
ar
X

iv
:1

70
7.

00
34

9v
3 

 [
cs

.D
S]

  3
0 

M
ar

 2
01

8

A new algorithm for fast generalized DFTs∗

Chloe Ching-Yun Hsu
Caltech

Chris Umans†

Caltech

April 2, 2018

Abstract

We give an new arithmetic algorithm to compute the generalized Discrete Fourier Transform
(DFT) over finite groups G. The new algorithm uses O(|G|ω/2+o(1)) operations to compute the
generalized DFT over finite groups of Lie type, including the linear, orthogonal, and symplectic
families and their variants, as well as all finite simple groups of Lie type. Here ω is the exponent
of matrix multiplication, so the exponent ω/2 is optimal if ω = 2.

Previously, “exponent one” algorithms were known for supersolvable groups and the sym-
metric and alternating groups. No exponent one algorithms were known, even under the as-
sumption ω = 2, for families of linear groups of fixed dimension, and indeed the previous
best-known algorithm for SL2(Fq) had exponent 4/3 despite being the focus of significant effort.
We unconditionally achieve exponent at most 1.19 for this group, and exponent one if ω = 2.

Our algorithm also yields an improved exponent for computing the generalized DFT over
general finite groups G, which beats the longstanding previous best upper bound, for any ω. In
particular, assuming ω = 2, we achieve exponent

√
2, while the previous best was 3/2.
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1 Introduction

Let G be a finite group and let Irr(G) denote a complete set of irreducible representations.
Given an element of the group algebra c ∈ C[G], a generalized DFT is a linear transform that
takes c to ∑

g∈G

cg ·
⊕

ρ∈Irr(G)

ρ(g).

This is the fundamental linear operation that maps the standard basis for the group algebra C[G]
to the Fourier basis of irreducible representations of groupG. It has applications in data analysis
[Roc97], as a component in other algorithms (including fast operations on polynomials and in
the Cohn-Umans matrix multiplication algorithms), and as the basis for quantum algorithms for
problems entailing a Hidden Subgroup Problem [MR97b]. As one varies the underlying group G,
the generalized DFT is a rich source of structured linear maps, which one can hope to compute
in nearly-linear time, generalizing the famous Cooley-Tukey FFT for cyclic groups of order 2k.

We typically speak of the complexity of computing this map in the (non-uniform) arithmetic
circuit model and do not concern ourselves with finding the irreducible representations. The
trivial algorithm thus requires O(|G|2) operations. The best-known algorithm that works for
general finite groups G achieves O(|G|1.5) operations1 assuming the exponent of matrix mul-
tiplication is two (see Section 2). For a number of special cases, “exponent 1” algorithms are
known: for abelian groups, the symmetric and alternating groups [Cla89], and the so-called
supersolvable groups [Bau91]. A group that has resisted such exponent 1 algorithms despite
a significant amount of work is SL2(Fq), where the best known algorithm achieves O(|G|4/3)
[LR92]. This group was described as a “particularly interesting and thorny special case” by
Maslen, Rockmore, and Wolff in [MRW16a].

In this paper we obtain exponent one for SL2(Fq) under the assumption that ω = 2 (ω is the
exponent of matrix multiplication). Using the current best upper bound ω < 2.3729 [LG14], we
obtain exponent 1.19 for SL2(Fq) unconditionally, which improves the previous 4/3 exponent.
Our new algorithm is quite general and leads to a broad array of new results:

• we achieve exponent ω/2 for essentially all linear groups including the general, orthogonal,
and symplectic groups, and their special and projective versions, and for all finite groups
with a split (B,N)-pair; we work out the most common cases explicitly in this paper in
Section 5.

• we achieve exponent ω/2 for all finite simple groups (see Theorem 24).

• we achieve an exponent bound for general groups G which beats the longstanding previous
best upper bound, for any ω (see Theorem 26). To do this we prove a structural result
about arbitrary finite groups (Theorem 25) that relies on the Classification Theorem, which
may be of independent interest. In particular, assuming ω = 2, we achieve exponent

√
2,

while the previous best was 3/2.

The main idea. At its core, the seminal Beth-Clausen fast generalized DFT is a recursive
algorithm that computes a DFT with respect to G by computing several DFTs with respect
to H , a subgroup of G. Each of the [G : H ] many H-DFTs is lifted to G and then summed
together. See Corollary 4. A bottleneck in this algorithm comes from the final summation step,
which in general costs [G : H ]|G|. Since there are groups whose largest subgroup H has index
at least |G|1/2, exponent 3/2 is the best possible within this approach. Improvements have
generally come from using specific knowledge of how the induced representations from H up to
G break up; this can sometimes be used to circumvent the bottleneck summation. In the case

1Note that exercise 13.16 in [BCS97] claims that the exponent 1.5 can be reduced to 1.44 but this seems to be an
error, as discussed in Section 2.
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Group G Upper bound Reference

SL2(Fq) Õ(q|G|) Theorem 1.1 in [LR92]

GLn(Fq) Õ(qn|G|) Theorem 4.3 in [MRW16b]

PSp2n(Fq) Õ(q5n−3|G|) Theorem 5.14 in [MR97a]

O2n+1(Fq) Õ(q5n−3|G|) Theorem 5.14 in [MR97a]

O+
2n(Fq), n ≥ 4 Õ(q5n−6|G|) Theorem 5.14 in [MR97a]

Figure 1: Previously best known running times for the generalized DFT over various families of
linear groups. In this table, the Õ(·) notation hides lower order terms and the dependence on n.

of supersolvable groups and the symmetric and alternating groups, this has yielded exponent
one algorithms [Bau91, Cla89]. In the case of solvable groups, one can obtain exponent ω/2
[Bet84, CB93].

In this paper we devise a more general way to circumvent the bottleneck summation, which
depends on the structure of the group rather than knowledge of the representation theory. Our
new recursive step permits us to decompose G via two subgroups H and K, and recurse on H
and K. See Theorem 12. One side-effect is an alternative proof of the ω/2 exponent for solvable
groups that does not require knowledge of the representation theory of the group, in Section 4.
Our reduction bears some similarity to the double coset algorithm of [MR00]; a key difference
seems to be the use of fast matrix multiplication at an opportune time in the procedure.

1.1 Past and related work

A good description of past work in this area can be found in Section 13.5 of [BCS97]. The first
algorithm generalizing beyond the abelian case is due to Beth in 1984 [Bet84]; this algorithm
is described in Section 2 in a form often credited jointly to Beth and Clausen. This algorithm
was the best known for the general case of an arbitrary finite group prior to this work. Two
other milestones are the O(|G| log |G|) algorithm for supersolvable groups due to Baum [Bau91],
and the O(|G| log3 |G|) algorithm for the symmetric group due to Clausen [Cla89]. The latter
algorithm was improved to O(|G| log2 |G|) by Maslen [Mas98], and very recently to linear for
the special case of Sn−k-invariant functions on Sn with n > 2k [CH17]. Wreath products were
studied by Rockmore [Roc95] who obtained exponent one algorithms in certain cases.

In the 1990s, Maslen, Rockmore and coauthors, developed the so-called “separation of vari-
ables” approach, which relies on non-trivial decompositions along chains of subgroups via Bratteli
diagrams and (again) detailed knowledge of the representation theory of the underlying groups.
There is a rather large body of literature on this approach and it has been applied to a wide
variety of group algebras and more general algebraic objects. For a fuller description of this ap-
proach and the results obtained, the reader is referred to the surveys [MR97b, MR97a, Roc02],
and the most recent paper in this line of work [MRW16a].

For the present paper, important results for comparison are the previous best known results
for linear groups of various sorts. We gather them in Figure 1. Notice that for each fixed
dimension n, these all represent exponent α algorithms for α > 1. Our methods give exponent
ω/2 algorithms for all of these groups, which translates to (the optimal) exponent 1 if ω = 2.
Using the current best upper bounds on ω our methods give concrete improvements in small
dimension, in all cases; we explicitly highlight only the case of SL2(Fq) in this paper.

1.2 Notation and preliminaries

Throughout this paper we will use the phrase
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“G has a generalized DFT using O(|G|α+ǫ) operations, for all ǫ > 0”

where G is a finite group and α ≥ 1 is a real number. We mean by this that there are universal
constants cǫ independent of the groupG under consideration so that for each ǫ > 0, the operation
count is at most cǫ|G|α+ǫ. Such an algorithm will be referred to as an “exponent α” algorithm.
This comports with the precise definition of the exponent of matrix multiplication, ω: that
there are universal constants bǫ for which n×n matrix multiplication can be performed using at
most bǫn

ω+ǫ operations, for each ǫ > 0. Indeed we will often report our algorithms’ operation
counts in terms of ω. In such cases matrix multiplication is always used as a black box, so,
for example, an operation count of O(|G|ω/2) should be interpreted to mean: if one uses a
fast matrix multiplication algorithm with exponent α (which may range from 2 to 3), then
the operation count is O(|G|α/2). In particular, in real implementations, one might well use
standard matrix multiplication and plug in 3 for ω in the operation count bound.

All logarithms are base 2. We use Irr(G) to denote the complete set of irreducible repre-
sentations of G being used for the DFT at hand. In the presentation to follow, we assume the
underlying field is C; however our algorithms work over any field Fpk whose characteristic p
does not divide the order of the group, and for which k is sufficiently large for Fpk to represent
a complete set of irreducibles.

A basic fact is that
∑

ρ∈Irr(G) dim(ρ)2 = |G|, which implies that for all ρ ∈ Irr(G), we have

dim(ρ) ≤ |G|1/2. An inequality that we use repeatedly is this one:

Proposition 1. For any real number α > 2, we have

∑

ρ∈Irr(G)

O(dim(ρ)α) ≤ O(|G|α/2).

Proof. Set ρmax to be an irrep of largest dimension. We have

∑

ρ∈Irr(G)

O(dim(ρ)α) ≤ O(dim(ρmax)
α−2)

∑

ρ∈Irr(G)

dim(ρ)2 = O(dim(ρmax)
α−2|G|) ≤ O(|G|α/2),

where the last inequality used the fact that dim(ρmax) ≤ |G|1/2.

We also need Lev’s Theorem:

Theorem 2 ([Lev92]). Every finite group G has a proper subgroup H of order at least |G|1/2,
unless G is cyclic of prime order.

This is easily seen to be tight by considering the cyclic group of order p2, for p prime.
In a few key places, we utilize the Kronecker product (or tensor product) of two matrices A

and B, and there our convention is to name the indices of A⊗B so that

(A⊗B)[(i, i′), (j, j′)] = A[i, j]B[i′, j′].

2 The single subgroup reduction

In this section we describe the recursive generalized DFT attributed to Beth and Clausen (see
[BCS97]). Given a subgroup H of a finite group G, this reduction computes a DFT with respect
to G via DFTs with respect to H . Our presentation makes use of fast matrix multiplication
where possible and so the running time will be expressed in terms of ω. A key definition is that of
an H-adapted basis for the irreps of G. This is a basis in which the restriction of each irrep of G
to H respects the direct sum decomposition into irreps of H . In concrete terms, this means that
for each irrep ρ ∈ Irr(G), while for general g ∈ G, ρ(g) is a dim(ρ)× dim(ρ) matrix, for g ∈ H ,
ρ(g) is a block-diagonal matrix with block sizes coming from the set {dim(σ) : σ ∈ Irr(H)}.
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Theorem 3. Let G be a finite group and let H be a subgroup. Then we can compute a DFT
with respect to G and an H-adapted basis, at a cost of [G : H ] many H-DFTs plus

[G : H ]|G|+ [G : H ]2
∑

σ∈Irr(H)

O(dim(σ)ω+ǫ)

operations, for all ǫ > 0.

Proof. Let g1, g2, . . . , gt be a system of distinct right coset representatives of H in G, so t = [G :
H ]. Let c be an element of C[G]. We can write

c =
∑

g∈G

cgg =

t∑

i=1

(
∑

h∈H

c
(i)
h h

)
gi

for some elements c(i) =
(∑

h∈H c
(i)
h h
)
∈ C[H ]. By computing an H-DFT for each i, we obtain

si =
∑

h∈H

c
(i)
h

⊕

σ∈Irr(H)

σ(h).

Let si be the lift of si in which we repeat each σ ∈ Irr(h) as many times as it occurs in the
irreps of G. We notice that

∑

g∈G

cg
⊕

ρ∈Irr(G)

ρ(g) =
t∑

i=1

si ·




⊕

ρ∈Irr(G)

ρ(gi)


 .

Moreover, since we are using an H-adapted basis, each of the t matrix multiplications is the
product of a block-diagonal matrix having blocks whose dimensions are those of the irreps of
H , with a block diagonal matrix having blocks whose dimensions are those of the irreps of G. If
nσ,ρ denotes the number of occurences of σ ∈ Irr(H) in ρ ∈ Irr(G), the cost of performing this
structured matrix multiplication is at most

∑

σ∈Irr(H)

∑

ρ∈Irr(G)

nσ,ρO(dim(σ)ω+ǫ)
dim(ρ)

dim(σ)
=

∑

σ∈Irr(H)

O(dim(σ)ω−1+ǫ)
∑

ρ∈Irr(G)

nσ,ρ dim(ρ)

=
∑

σ∈Irr(H)

O(dim(σ)ω−1+ǫ) dim(σ)[G : H ]

=
∑

σ∈Irr(H)

O(dim(σ)ω+ǫ)[G : H ]

where the second-to-last equality used Frobenius reciprocity: nσ,ρ also equals the number of
times ρ occurs in the induction of σ from H up to G, and then

∑
ρ nσ,ρ dim(ρ) is easily seen

to be the dimension of the induced representation, which is dim(σ)[G : H ]. We have to do
[G : H ] many of these structured multiplications, and then sum them up. The summing costs
[G : H ]|G| many operations, since the block-diagonal matrices we are summing have, in general,
|G| nonzeros.

We note that this final sum, which costs |G|[G : H ] operations, cannot be accelerated by fast
matrix multiplication, and this appears to have been overlooked in the claim in [BCS97] that
by using fast matrix multiplication together with Theorem 2 one can achieve an upper bound
of O(|G|1.44) for all finite groups G. Indeed when |H | = |G|1/2, which it may be in the worst
case, the |G|[G : H ] term by itself is at least |G|3/2. Our “double subgroup reduction” can be
seen as a means to avoid having to directly compute this bottleneck sum.

At the expense of a slightly coarser upper bound we can remove the requirement of an
H-adapted basis, which will simplify our use of Theorem 3 in recursive algorithms later.
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Corollary 4. Let G be a finite group and let H be a subgroup. Then we can compute a DFT
with respect to G at a cost of [G : H ] many H-DFTs plus O([G : H ]2|H |ω/2+ǫ) operations, for
all ǫ > 0.

Proof. Using Proposition 1 with α = ω + ǫ, the cost from the statement of Theorem 3 can be
upper bounded by

[G : H ]|G|+ [G : H ]2
∑

σ∈Irr(H)

dim(σ)ω+ǫ ≤ 2[G : H ]2|H |ω/2+ǫ. (1)

Note that in Theorem 3 the DFT is with respect to an H-adapted basis. At a cost of

∑

ρ∈Irr(G)

O(dim(ρ)ω+ǫ) ≤ O(|G|ω/2+ǫ) (2)

operations (again using Proposition 1 with α = ω + ǫ), we can change an arbitrary basis to an
H-adapted basis, to which we apply Theorem 3, and then change back to the original basis.
Both expression (1) and expression (2) are upper bounded by O([G : H ]2|H |ω/2+ǫ).

The single-subgroup reduction works best when the subgroup H is large. Lev’s Theorem
(Theorem 2) guarantees a subgroup of size at least |G|1/2. Using this, one obtains the follow-
ing recursive algorithm, whose bound, using only that ω ≤ 3, matches Theorem 13.48 in the
presentation in [BCS97].

Theorem 5. For every finite group G, there is an exponent 1 + ω/4 algorithm computing the
DFT with respect to G.

Proof. Fix G. We apply Corollary 4 recursively.
If G is a p-group, then we apply Theorem 14 (actually we only need to do this when G is cyclic

of prime order). If G is the trivial group, then the DFT is trivial as well. Otherwise, according
to Theorem 2, there is a subgroup H of size at least |G|1/2, to which we apply Corollary 4.

Set δ = min{ǫ, 0.1}, and give names to some constants:

• Let Bδ be the constant hidden in the [G : H ]2 ·O(|H |ω/2+δ) notation of Corollary 4.

• Let B be the constant hidden in the O(|G| log |G|) notation of Theorem 14.

Let T (n) denote an upper bound on the operation count of this recursive algorithm for any
group G of order n. For each fixed ǫ > 0, we will prove by induction on n that, for a universal
constant Cǫ,

T (n) ≤ Cǫn
1+ω

4
+ǫ log2 n.

This clearly holds for the base case of a p-group or the trivial group, provided Cǫ > B.
When we apply Corollary 4 recursively, the cost is at most

[G : H ] · T (|H |) + [G : H ]2 · Bδ|H |ω/2+δ,

where |H | ≥ |G|1/2. If we set γ such that |H | = |G|γ , and thus 1/2 ≤ γ ≤ 1, and apply the
induction hypothesis, we obtain

T (n) ≤ Cǫn
1−γnγ(1+ω

4
+ǫ) log2(n/2) +Bδn

2(1−γ)nγ(ω/2+δ)

< Cǫn
1+ω/4+ǫ(logn)(log n− 1) +Bδn

1+ω

4
+ δ

2

which is at most Cǫn
1+ω

4
+ǫ log2 n as long as Cǫ ≥ Bδ.
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3 The double subgroup reduction

This section contains our main algorithmic result. Given two subgroups H,K of a finite group
G, we show how to compute a DFT with respect to G, via DFTs with respect to H and K.
We first show how to obtain an intermediate representation in terms of tensor products of the
irreps of H and the irreps of K:

Lemma 6. Let H and K be subgroups of G and let c be an element of C[G] supported on HK.
Fix a way of writing g = hk for each g ∈ HK (this is unique iff H ∩K = {1}). We can compute

∑

g=hk∈HK

cg
⊕

σ∈Irr(H),τ∈Irr(K)

σ(h)⊗ τ(k),

by performing |H | many K-DFTs and |K| many H-DFTs.

Proof. We can write

c =
∑

g∈G

cgg =
∑

h∈H

h ·
(
∑

k∈K

c
(h)
k k

)

for some elements c(h) =
(∑

k∈K c
(h)
k k

)
∈ C[K]. We perform |H | many K-DFTs to compute

for each h ∈ H :
sh =

∑

k∈K

c
(h)
k

⊕

τ∈Irr(K)

τ(k).

We use the notation sh[τ, u, v] to refer to entry (u, v) of component τ in the direct sum. Then
we perform |K| many H-DFTs to compute for each τ ∈ Irr(K) and u, v ∈ [dim(τ)],

tτ,u,v =
∑

h∈H

sh[τ, u, v]
⊕

σ∈Irr(H)

σ(h).

Note that tτ,u,v[σ, x, y] is the ((x, u), (y, v)) entry of
∑

h,k c
(h)
k σ(h)⊗τ(k) and note that c

(h)
k = chk,

so we have computed: ∑

h,k

chk
⊕

σ∈Irr(H),τ∈Irr(K)

σ(h)⊗ τ(k)

as promised.

The following is an important (and known) general observation (see, e.g., Lemma 4.3.1 in
[HJ91]):

Lemma 7. If A is an n1×n2 matrix, B is an n2×n3 matrix, and C is an n3×n4 matrix, then
the product ABC can be computed by multiplying A⊗CT (which is an n1n4 × n2n3 matrix) by
B viewed as an n2n3-vector.

Proof. Observe that

(ABC)[i1, i4] =
∑

i2,i3

A[i1, i2]B[i2, i3]C[i3, i4]

and

((A⊗ CT ) · B)[(i1, i4)] =
∑

i2,i3

(A⊗ CT )[(i1, i4), (i2, i3)]B[(i2, i3)] =
∑

i2,i3

A[i1, i2]C[i3, i4]B[i2, i3].

6



This n1n4 × n2n3-matrix-vector multiplication costs O(n1n4n2n3) operations. More impor-
tantly, we have:

Corollary 8. If A and C are as above, and square (so n1 = n2 and n3 = n4), and we have
several n2 × n3 matrices, B1, B2, . . . , Bℓ, then we can compute ABiC for all i from A⊗CT , at
a cost of

O((n2n3)
ω−1+ǫ ·max{n2n3, ℓ}).

operations, for all ǫ > 0.

Proof. Set N = n1n4 = n2n3. If ℓ ≤ N , then this can be accomplished with a single N × N
matrix multiplication, at a cost of O(Nω+ǫ) operations, by the definition of ω. If ℓ > N ,
then this can be accomplished with ⌈ℓ/N⌉ many N × N matrix multiplications, at a cost of
O(ℓ ·Nω−1+ǫ) operations.

Now we show how to lift from the intermediate representation to the space of irreducibles of
G. We need some notation. For σ ∈ Irr(H), τ ∈ Irr(K), ρ ∈ Irr(G), let nσ,ρ be the number of
occurences of σ in the restriction of ρ to H , and let mτ,ρ be the number of occurences of τ in
the restriction of ρ to K.

Lemma 9. There is a linear map

φG,H,K :
∏

σ∈Irr(H),τ∈Irr(K)

C
(dim(σ) dim(τ))2 →

∏

ρ∈Irr(G)

C
dim(ρ)2

that maps
⊕

σ∈Irr(H),τ∈Irr(K) σ(h)⊗ τ(k) to
⊕

ρ∈Irr(G) ρ(hk) for all h ∈ H, k ∈ K. Map φG,H,K

can be computed using

∑

σ∈Irr(H),τ∈Irr(K)

O


(dim(σ) dim(τ))ω−1+ǫ ·max




dim(σ) dim(τ),
∑

ρ∈IrrG

nσ,ρmτ,ρ









+
∑

ρ∈Irr(G)

O(dim(ρ)ω+ǫ)

operations, for all ǫ > 0.

Proof. Let Irr∗(H) be the multiset of irreducibles of H in the multiplicities that they occur
in the restrictions to H of Irr(G), and let Irr∗(K) be the multiset of irreducibles of K in
the multiplicities that they occur in the restrictions to K of Irr(G). Let S be the change of
basis matrix taking ⊕σ∈Irr∗(H)σ to ⊕ρ∈Irr(G)ρ and let T be the change of basis matrix taking
⊕τ∈Irr∗(K)τ to ⊕ρ∈Irr(G)ρ. Then for each h ∈ H, k ∈ K, we have

S




⊕

σ∈Irr∗(H)

σ(h)



 S−1T




⊕

τ∈Irr∗(K)

τ(k)



 T−1 =
⊕

ρ∈Irr(G)

ρ(hk).

Set M = S−1T , and consider the expression




⊕

σ∈Irr∗(H)

σ(h)


M




⊕

τ∈Irr∗(K)

τ(k)


 . (3)

Note that both M and the above product are block-diagonal matrices with blocks of dimension
dim(ρ) as ρ runs through Irr(G). Now, for each ρ ∈ Irr(G), a given σ ∈ Irr(H) occurs nσ,ρ

times and a given τ ∈ Irr(K) occurs mτ,ρ times; therefore we are computing σ(h)Biτ(k) for p

7



distinct sub-matrices Bi of M , where p =
∑

ρ∈Irr(G) nσ,ρmτ,ρ. By Corollary 8, each such batch

can be computed by taking a product of σ(h)⊗ τ(k)T with a matrix whose columns are the Bi

sub-matrices, viewed as vectors. This is linear in the entries of σ(h) ⊗ τ(k), and costs

O


(dim(σ) dim(τ))ω−1+ǫ ·max




dim(σ) dim(τ),
∑

ρ∈Irr(G)

nσ,ρmτ,ρ









operations. Finally, we need to multiply (3) by S on the left and T−1 on the right; both
maps are linear in the entries of

⊕
σ∈Irr(H),τ∈Irr(K) σ(h) ⊗ τ(k), and as block-diagonal matrix

multiplications, both cost
∑

ρ∈Irr(G)O(dim(ρ)ω+ǫ) operations.

Now we use elementary facts from representation theory to bound the complexity estimate
in Lemma 9 in terms of |H |, |K|, |G|.
Lemma 10. For all finite groups G and subgroups H,K, the expression

∑

σ∈Irr(H),τ∈Irr(K)

O



(dim(σ) dim(τ))ω−1+ǫ ·max



dim(σ) dim(τ),

∑

ρ∈IrrG

nσ,ρmτ,ρ









+
∑

ρ∈Irr(G)

O(dim(ρ)ω+ǫ)

is upper bounded by O((|H ||K|)ω/2+ǫ/2 + |G|ω/2+ǫ/2).

Proof. We use only the fact that for each ρ ∈ Irr(G),

∑

σ∈Irr(H)

dim(σ)nσ,ρ = dim(ρ), (4)

and similarly ∑

τ∈Irr(K)

dim(τ)mτ,ρ = dim(ρ), (5)

together with the fact that the sum of the squares of the dimensions of the irreps of a group is
the order of that group (which implies that the maximum dimension is at most the square root
of the order of the group).

We observe that by replacing the “max” with addition,

∑

σ∈Irr(H),τ∈Irr(K)

O


(dim(σ) dim(τ))ω−1+ǫ ·max




dim(σ) dim(τ),
∑

ρ∈IrrG

nσ,ρmτ,ρ









≤
∑

σ∈Irr(H),τ∈Irr(K)

O


(dim(σ) dim(τ))ω−1+ǫ ·


dim(σ) dim(τ) +

∑

ρ∈IrrG

nσ,ρmτ,ρ






We know that
∑

σ∈Irr(H),τ∈Irr(K)

(dim(σ) dim(τ))ω−1+ǫ · dim(σ) dim(τ)

=




∑

σ∈Irr(H)

dim(σ)ω+ǫ



 ·




∑

τ∈Irr(K)

dim(τ)ω+ǫ



 ≤ (|H ||K|)ω/2+ǫ/2.
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where the last inequality applied Proposition 1 twice, with α = ω + ǫ. Also, we know that

∑

σ∈Irr(H),τ∈Irr(K)

(dim(σ) dim(τ))ω−1+ǫ ·




∑

ρ∈IrrG

nσ,ρmτ,ρ





=
∑

ρ∈Irr(G)




∑

σ∈Irr(H)

dim(σ)ω−1+ǫnσ,ρ



 ·




∑

τ∈Irr(K)

dim(τ)ω−1+ǫmτ,ρ





≤
∑

ρ∈Irr(G)



|H |(ω−2+ǫ)/2 ·
∑

σ∈Irr(H)

dim(σ)nσ,ρ



 ·



|K|(ω−2+ǫ)/2 ·
∑

τ∈Irr(K)

dim(τ)mτ,ρ





=
∑

ρ∈Irr(G)

|H |(ω−2+ǫ)/2|K|(ω−2+ǫ)/2 dim(ρ)2 = (|H ||K|)(ω−2+ǫ)/2|G|

where the second-to-last equality used (4) and (5). If |H ||K| ≤ |G| then this expression is at most
|G|ω/2+ǫ/2; if |H ||K| > |G| then this expression is at most (|H ||K|)ω/2+ǫ/2. Finally, we have
that the final term in the main expression,

∑
ρ∈Irr(G) O(dim(ρ)ω+ǫ), is at most O(|G|ω/2+ǫ/2),

by Proposition 1 with α = ω + ǫ, and the lemma follows.

Our main theorems put everything together:

Theorem 11. Let G be a finite group and let H,K be subgroups and let x ∈ G be any element.
Fix a way of writing g = hk for each g ∈ HK (this is unique iff H ∩K = {1}). Let c ∈ C[G]
be supported on HKx. Then we can compute

∑

g=hkx∈HKx

cg ·
⊕

ρ∈Irr(G)

ρ(g)

at the cost of |H | many K-DFTS, |K| many H-DFTs, plus O(|G|ω/2+ǫ + (|H ||K|)ω/2+ǫ) oper-
ations, for all ǫ > 0.

Proof. Set c′g = cgx and notice that c′ is supported on HK. Apply Lemma 6 on c′ to compute

∑

g=hk∈HK

c′g
⊕

σ∈Irr(H),τ∈Irr(K)

σ(h)⊗ τ(k).

Next, apply the linear map φG,H,K to obtain (by linearity)
∑

g=hk∈HK c′g
⊕

ρ∈Irr(G) ρ(hk), and

finally, multiply by ⊕ρ∈Irr(G)ρ(x) on the right, at a cost of
∑

ρ∈Irr(G) dim(ρ)2 ≤ O(|G|ω/2+ǫ)

operations (by Proposition 1 with α = ω + ǫ). The result is

∑

g=hk∈HK

c′g
⊕

ρ∈Irr(G)

ρ(gx) =
∑

g′∈HKx

cg′

⊕

ρ∈Irr(G)

ρ(g′),

as promised.

By translating HK around, we cover all of G, leading to our main theorem:

Theorem 12 (main). Let G be a finite group and let H,K be subgroups. Then we can com-
pute the DFT with respect to G at the cost of |H | many K-DFTS, |K| many H-DFTs, plus

O(|G|ω/2+ǫ+(|H ||K|)ω/2+ǫ) operations, all repeated r = O( |G| ln(|G|)
|HK| ) many times, for all ǫ > 0.

If G = HK, then we may take r = 1.

9



Proof. We argue that there exist x1, x2, . . . , xr ∈ G so that ∪iHKxi = G. Then a G-DFT can
be computed by applying Theorem 11 r times with these translations. The existence of the xi

is a standard application of the probablistic method: for randomly chosen xi, the probability
∪iHKxi fails to contain a given g ∈ G is (1 − |HK|/|G|)r, and the r specified in the theorem
statement makes this quantity strictly less than 1/|G|, so a union bound finishes the argument.

4 Exponent ω/2 for finite solvable groups

We show how to derive algorithms for all solvable groups via our reduction, matching the
exponent ω/2 algorithm of [Bet84, CB93]. An advantage of our approach is that we don’t need
to rely on knowledge of the representation theory of G.

We begin with a key definition:

Definition 13. A finite group G is supersolvable if there is a sequence of subgroups

{1} = G0 ⊳G1 ⊳G2 ⊳ · · ·⊳Gk = G

such that each Gi is normal in G, and for all i, Gi/Gi−1 is cyclic of prime order.

A solvable finite group G is one in which the requirement that each Gi is normal in G (rather
than just Gi+1) is removed. An early result in the area of fast generalized DFTs was Baum’s
algorithm which gives a fast DFT for all supersolvable groups.

Theorem 14 (Baum). There is an algorithm that uses O(|G| log |G|) operations to compute the
generalized DFT over G, if G is supersolvable.

An important class of supersolvable groups are p-groups. Together with this fact, the result
of the previous section makes it quite easy to obtain an algorithm for all solvable groups. We
need the following classical result of Hall:

Theorem 15 (Hall). Let G be a finite solvable group of order ab, with (a, b) = 1. Then there
exists a subgroup H ⊆ G of order a.

From this we obtain:

Theorem 16. Let G be a finite solvable group. Then a G-DFT can be computed in O(|G|ω/2+ǫ)
operations, for all ǫ > 0.

Proof. Take δ = ǫ/2. Let Aδ ≥ 1 be the constant hidden in the O(|G|ω/2+δ + (|H ||K|)ω/2+δ)
notation in Theorem 12. Let B be the constant in the big-oh expression in the statement of
Theorem 14. It suffices to prove that for any finite group G with |G| having k distinct prime
factors, a G-DFT can be computed in

(4Aδ)
log k|G|ω/2+δB log |G|

operations, because for sufficiently large G, we have

(4Aδ)
log kB log |G| ≤ (4Aδ)

log log |G|B log |G| ≤ |G|δ.

The proof is by induction on the number of distinct prime factors in the order of G. For the
base case of k = 1, G is a p-group, hence supersolvable, and we apply Theorem 14.

Now, suppose |G| = pa1

1 . . . pak

k , where p1, . . . , pk are distinct primes, then |G| = ab, where a
and b each has no more than k/2 distinct prime factors and (a, b) = 1. Applying Hall’s theorem
(twice) there are subgroups H,K of order a and b respectively. Since (a, b) = 1, we must have
H ∩K = {1}, and then G = HK because |G| = ab.

10



We can then apply Theorem 12, to reduce to the case of computing |H | many K-DFTs and
K many H-DFTs, at a cost of 2Aδ|G|ω/2+δ operations. But H and K are both solvable, and
hence by the induction hypothesis, these two sets of DFTs cost at most

|H | · (4Aδ)
log(k/2)|K|ω/2+δB log |K|+ |K| · (4Aδ)

log(k/2)|H |ω/2+δB log |H |

≤ 2

4Aδ
(4Aδ)

log k|G|ω/2+δB log |G|

operations. Together with the 2Aδ|G|ω/2+δ overhead, this is no more than

(4Aδ)
log k|G|ω/2+δB log |G|

operations, as required.

5 Exponent ω/2 for finite groups of Lie type

One of the main payoffs of Theorem 12 is exponent ω/2 algorithms for finite groups of Lie type.
This is because groups of Lie type have an “LDU -type” decomposition which is well-suited
to Theorem 12. We describe these decompositions and the resulting DFT algorithms in this
section. All of our “LDU -type” decompositions of groups of Lie type into three subgroups give
rise to the following DFT algorithm:

Theorem 17. Let H1, H2, H3 be subgroups of group G, and suppose all three are either p-groups
or abelian. Moreover, suppose H1H2 is a subgroup and H1 ∩H2 = {1} and H1H2 ∩H3 = {1}.
Then there is a generalized DFT for G that uses at most

O

(
|G|ω/2+ǫ |G| log |G|

|H1||H2||H3|

)

operations, for all ǫ > 0.

Proof. We apply Theorem 12 to the pair H1H2 and H3 at a cost of O(|G|ω/2+ǫ) plus |H1H2|
many H3-DFTs and |H3| many H1H2-DFTs. This is all repeated

r = O

( |G| log |G|
|H1||H2||H3|

)

many times. The H3-DFTs cost O(|H3| log |H3|) because H3 is abelian or a p-group (via The-
orem 14). We apply Theorem 12 once more to H1, H2, at a cost of O(|H1H2|ω/2+ǫ) plus |H1|
many H2-DFTs and |H2| many H1-DFTs. Each H1-DFT costs O(|H1| log |H1|) because H1 is
abelian or a p-group, and the same is true for each H2-DFT. Altogether, the cost is

r ·
[
O(|G|ω/2+ǫ) + |H1H2| · O(|H3| log |H3|)

+ |H3| ·
(
O(|H1H2|ω/2+ǫ) + |H1| · O(|H2| log |H2|) +H2 ·O(|H1 logH1|)

)]

which is as claimed.

From Carter [Car89], we have that all finite simple groups of Lie type (except the Tits group)
have a split (B, N)-pair, which implies the following structure:

G = ⊔w∈WBwUw

B and N are subgroups, W is the Weyl group (i.e. W = B/(B ∩ N)), and B = UT with T
a maximal torus (hence abelian) and U, T are complements in B. The Uw are subgroups of U ,
and U is a p-group. This decomposition is “with uniqueness of expression” which implies that
|BwUw | = |B||Uw| for each w.

From this description we easily have the very general result:

11



Theorem 18. Let G be a finite group with a split (B, N)-pair, with associated Weyl group W .
Then there is a fast DFT over G that uses O(|G|ω/2+ǫ|W |) operations, for all ǫ > 0.

Proof. Fix the w maximizing the size of the double coset BwUw, and note that |BUw
w | =

|BwUw | ≥ |G|/|W |. As noted this size is |B||Uw|, and hence B ∩ Uw
w = {1}. Also from the

description above, B = UT with U ∩ T = {1}; T is abelian and U,Uw
w are p-groups. We are

then in the position to apply Theorem 17, which yields the claimed operation count.

As one can see from Figure 2, for families of finite simple groups of Lie type, the Weyl group
always has order that is |G|o(1), so this algorithm has exponent ω/2, which is best-possible if
ω = 2. Next, we explicitly work out the more common cases of the general linear, orthogonal, and
symplectic families, and their variants. The overhead coming from the parameter r in Theorem
12 in each case is somewhat smaller than the worst-case bound of O(|W | log |G|) coming from
(the very general) Theorem 18; instead it approaches O(log |G|) as the underlying field size q
approaches infinity.

5.1 The groups GLn(Fq) and SLn(Fq)

The easiest example for applying Theorem 17 is the general linear group.

Theorem 19. For each n and prime power q, there is a generalized DFT for the group G =
GLn(Fq) that uses O(|G|ω/2+ǫ) operations, for all ǫ > 0.

Proof. The three subgroups H1, H2, H3 are the set of lower-triangular matrices with ones on
the diagonal, the set of diagonal matrices, and the set of upper-triangular matrices with ones on
the diagonal, which have sizes q(n

2−n)/2, (q − 1)n, and q(n
2−n)/2, respectively. In the notation

of Theorem 17, we have

r = O

( |G| log |G|
|H1||H2||H3|

)
≤ O

(
q

q − 1

)n

(n2 log q)

which can be absorbed into the |G|ǫ term.

For SLn(Fq) the only difference is that the diagonal matrices must have determinant one, so
the size of that subgroup is (q − 1)n−1 instead of (q − 1)n; the group itself is also smaller by a
factor of q − 1. We obtain in exactly the same way as for Theorem 19:

Theorem 20. For each n and prime power q, there is a generalized DFT for G = SLn(Fq) that
uses O(|G|ω/2+ǫ) operations, for all ǫ > 0.

Since the two dimensional case has attracted a lot of attention, we record that result sepa-
rately, for concreteness:

Theorem 21. For each prime power q, there is a generalized DFT for G = SL2(Fq) that uses
O(|G|ω/2+ǫ) operations, for all ǫ > 0.

Proof. Let H1 be the set of lower triangular matrices with ones on the diagonal, H2 be the set
of diagonal matrices with determinant 1, and H3 be the set of upper triangular matrices with
ones on the diagonal. These are all subgroups, each pairwise intersection is {1}, and we have
H1H2 is a subgroup. All three subgroups are abelian, with orders q, q − 1, and q, respectively.
Since |G| = q3 − q we have in this case that |H1H2||H3| = |G| and hence H1H2H3 = G. We
can perform the DFT by applying Theorem 12 to H1H2 and H3, and then to H1 and H2. The
overall cost is

O(|G|ω/2+ǫ) + |H1H2| · O(|H3| log |H3|)
+ |H3| ·

(
O(|H1H2|ω/2+ǫ) + |H1| · O(|H2| log |H2|) +H2 ·O(|H1 logH1|)

)

12



which simplifies to the claimed operation count.

5.2 The symplectic groups Sp2n(Fq)

A symplectic group of dimension 2n over Fq is the subgroup of invertible matrices that preserve
a symplectic form; all symplectic forms are equivalent under a change of basis, so concretely we
may take Sp2n(Fq) to be the set of all matrices A ∈ GL2n(Fq) such that

ATQA = Q, where Q =

(
0 J
−J 0

)

and J is the matrix with ones on the antidiagonal.

Theorem 22. For each n and prime power q, there is a generalized DFT for G = Sp2n(Fq)
that uses O(|G|ω/2+ǫ) operations, for all ǫ > 0.

Proof. Let L,U,D be the lower-triangular (with ones on the diagonal), upper-triangular (with
ones on the diagonal), and diagonal subgroups of GL2n(Fq), respectively. We view our group G
as a subgroup of GL2n(Fq) as well. It is well known that the order of G is

qn
2

n∏

i=1

(q2i − 1) ≤ q2n
2+n.

Now apply Theorem 17 with H1 = L∩G,H2 = D∩G and H3 = U ∩G. We note that H1 and
H3 are p-groups and H2 is abelian (as before). Also, H1H2 is a subgroup, and H1 ∩H2 = {1}
and H1H2 ∩H3 = {1}.

It remains to bound the sizes of H1, H2, H3. In order to lower bound the size of H3, consider
the following subgroups of GL2n(Fq),

H =

{(
In M
0 In

)
: M ∈ F

n×n
q

}

K =

{(
A 0
0 B

)
: A,B upper triangular with ones on the diagonal

}
.

One can verify that H ∩ G is the subgroup in which M is a persymmetric matrix (symmetric
about the anti-diagonal), and thus this subgroup has order qn(n+1)/2. Similarly, one can verify
that K ∩G is the subgroup in which A is an arbitrary upper-triangular matrix with ones on the
diagonal and B = J(AT )−1J . Thus this subgroup has order qn(n−1)/2. We have

(H ∩G)(K ∩G) ⊆ H3

and so |H3| ≥ qn(n+1)/2+n(n−1)/2 = qn
2

. A symmetric argument shows that |H1| has the same
order. It is also easy to verify that |H2| = (q − 1)n. In the notation of Theorem 17, we have

r = O

( |G| log |G|
|H1||H2||H3|

)
≤ O

(
q

q − 1

)n

((n2 + n) log q)

which can be absorbed into the |G|ǫ term.
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5.3 The orthogonal groups On(Fq)

An orthogonal group of dimension n over Fq is a subgroup of invertible matrices that preserve
a nondegenerate symmetric quadratic form. There are several inequivalent quadratic forms and
thus several non-isomorphic orthogonal groups. For simplicity, we work out only one case (the
“plus type” orthogonal group of even dimension, in odd characteristic). A similar analysis can
be easily carried out for the other non-isomorphic orthogonal groups. In our case, concretely,
we may take On(Fq) to be the set of all matrices A ∈ GLn(Fq) such that

ATQA = Q, where Q =

(
0 J
J 0

)

and J is the matrix with ones on the antidiagonal.

Theorem 23. For each even n and odd prime power q, there is a generalized DFT for G =
On(Fq) specified via the above quadratic form, that uses O(|G|ω/2+ǫ) operations, for all ǫ > 0.

Proof. Let L,U,D be the lower-triangular (with ones on the diagonal), upper-triangular (with
ones on the diagonal), and diagonal subgroups of GLn(Fq), respectively. We view our group G

as a subgroup of GLn(Fq) as well. It is well known that the order of G is at most 2q(n
2−n)/2.

Now apply Theorem 17 with H1 = L∩G,H2 = D∩G and H3 = U ∩G. We note that H1 and
H3 are p-groups and H2 is abelian (as before). Also, H1H2 is a subgroup, and H1 ∩H2 = {1}
and H1H2 ∩H3 = {1}.

It remains to bound the sizes of H1, H2, H3. In order to lower bound the size of H3, first
consider the following subgroups of GLn(Fq),

H =

{(
In/2 M
0 In/2

)
: M ∈ F

n/2×n/2
q

}

K =

{(
A 0
0 B

)
: A,B upper tri. with ones on the diagonal

}
.

One can verify that H ∩G is the subgroup in which M is a “ skew-persymmetric” matrix (skew-

symmetric about the anti-diagonal), and thus this subgroup has order q((n/2)
2−(n/2))/2. Simi-

larly, one can verify thatK∩G is the subgroup in which A is an arbitrary upper-triangular matrix
with ones on the diagonal and B = J(AT )−1J . Thus this subgroup has order q((n

2)2−(n/2))/2.
We have

(H ∩G)(K ∩G) ⊆ H3

and so |H3| ≥ q(n/2)
2−(n/2). A symmetric argument shows that |H1| has the same order. It is

also easy to verify that |H2| = (q − 1)n/2. In the notation of Theorem 17, we have

r = O

( |G| log |G|
|H1||H2||H3|

)
≤ O

(
q

q − 1

)n/2

((n2 − n) log q/2)

which can be absorbed into the |G|ǫ term.

We note that in all of the cases just considered in Sections 5.1, 5.2, 5.3, one obtains the
same results for the special or projective (or both) variants, by following essentially the same
argument. To obtain results for the projective cases, we observe that quotient-ing all of the
groups in our decomposition by the center can only change the operation count by a factor of
some constant multiple of the size of the center, which in these cases is itself a constant.

Finally, we note that Theorem 18 and the surrounding discussion imply
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Theorem 24. Let G be a finite simple group. Then there is a fast DFT over G that uses
O(|G|ω/2+ǫ) operations, for all ǫ > 0.

Proof. As noted in the discussion before and after Theorem 18, all finite simple groups of Lie
type (except the Tits group) have a split (B,N)-pair, and Weyl group of order |G|o(1), so
Theorem 18 yields exponent ω/2 algorithms for these families. By the Classification Theorem,
the only other infinite families of finite simple groups are the alternating group and the abelian
groups, both of which have exponent 1 algorithms. The sporadic groups and the Tits group are
a finite set of exceptions that can be handled by choosing the constant in the big-oh notation
sufficiently large.

6 A new exponent upper bound for all finite groups

In this section we prove a structural result for all finite groups that allows us to make use of the
reduction in Theorem 12. Just as Lev’s theorem regarding a large single subgroup allows one to
use the single subgroup reduction of Section 2 to obtain a non-trival upper bound for all finite
groups, the following theorem gives a pair of subgroups for use in the reduction of Theorem 12.

Theorem 25. There exists a monotone increasing function f(x) ≤ 2c
√
log x log log x for a univer-

sal constant c ≥ 1, for which the following holds: every finite group G that is not a p-group has
proper subgroups H,K satisfying |HK| ≥ |G|/f(|G|).

Proof. If G is simple then by the Classification Theorem, we have several cases:

• G is cyclic of prime order. This case cannot arise since G is not a p-group.

• G is the alternating group An. Then we choose H = An−1 and K = {1} and we have
|HK| ≥ |G|/n, so as long as f(x) > log x, the theorem holds.

• G is a finite group of Lie Type. Then G has a (B,N) pair (the Tits Group is an exception;
it does not have a (B,N) pair, but it is a single finite group so it can be treated along
with the sporadic groups in the next case). Let W = N/(B ∩N) be the Weyl group, and
from the axioms of a (B,N) pair, we have that the double cosets BwB with w ∈ W cover
G (the w denotes a lift to N ⊆ G). Thus there is some double coset BwB of size at least
|G|/|W |. Taking H = Bw and K = B, we see that |HK| = |BwB| ≥ |G|/|W |. Now we
verify that we can choose f so that for each of the families in Figure 2, f(|G|) > |W |.

• G is one of the sporadic groups. Let C be the largest order of a sporadic group. Then by
choosing f(x) > C, the theorem holds for H = K = {1} in this case.

If G is not simple, then let N be a maximal normal subgroup of G, so that G/N is simple. We
have two cases:

• G/N is a p-group. Since G is not a p-group, we have that |G| = mpk for m > 1 and
(m, p) = 1. Let P be a p-Sylow subgroup of G. Then |P | = pk, and |N | = mpk

′

for some
k′ < k. Then NP = G and both N and P are proper subgroups.

• G/N is a simple group that is not a p-group. Then apply the previous case analysis for
simple groups to obtain H/N,K/N , proper subgroups of G/N for which |(H/N)(K/N)| ≥
|G/N |/f(|G/N |). But then H,K are proper subgroups of G and

|HK| = |(H/N)(K/N)||N | ≥ |G/N ||N |/f(|G/N |) = |G|/f(|G/N |) ≥ |G|/f(|G|),

where the last inequality used the monotonicity of f .
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Name Family |W | |G|
Chevalley Aℓ(q) (ℓ+ 1)! qΘ(ℓ2)

Bℓ(q) 2ℓℓ! qΘ(ℓ2)

Cℓ(q) 2ℓℓ! qΘ(ℓ2)

Dℓ(q) 2ℓ−1ℓ! qΘ(ℓ2)

Exceptional E6(q) O(1) qΘ(1)

Chevalley E7(q) O(1) qΘ(1)

E8(q) O(1) qΘ(1)

F4(q) O(1) qΘ(1)

G2(q) O(1) qΘ(1)

Steinberg 2Aℓ(q
2) 2⌈ℓ/2⌉⌈ℓ/2⌉! qΘ(ℓ2)

2Dℓ(q
2) 2ℓ−1(ℓ− 1)! qΘ(ℓ2)

2E6(q
2) O(1) qΘ(1)

3D4(q
3) O(1) qΘ(1)

Suzuki 2B2(q), q = 22n+1 O(1) qΘ(1)

Ree 2F4(q), q = 32n+1 O(1) qΘ(1)

2G2(q), q = 32n+1 O(1) qΘ(1)

Figure 2: Families of finite groups G of Lie type, together with the size of their associated Weyl
group W . These include all simple finite groups other than cyclic groups, the alternating groups,
the 26 sporadic groups, and the Tits group. See [Lev92, Wik17] for sources.
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Figure 3: Upper bound in Theorem 26 as a function of ω. The previous best bound is from Theorem
5. Assuming that some dependence on fast matrix multiplication is necessary, w/2 is a reasonable
conjecture for the optimal dependence. Exponent one is of course a trivial lower bound.
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Now we can use this theorem in a recursive algorithm that switches between the single
subgroup reduction and the double subgroup reduction, as follows:

Theorem 26. For every finite group G, there is an exponent ω−2+
√
ω2−4ω+36
4 algorithm com-

puting the DFT with respect to G when ω ≤ 1+
√
17

2 , or exponent 4ω
4+ω when ω ≥ 1+

√
17

2 . In

particular, when ω = 2, the exponent is
√
2.

To visualize these bounds, refer to Figure 3.

Proof. We describe our general strategy before formally analyzing the complexity. For each
possible value of ω, we pick a threshold β as a function of ω. This threshold will be used to
switch between the single subgroup and the double subgroup reductions.

Fix G. Consider the following recursive algorithm. If G is a p-group, then we apply Theorem
14. If G is the trivial group, then the DFT is trivial as well. Otherwise, letH,K be the subgroups
guaranteed by Theorem 25. If |H |, |K| are both at most |G|β , then we apply Theorem 12 (the
double subgroup reduction). Otherwise one of H,K has size at least |G|β (without loss of
generality, assume it’s H) and we apply Corollary 4 (the single subgroup reduction).

Let us now analyze the operation count in terms of β. After this analysis, we’ll pick the
optimal β for each ω to minimize the operation count.

For this purpose, set δ = min{ǫ, 0.1, 0.1ǫβ }, and give names to some constants:

• Let Aδ be the constant hidden in the O(|G|ω/2+δ + (|H ||K|)ω/2+δ) notation of Theorem
12.

• Let Bδ be the constant hidden in the [G : H ]2 ·O(|H |ω/2+δ) notation of Corollary 4.

• Let B be the constant hidden in the O(|G| log |G|) notation of Theorem 14.

Let T (n) denote an upper bound on the running time of this recursive algorithm for any
group G of order n. For each fixed ǫ > 0, we will prove by induction on n that, for a universal
constant Cǫ,

T (n) ≤ Cǫn
α+ǫ log2 n,

where α is determined by β and ω. This clearly holds for the base case of a p-group or the
trivial group, provided Cǫ > B and α ≥ 1.

By choosing Cǫ sufficiently large, we may assume that |G| is at least some fixed constant size,

and hence we may assume that 2c
√

log |G| log log |G| · O(log |G|) term in the notation of Theorem
12 is bounded above by |G|ǫ/10.

In the case that we apply Theorem 12, the cost is at most

(
|H | · T (|K|) + |K| · T (|H |) +Aδ(|H ||K|)ω/2+δ

)
· |G|ǫ/10,

where |H |, |K| ≤ |G|β . Applying the induction hypothesis, we obtain:

T (n) ≤ 2Cǫ

(
nβnβ(α+ǫ) log2(nβ) +Aδn

2β(ω/2+δ)
)
· nǫ/10

≤ (2Cǫβ
2 +Aδ) · nmax(β+βα+βǫ,ωβ+2βδ)+ ǫ

10 log2 n

which can be bounded above by Cǫn
α+ǫ log2 n as long as the following constraints are satisfied:

• β <
√
2
2 ≈ 0.707;

• α ≥ max( β
1−β , ωβ);

• Cǫ >
Aδ

1−2β2 .
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In the case that we apply Corollary 4, the cost is at most

[G : H ] · T (|H |) + [G : H ]2 · Bδ|H |ω/2+δ,

where |H | ≥ |G|β and hence [G : H ] ≤ |G|1−β . If we set γ such that |H | = |G|γ , and thus
β ≤ γ ≤ 1, and apply the induction hypothesis, we obtain,

T (n) ≤ Cǫn
1−γnγ(α+ǫ) log2(n/2) +Bδn

2(1−γ)nγ(ω/2+δ)

< Cǫn
α+ǫ(log n)(logn− 1) +Bδn

2−(2−ω/2)β+δ

which is at most Cǫn
α+ǫ log2 n as long as the following constraints are satisfied:

• α ≥ 2− (2 − ω/2)β;

• Cǫ ≥ Bδ.

To recap, the above induction proof holds when

α = max(
β

1− β
, ωβ, 2− (2 − ω

2
)β), and β <

√
2

2
≈ 0.707.

Now we solve for the optimal β for each fixed ω.

When ω ≥ 1+
√
17

2 ≈ 2.562, the optimal is

β∗ =
4

4 + ω
, α∗ =

4ω

4 + ω
.

When ω ≤ 1+
√
17

2 ≈ 2.562, the optimal is

β∗ =
10− ω −

√
ω2 − 4ω + 36

2(4− ω)
, α∗ =

ω − 2 +
√
ω2 − 4ω + 36

4
.

7 Conclusions

There are two significant open problems that naturally follow from the results in this paper.
First, can one obtain exponent ω/2 algorithms for all finite groups? This might be possible
by proving a more sophisticated version of Theorem 25, which, for example, manages to upper
bound |H ∩ K|. Also of interest would be a proof of Theorem 25 that does not need the
Classification Theorem.

A second question is whether the dependence on ω can be removed. Alternatively, can one
show that a running time that depends on ω is necessary by showing that an exponent one DFT
for a certain family of groups would imply ω = 2?
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