-1.440729
Н	-3.698641	4.603528	-0.531731
Н	-2.161879	4.095692	0.212973
С	-4.323792	-2.806834	-0.299151
Н	-5.394165	-2.724415	-0.075288
Н	-4.174300	-2.429306	-1.316056
Н	-4.061393	-3.871834	-0.293693
С	-3.712545	-2.683797	2.134541
Н	-3.195090	-2.126783	2.917652
Н	-4.777867	-2.750196	2.386813
Н	-3.321094	-3.707877	2.127528
С	0.440807	-4.750431	-0.996231
Н	0.174444	-4.560634	-2.042632
Н	1.352593	-5.359418	-0.994100
Н	-0.359070	-5.347641	-0.543375
С	0.979227	-3.733434	1.265549
Н	0.204923	-4.372746	1.704575
Н	1.936866	-4.258931	1.362888
Н	1.015714	-2.815460	1.859048
С	2.073401	0.573987	-4.400694
Н	3.087197	0.322467	-4.735335
Н	1.408573	-0.230897	-4.736287
Н	1.772452	1.496736	-4.910293
С	2.934015	1.928949	-2.439671
Н	3.986050	1.738337	-2.684616
Н	2.635104	2.845482	-2.960522
Н	2.844111	2.121977	-1.367123
Н	-6.177009	1.605011	1.902489
Н	5.024295	-2.596757	-1.604326

Tol-C

M06 SCF energy: -2054.789469 a.u. Enthalpy at 298K: -2054.295996 a.u. Gibbs free energy at 298K: -2054.394433 a.u.

Cartesian	Coordinates	5	
Ru	0.449332	-1.039511	0.057320
С	0.972569	0.822720	-0.168005
Ν	0.266755	1.982043	-0.296034
С	1.151193	3.157750	-0.441644
С	2.510900	2.513208	-0.733950
Ν	2.296236	1.132375	-0.271229
Н	3.331254	2.988885	-0.191211
Н	2.755328	2.514904	-1.804730
Н	1.169006	3.744688	0.484057
H	0.796865	3.798124	-1.253727
C	3.352058	0.162330	-0.370953
C	3 382989	-0 699412	-1 473207
C	4 412095	-1 635146	-1 599607
C	5 416767	-1 685277	-0 636028
C	5 3826/1	-0 813507	0.050020
C	1 35/062	0.010907	0.434013
ч	4.334002 A A23771	-2 310/33	-2 150006
п п	6 161003	-0 870085	2.400000
C C	1 298640	1 000220	1 8/1927
U U	4.290040	2.069117	1 505300
п u	3 360782	2.000117	1.JJJJJJJ 2.392577
	5.500702	0.033300	2.502577
П	J.120124 1 150240	0.770040 2.120002	2.317294
	-1.130349 1.707756	2.130002	-0.419230
	-1.707730	1.04020U	-1.303/9/
	-3.161362	1.01/955	-1.728209
H -	-3.650061 2.252010	1.426850	-2.010023
-	-3.255610	2.900002	0.303450
	-1.8/5892	2.818197	0.580357
H -	-3.830696	3.506372	1.145836
	-3.895416	2.498773	-0./546/1
C	-1.218950	3.326169	1.842949
H -	-1.95/506	3.443249	2.641962
H -	-0.749730	4.307969	1.694189
H -	-0.441278	2.640522	2.195881
Cl -	-0.042190	-1.438472	-2.267744
Cl	1.430993	-1.398549	2.214750
С -	-1.264547	-0.784494	0.681251
Н -	-1.711630	0.162041	1.011922
0 -	-2.059069	-1.827679	0.833589
С -	-3.411146	-1.652110	1.330111
С -	-4.412421	-1.830355	0.196686
Н -	-3.493519	-0.660537	1.792591
H -	-3.537815	-2.413175	2.105431
С -	-5.864446	-1.754501	0.690176
н -	-4.229770	-1.057864	-0.561487
н -	-4.227760	-2.798360	-0.285730

С	-6.881658	-1.941755	-0.440569
Н	-6.029271	-2.520833	1.460580
Н	-6.035695	-0.785380	1.180079
Н	-7.908710	-1.886124	-0.063130
Н	-6.765021	-1.169362	-1.210277
Н	-6.755841	-2.915979	-0.927599
Н	6.225630	-2.405401	-0.725166
Н	2.595790	-0.644105	-2.218773
Н	-1.203964	1.097574	-2.296367
Н	-4.965097	2.646106	-0.877332

BVE

M06 SCF energy: -310.917999723 a.u. Enthalpy at 298K: -310.7367107 a.u. Gibbs free energy at 298K: -310.7799437 a.u. Cartesian Coordinates С 2.311896 -0.679565 -0.156377 0 0.988378 -0.393845 -0.501057 С 0.421468 0.758835 -0.032864 С 0.731317 -0.371430 -1.063263 С -1.863436 -0.301218 0.433422 С -3.350611 -0.318431 0.066488 С 3.186426 0.178740 0.379768 Η 2.608261 -1.675577 -0.475818 Η 0.937105 1.559499 -0.582479Η 0.578396 0.933991 1.042127 -1.174082 0.534485 -1.446262 Η Η -1.467042 1.738010 -0.193128 -1.427627 -1.293879 0.270518 Η Η -1.751152 -0.086625 1.506002 Η -3.817962 0.657935 0.246682 Η -3.494248 -0.562791 -0.993283 Η -3.897623 -1.062820 0.656105 Η 2.925331 1.177992 0.707831 -0.1298290.498415 Η 4.218740

Figure S30: Energy scan of catalyst **32** around the C_{benzylidene}-C_{aryl} bond. No stable non-chelated 14 e⁻ complex intermediate was found.

References

(1) (a) Engle, K. M.; Lu, G.; Luo, S. X.; Henling, L. M.; Takase, M. K.; Liu, P.; Houk, K. N.; Grubbs, R. H. Origins of initiation rate differences in ruthenium olefin metathesis catalysts containing chelating benzylidenes. *J. Am. Chem. Soc.* **2015**, *137*, 5782–5792; (b) Love, J. A.; Morgan, J. P.; Trnka, T. M.; Grubbs, R. H. A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. *Angew. Chem. Int. Ed.* **2002**, *41*, 4035–4037; (c) Hejl, A. Controlling olefin metathesis through catalyst and monomer design. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2007.

(2) (a) Sanford, M. S.; Ulman, M.; Grubbs, R. H. New Insights into the Mechanism of Ruthenium-Catalyzed Olefin Metathesis Reactions. *J. Am. Chem. Soc.* **2001**, *123*, 749–750; (b) Sanford, M. S.; Love, J. A.; Grubbs, R. H. Mechanism and activity of ruthenium olefin metathesis catalysts. *J. Am. Chem. Soc.* **2001**, *123*, 6543–6554.

(3) Thiel, V.; Hendann, M.; Wannowius, K. J.; Plenio, H. On the mechanism of the initiation reaction in Grubbs-Hoveyda complexes. *J. Am. Chem. Soc.* **2012**, *134*, 1104–1114.

(4) (a) Jeener, J.; Meier, B. H.; Bachmann, P.; Ernst, R. R. Investigation of exchange processes by two-dimensional NMR spectroscopy. *J. Chem. Phys.* **1979**, *71*, 4546–4553; (b) Johnston, E. R.; Dellwo, M. J.; Hendrix, J. Quantitative 2d Exchange Spectroscopy Using Time-Proportional Phase Incrementation. *J. Magn. Reson.* **1986**, *66*, 399–409; (c) Lu, J.; Ma, D. J.; Hu, J.; Tang, W. X.; Zhu, D. X. Nuclear magnetic resonance spectroscopic studies of pyridine methyl derivatives binding to cytochrome c. *J. Chem. Soc., Dalton Trans.* **1998**, 2267–2273; (d) Wenzel, A. G.; Blake, G.; VanderVelde, D. G.; Grubbs, R. H. Characterization and dynamics of substituted ruthenacyclobutanes relevant to the olefin cross-metathesis reaction. *J. Am. Chem. Soc.* **2011**, *133*, 6429–6439; (e) MacMillan, S. N.; Harman, W. H.; Peters, J. C. Facile Si-H bond activation and hydrosilylation catalysis mediated by a nickel-borane complex. *Chem. Sci.* **2014**, 5, 590–597.

(5) (a) Engle, K. M.; Luo, S. X.; Grubbs, R. H. S_NAr approach to sterically hindered orthoalkoxybenzaldehydes for the synthesis of olefin metathesis catalysts. *J. Org. Chem.* **2015**, *80*, 4213– 4220; (b) Franchi, P.; Casati, C.; Mezzina, E.; Lucarini, M. Kinetic control of the direction of inclusion of nitroxide radicals into cyclodextrins. *Org. Biomol. Chem.* **2011**, *9*, 6396–6401.

(6) Forrest, A. K.; Jarvest, R. L.; J., S. R. Novel Compounds. World Patent WO2007017267 A2. 2007.

(7) Yao, Q. W. A soluble polymer-bound ruthenium carbene complex: A robust and reusable catalyst for ring-closing olefin metathesis. *Angew. Chem. Int. Ed.* **2000**, *39*, 3896–3898.

(8) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. *J. Am. Chem. Soc.* **2000**, *122*, 8168–8179.

(9) (a) Monsaert, S. F.; Verpoort, F. W. C. Process for Preparation of Ruthenium-Based Carbene Catalysts with Chelating Alkylidene Ligands. World Patent WO 2011091980 A1. 2011; (b) Kos, P.; Savka, R.; Plenio, H. Fast Olefin Metathesis: Synthesis of 2-Aryloxy-Substituted Hoveyda-Type Complexes and Application in Ring-Closing Metathesis. *Adv. Synth. Catal.* **2013**, *355*, 439–447.

(10) Koy, M.; Engle, K. M.; Henling, L. M.; Takase, M. K.; Grubbs, R. H. Synthesis of substituted dihydrobenzofurans via tandem S_NAr/5-exo-trig cyclization. *Org. Lett.* **2015**, *17*, 1986–1989.

(11) Patel, B. A.; Ashby, C. R., Jr.; Hardej, D.; Talele, T. T. The synthesis and SAR study of phenylalanine-derived (*Z*)-5-arylmethylidene rhodanines as anti-methicillin-resistant Staphylococcus aureus (MRSA) compounds. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 5523–5527.

(12) (a) Barbasiewicz, M.; Bieniek, M.; Michrowska, A.; Szadkowska, A.; Makal, A.; Wozniak, K.; Grela, K. Probing of the ligand anatomy: Effects of the chelating alkoxy ligand modifications on the

structure and catalytic activity of ruthenium carbene complexes. *Adv. Synth. Catal.* **2007**, *349*, 193–203; (b) Bieszczad, B.; Barbasiewicz, M. The Key Role of the Nonchelating Conformation of the Benzylidene Ligand on the Formation and Initiation of Hoveyda–Grubbs Metathesis Catalysts. *Chem. Eur. J.* **2015**, *21*, 10322–10325; (c) Bornand, M.; Torker, S.; Chen, P. Mechanistically designed dual-site catalysts for the alternating ROMP of norbornene and cyclooctene. *Organometallics* **2007**, *26*, 3585–3596.

(13) Sheldrick, G. M. Phase Annealing in Shelx-90 - Direct Methods for Larger Structures. *Acta. Crystallogr. A* **1990**, *46*, 467–473.

(14) Sheldrick, G. M. A short history of SHELX. Acta. Crystallogr. A 2008, 64, 112-122.

(15) Muller, P. Practical suggestions for better crystal structures. *Crystallogr. Rev.* 2009, 15, 57–83.

(16) APEX2, V. U. M., M86-E01078, Bruker Analytical X-ray Systems, Madison, WI, 2006.

(17) Sheldrick, G. M. SADABS (Version 2008/1): Program for Absorption Correction for Data from Area Detector Frames. University of Göttingen, Göttingen, Germany, 2008.

¹³C NMR (125 MHz, CDCl₃) spectrum of compound **S21.**

¹³C NMR (125 MHz, CDCl₃) spectrum of compound **S23**.

¹³C NMR (125 MHz, CDCl₃) spectrum of compound **S26.**

S-182

¹³C NMR (125 MHz, CDCl₃) spectrum of compound **S27.**

¹³C NMR (125 MHz, CDCl₃) spectrum of compound **S28.**

 1 H NMR (500 MHz, CDCl₃) spectrum of compound **S29.**

¹H NMR (500 MHz, CDCl₃) spectrum of compound **S30.**

¹³C NMR (125 MHz, CDCl₃) spectrum of compound **S31.**

¹³C NMR (125 MHz, CDCl₃) spectrum of compound **S33.**

¹H NMR (500 MHz, CDCl₃) spectrum of compound **S34.**

¹³C NMR (125 MHz, CDCl₃) spectrum of compound **S34.**

¹H NMR (500 MHz, CDCl₃) spectrum of compound **S36.**

340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **17.**

340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **18.**

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **19.**

50 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **20.**

¹H NMR (400 MHz, CD₂Cl₂) spectrum of catalyst **21.**

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **22.**

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **23.**

340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **24**.

340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)
¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **25.**

340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **26.**

340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **27.**

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **28.**

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **32.** (*trans* isomer)

340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **34.**

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **35.**

¹H NMR (500 MHz, CD₂Cl₂) spectrum of catalyst **37.**

