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Abstract

We report the discovery of a giant planet in event UKIRT-2017-BLG-001, detected by the United Kingdom
Infrared Telescope (UKIRT) microlensing survey. The mass ratio between the planet and its host is
= ´-

+ -q 1.50 100.14
0.17 3, about 1.5 times the Jupiter/Sun mass ratio. The event lies 0°.35 from the Galactic center

and suffers from high extinction of AK=1.68. Therefore, it could be detected only by a near-infrared (NIR)
survey. The field also suffers from large spatial differential extinction, which makes it difficult to estimate the
source properties required to derive the angular Einstein radius. Nevertheless, we find evidence suggesting that the
source is located in the far disk. If correct, this would be the first source star of a microlensing event to be identified
as belonging to the far disk. We estimate the lens mass and distance using a Bayesian analysis to find that the
planet’s mass is -

+ M1.28 J0.44
0.37 , and it orbits a -

+
M0.81 0.27

0.21 star at an instantaneous projected separation of

-
+4.18 0.88

0.96 au. The system is at a distance of -
+6.3 2.1

1.6 kpc, and so likely resides in the Galactic bulge. In addition, we
find a non-standard extinction curve in this field, in agreement with previous results toward high-extinction fields
near the Galactic center.
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1. Introduction

Gravitational microlensing is unique in its ability to probe
relatively untapped reservoirs of exoplanet parameter space
(Gaudi 2012). These include planets at all masses near the
“snowline” where gas and ice giants are likely to form (Ida &
Lin 2005), hence probing the frequency and mass function of
snowline planets (Cassan et al. 2012; Shvartzvald et al. 2016;
Suzuki et al. 2016); planetary systems around all types of stars
throughout the Galaxy, thus allowing measurement of the
Galactic distribution of planets (Calchi Novati et al. 2015a;
Penny et al. 2016; Zhu et al. 2017); and free-floating planets
(Sumi et al. 2011; Mróz et al. 2017). However, currently only
51 planetary systems hosting 53 planets10 have been discovered
using microlensing. While new ground-based microlensing
surveys with global networks of telescopes and high cadences
(e.g., KMTNet; Kim et al. 2016) are expected to detect a few
tens of planets per year (Henderson et al. 2014), it is clear that a
space-based survey is required in order to significantly increase
the number of detected systems and to detect planets with
masses substantially less than that of the Earth, thus fully
exploiting the microlensing potential (Bennett & Rhie 2002;
Penny et al. 2013).

The proposed Wide Field InfraRed Survey Telescope
(WFIRST) flagship mission (Spergel et al. 2015), which is
planned to launch in mid-2020s, would dedicate ∼25% of its
lifetime to a microlensing survey. This survey is predicted to

discover thousands of exoplanets near or beyond the snowline
via their microlensing light curve signatures (M. T. Penny et al.
2018, in preparation), enabling a Kepler-like statistical analysis
of planets ∼1–10 au from their host stars and potentially
revolutionizing our understanding of planet formation. In
addition to the superb photometry, high cadence, and
continuous observations, the survey will be conducted in the
near-infrared (NIR). An NIR microlensing survey suffers from
less extinction than traditional optical surveys, enabling
observations closer to the Galactic plane and center, where
the stellar surface density of sources and lenses, and thus the
microlensing event rate, is highest. However, until recently no
dedicated NIR microlensing survey has been conducted, and so
the event rate in the NIR has not been measured, which is
crucial for WFIRST field optimization (Yee et al. 2014).
During the 2015 and 2016 seasons, we conducted the first

NIR microlensing survey with the United Kingdom Infrared
Telescope (UKIRT) as support for the Spitzer and Kepler
microlensing campaigns. From examination of 5% of the 2016
UKIRT fields (overlapping with optical survey fields), we
discovered five highly extinguished, low-Galactic latitude
microlensing events (Shvartzvald et al. 2017). These events
were not detected by optical surveys, likely due to the high
extinction. Combining these detections with additional events
that were also detected by optical surveys in these fields, we
found evidence that the event rate is indeed higher in this
region, closer to the Galactic plane. In 2017, we initiated a full
NIR microlensing survey with UKIRT, covering all potential
WFIRST fields including the Galactic plane and center (see
Figure 1), which are inaccessible to optical surveys due to the
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high extinction. The fields are observed with a daily cadence,
allowing us to easily detect microlensing events with their
typical timescale of approximately 20 days (Shvartzvald
et al. 2016), and with a cadence of three epochs/night in the
central fields, which are expected to have an excess of short-
timescale bulge–bulge events (Gould 1995).

Bound microlensing planets are discovered through their
anomalous signature on the otherwise smooth single-lens light
curve. These anomalies occur when the source passes near or
over a caustic. There are three types of caustics (for a thorough
review see Gaudi 2012): central caustics (associated with the
host), planetary caustics (associated with the planet), and
resonant caustics, which occur when the central and planetary
caustics merge into a single caustic. The location and shape of
the caustics are determined by the mass ratio q between the
host and the planet, and the scaled (with respect to the Einstein
radius θE) instantaneous projected separation s. The size of the
caustics is mostly determined by the mass ratio q (as the
separation s changes by only a factor 2 in the “lensing zone”
(Griest & Safizadeh 1998)), and thus for events due to a star
and a planet (and thus small q) the caustics are usually small.
Anomalies due to planets typically last 1 day for planetary or
central caustics, and thus require high cadence in order for
them to be detected and well characterized. However, resonant
caustics are always larger than either the planetary or central
caustics (for a given mass ratio q) and thus have a larger cross
section (Dominik 1999), as well as longer anomaly duration,
and therefore can be detected even with a daily cadence. In fact,
about 40% of the microlensing planetary systems to date have
been detected through resonant caustic perturbations.11 These
include the first microlensing planet (Bond et al. 2004), the first

planet simultaneously observed from ground and space
(Udalski et al. 2015), and the two multiple-planet systems
(Gaudi et al. 2008; Han et al. 2013). All of these events also
had long timescales (60–150 days), thus the anomalies lasted
several days.
In this Letter, we report the discovery of the planetary event

UKIRT-2017-BLG-001. This is the first planet to be detected
solely by the UKIRT survey. The planetary perturbation is
caused by a resonant caustic of a giant planet (q∼10−3) and
the event has a long timescale of ∼100 days. Thus, the survey
cadence was sufficient for the detection and characterization of
the planet. The event lies close to the Galactic center (0°.35)
and in a field with significant total and spatially variable
extinction, thus it could not be detected by optical microlensing
surveys.
We describe the UKIRT observations and event detection in

Section 2. In Section 3 we present the best-fit microlensing
model of the event. In Section 4 we derive the source properties
by analyzing the color–magnitude diagram (CMD) of the
event, finding indications that suggest it is a far-disk source. In
Section 5 we estimate the physical properties of the planetary
system using a Bayesian analysis. An analysis of the multi-
band extinction toward this field is presented in Section 6.
Finally, we summarize and discuss our results in Section 7.

2. Observations

The UKIRT microlensing survey uses the wide-field NIR
camera (WFCAM) at the UKIRT 3.8 m telescope on Mauna
Kea, Hawaii. The 2017 fields cover the northern bulge (b>0),
the Galactic center, and the southern bulge (see Figure 1).
Observations of the central fields are primarily done with the
KS-band, with a nominal cadence of three epochs/night. In
addition, H-band observations are taken once every three

Figure 1. UKIRT-2017 microlensing survey fields (blue), plotted over the AK extinction map from Gonzalez et al. (2012). The cyan plus marks the location of the
event UKIRT-2017-BLG-001.

11 We also consider events with degenerate solutions when at least one of the
solutions is due to a resonant caustic.

2

The Astrophysical Journal Letters, 857:L8 (11pp), 2018 April 10 Shvartzvald et al.



nights. The northern and southern bulge fields are observed
once per night with the H-band and once every five nights with
the KS-band. Each epoch is composed of 16 5-s co-added
dithered exposures (two co-adds, two jitter points, and 2×
2 microsteps). The UKIRT dithered images are reduced,
astrometrically calibrated, and stacked by the Cambridge
Astronomy Survey Unit (CASU; Irwin et al. 2004). The light
curves of all sources are then extracted using two methods—(a)
Two Micron All Sky Survey (2MASS)-calibrated soft-edge
aperture photometry (standard CASU individual image cata-
logs; Hodgkin et al. 2009), and (b) 2MASS-calibrated point-
spread function (PSF) photometry using SExtractor (Bertin &
Arnouts 1996) and PSFEx (Bertin 2011). The latter is better for
detecting and measuring faint objects in our crowded bulge
fields.

We searched the full 2017 data set for microlensing events
using the new event detection algorithm of Kim et al. (2018).
Among the events found (the full analysis will be presented in a
subsequent paper), we identified UKIRT-2017-BLG-001. The
event lies inside one of our central fields, at equatorial
coordinates (R.A., decl.)J2000.0=(17:46:36.98, −29:12:40.9),
and Galactic coordinates (l, b)=(−0.12, −0.33).

After the discovery of the event and the anomaly over its
peak, we extended the observations of the field covering the
event for additional two weeks beyond the main 2017
campaign. However, these observations were only with one
pointing (toward the specific field) unlike the standard
observational sequence of a full tile (covering a continuous
area with four pointings). This results in a different procedure
for deriving the sky frames that are used to correct for additive
artifacts such as scattered light, residual reset anomaly, and
illumination-dependent detector artifacts (for more details see
the UKIRT/WFCAM technical website12). The sky estimation
for single pointings leaves some residual object flux and thus
introduces a small systematic bias that progressively increases
at faint magnitudes. In order to incorporate this systematic
effect in the PSF photometry light curve, we measured the
distribution of flux offset using all of the sources near the event
(<2′) for each epoch in the additional two weeks compared to
the mean flux during the main survey. We then estimate the
systematic error per epoch using the flux offset dispersion after
subtracting the mean flux offset dispersion of the main survey.
Finally, we add (in quadrature) this systematic error to the
reported PSF flux errors.

For the modeling of the event (Section 3) we use the PSF
photometry of the full data set, while for the CMD that is used
to derive the source properties (Section 4), we use the PSF
catalog from the main survey only. Based on the rms
distribution of the PSF photometry for all of the sources in
our field, we add (in quadrature) a minimum error,
emin=0.015, to the pipeline reported errors, in order to
compensate for unrealistically small Poisson flux errors when
the event is bright. We note that this is an empirical correction
and is not driven by the fit for the model.

3. Light Curve Modeling

The light curve (Figure 2) has a clear and long anomaly
(∼8 days) just after the peak of a moderate-magnification
microlensing event. The anomaly starts with a small deviating

rise above the expected single-lens model, followed by a sharp
fall. Then the event rises again and continues to fall
approximately as expected by a single-lens microlensing event.
The combination of these features suggests a source crossing
over a planetary resonant caustic, exiting at the “back” side of
the caustic opposite to the planet (and thus the sharp fall below
the single-lens model), followed by a cusp approach (see
Figure 3).
We model the event using seven geometric parameters to

calculate the magnification, A(t), of a binary-lens system. These
are the three point-lens parameters ( )t u t, ,0 0 E (Paczynski 1986),
and three parameters for the companion: the mass ratio q, the
instantaneous scaled projected separation s, and the angle
α (measured counter-clockwise) between the source trajectory
and the binary axis in the lens plane. The seventh parameter
is the scaled angular source size *r q q= E. To calculate
the model magnifications near and during the anomaly
we employ contour integration (Gould & Gaucherel 1997)
with 10 annuli to allow for limb darkening. We adopt
linear coefficients uH=0.3895 and uK=0.3324 (Claret
& Bloemen 2011), based on the source type derived in
Section 4.13 Far from the anomaly we employ limb-
darkened multipole approximations (Gould 2008; Pejcha &
Heyrovský 2009). Finally, each data set has two flux
parameters representing the source ( fs H K, S

) and any additional
blend ( fb H K, S

): = +( ) ( )F t f A t fH K s H K b H K, ,S S S
.

To identify initial possible solutions we search over a grid
of mass ratios ranging q=0.0001–1.0 and separations
s=0.1–1.4, fully containing the relevant parameter space of
resonant caustics. For each grid point we initiate a set of
Markov-chain Monte-Carlo (MCMC) chains with all possible
angles α. We find an isolated single minimum centered on
(s, q)∼(1.02, 0.001) (see Figure 4) and initiate from this point
a full MCMC analysis (with all parameters free) to find the
best-fit model.
The source of the event is faint, with K 16S s, , which is

very close to the survey limiting magnitude (see Figure 6).
Moreover, our data do not completely cover the baseline of the
event. Yee et al. (2012) showed that some of the standard
microlensing parameters, in particular tE and fs, can be poorly
constrained for such events with faint sources. However, they
introduced the microlensing invariants *º º(t t u t t, ,E0 eff 0
r º )t qt f f u, ,E E slim 0 , which are well-constrained from the
region near the peak and anomaly of the event. Table 1 gives
the values and uncertainties of the best-fit parameters and the
microlensing invariants.
We further try to include in the model microlensing parallax

or orbital motion of the binary-lens system. The inclusion of
these higher-order effects does not significantly improve the fit
(which requires two additional parameters for each effect) with
Δχ2=5 when including only microlens parallax, Δχ2=9
when including only orbital motion, and Δχ2=14 when
including both effects. We do not consider either of these as a
detection because they all require significant negative blending
(which is unphysical) and systematics at that level are well
known in microlensing. Nevertheless, we can set a conservative
upper limit ( c cD - <( ) 302

best
2 ) on the microlensing parallax

of p < 0.7E . In Section 5 we use this limit when deriving the
physical properties of the system.

12 http://casu.ast.cam.ac.uk/surveys-projects/wfcam/technical/sky-
subtraction

13 We note that the best fit is insensitive to the exact limb darkening coefficient
for giant stars.
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4. Source Properties

A standard way to derive the intrinsic source properties is by
measuring the offset between the source position on a CMD
and the centroid of the red clump (RC; Yoo et al. 2004). A
fundamental assumption for this method is that the source and
the RC are both behind the same dust column. The CMD is
thus usually constructed using stars near (2′) the target, as
spatial extinction variations toward the bulge are usually on
larger scales. However, in the case of our event there are
several challenges with this method.

The first challenge is the observed source properties. The
entire range of -( )H KS colors for giants (which our source
likely is, as we show below) is narrow, with only 0.24 mag
difference between G0 to M7 giants. Even for dwarfs the range
is only 0.38 mag between B8 and M6 dwarfs (Bessell &
Brett 1988).14 This is because -( )H KS basically probes the
Rayleigh–Jeans tail for most stars. Therefore, a precise
measurement of the source color is essential in order to derive
the source properties. We determine the model-independent
source -( )H KS s color from regression of H versus KS flux as
the source magnification changes (Gould et al. 2010), and find

- = ( )H K 1.87 0.01S s . (This color is in excellent agree-
ment with the color derived from the model of

- = ( )H K 1.878 0.004S s ). Each H epoch was taken in
between two KS observations on the same night, minimizing
systematics and allowing us to achieve the required precision.
Next, the source is faint and, as discussed in Section 3, we do
not have coverage of the event’s baseline. Therefore, the
uncertainty on the source magnitude is relatively large. The KS

source magnitude as inferred from the microlensing model is
= -

+K 16.07S s, 0.11
0.09. The model also indicates a fainter blend

flux, with 5σ upper limit of >K 17.7S b, . We use this
measurement later as an upper limit on the lens flux when
we estimate the physical properties of the planetary system (see
Section 5). For completeness, we note that no centroid shift as a
function of magnification was detected.
The second and more prominent challenge is the determina-

tion of the extinction and reddening using the RC centroid.
There are clear dust clouds in the region around our event (see
Figure 5), which cause large spatial reddening variations on

Figure 2. Light curve of UKIRT-2017-BLG-001 in KS (black squares and left horizontal axis) and H (red circles and right horizontal axis). The best-fit planetary
model is shown in black. The anomaly (inset) over the peak is clear and covered sufficiently well with our three epochs/night cadence. The vertical blue dashed line
indicates the end of the main survey, beyond which we include systematic errors due to poor sky estimations. The data used to create this figure are available.

Figure 3. Magnification map of the event. The source trajectory (red line) over
the resonant caustic (white curve). The red circle indicates the source size. The
length of the caustic (long axis) is larger than 0.2θE, showing the large cross
section of giant planet resonant caustics. The width is ∼0.1θE and the event
timescale is »t 100E days, suggesting a typical anomaly duration of ∼10 days.

14 We convert Bessell & Brett (1988) -( )H K BB colors to 2MASS-calibrated
-( )H KS 2MASS colors using the relations from Carpenter (2001).
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scales smaller than the standard 2′ region. We avoid obvious
dust stripes and use stars in a 1.6 arcmin2 box around the event,
as marked in Figure 5, to construct the CMD (Figure 6). We
measure the RC centroid following the procedure described in
Nataf et al. (2013) and find - =( ) ( )H K K, 1.63, 14.63S S cl .
The number of RC stars used, as derived from the fit, is

= N 197 14RC , which is sufficient for a reliable measure-
ment of the RC. By comparing the apparent clump centroid to

the intrinsic centroid of - =( ) ( )H K K, 0.15, 12.95S S cl,0
toward the event’s location (assuming a distance of 8.17 kpc;
Nataf et al. 2013, 2016; Hawkins et al. 2017) we find that the
mean extinction and reddening toward the event are
á ñ =A 1.68KS and á ñ =-E 1.48H KS , respectively. We note that
the reddening-to-extinction ratio that we find is non-standard,
and we investigate this further in Section 6.
However, both the color and magnitude dispersions of the

RC stars are large, suggesting large extinction and reddening
dispersions (and thus large uncertainties on the intrinsic source
properties) as well as a possibly wide distance dispersion of
clump stars. The observed clump color dispersion is
s =-( ) 0.16H KS cl (as derived from the clump centroid fit; see
Nataf et al. 2013 for details), which combines the intrinsic
clump color dispersion and reddening dispersion. In order to
estimate the intrinsic dispersion we apply the RC centroid
procedure to several of our low-Galactic-latitude UKIRT fields
that have low and uniform extinction. From the clump color
dispersion on these fields we find that the intrinsic clump color
dispersion is only 0.04, and thus the uncertainty on the
reddening (e.g., the reddening dispersion) in the event’s field is
s =- 0.15EH KS

. This large uncertainty, if taken as is, implies that
the intrinsic color of the source cannot be well constrained, as
the full range of colors for giant stars is within s -2 EH KS

and the
full dwarf color range is within s -2.5 EH KS

. The observed clump
magnitude dispersion, s = 0.36KS,cl , is even higher. Intrinsic
dispersion, extinction dispersion, and distance modulus
dispersion all contribute to the total magnitude dispersion
(the dispersion due to photometric noise is negligible). The

Figure 4. Results from the grid search on the s–q (scaled separation, mass ratio) plane. The values of the best-fit solution are marked as a magenta circle. A single
isolated minimum is clearly detected. The contours indicate a steep surface, where all results with Δχ2<100 compared to the best fit are within the inner contour and
results with Δχ2<500 and Δχ2<1000 are within the second and third contours, respectively.

Table 1
Microlensing Model

Parameter

t0 [HJD′] 7916.243±0.022
u0 -

+0.0303 0.0026
0.0036

tE [day] -
+101.0 9.6

8.2

ρ [10−3] -
+6.64 0.56

0.75

α [rad] -
+3.7036 0.0076

0.0084

s -
+1.0318 0.0045

0.0032

q [10−3] -
+1.50 0.14

0.17

KS s, -
+16.07 0.11

0.09

KS b, >17.7a

teff [day] 3.062±0.050
t* [day] 0.671±0.016
qtE [day] 0.1517±0.0041

flim 198.2±2.0

Note. HJD′=HJD-2450000.
a 5σ limit.

5

The Astrophysical Journal Letters, 857:L8 (11pp), 2018 April 10 Shvartzvald et al.



intrinsic magnitude dispersion is 0.17 (Hawkins et al. 2017),
and the extinction dispersion can be estimated from the
reddening dispersion and the mean extinction-to-reddening
ratio to be s = 0.17AKS

. Thus, the distance modulus dispersion
to the clump is 0.28. While this value is larger than typical
toward Baade’s window (Nataf et al. 2013), the event is located
very close to the Galactic center (and thus the Galactic plane),
implying a large geometrical dispersion due to the fact that
there are significant contributions from both bulge and far disk
stars (see more details in Section 4.1 below).

The large differential reddening implies that the basic
assumption that the source is behind the same dust as the
clump is not reliable, as the extinction itself is not uniform
across the field. Moreover, assuming that the reddening and
extinction to the source are the mean reddening and extinction
in the field, á ñ =-E 1.48H KS and á ñ =A 1.68KS yield intrinsic
source properties of [(H−KS), KS)]s,“0”=(0.39, 14.39).
While the magnitude suggests a giant source, the color is
0.05 redder than an M7 giant (which is already very rare, as
suggested by the small intrinsic dispersion of clump star
colors). This implies that the source is suffering from higher
reddening than the mean clump. While we cannot use the usual
method to derive the source properties with small uncertainties,
we can use it to set possible limits on the source properties. We
assume that the extinction and reddening toward the source are
á ñ + DA AK KS S and á ñ + D- -E EH K H KS S, respectively. In order

to estimate the boundaries of the possible source angular size
range, we take two extreme cases of giant sources. As the
reddest limit, we assume an M7 giant with - =( )H K 0.34S ,
thus suffering from additional reddening D =-E 0.05H KS and
correspondingly additional extinction D =A 0.06KS

. As the
bluest limit, we assume a G0 giant with - =( )H K 0.10S , thus
suffering from D =-E 0.29H KS and D =A 0.33KS . For each
case, we derive the source intrinsic magnitude by accounting
for the total extinction. We then use the -( )V K colors
(Bessell & Brett 1988) corresponding to the source spectral
type and the surface brightness to angular source size relation
of Kervella et al. (2004) to infer that the source angular size is
in the range *q m< <3.3 as 8.5.

4.1. Far Disk Source?

The large differential reddening and the “too red” source
color imply a non-uniform extinction toward each individual
star, and in particular the source. These can be due to either
spatial differential reddening on the scale of a few arcseconds
(even at the apparently uniform box selected), a different
accumulated dust column along the line of sight toward sources
at different distances, or a combination of both. We first
investigate the possibility of variations of dust columns due to
source distances, which we find suitable to fully explain both
problems. Nevertheless, in Section 4.2 we try to examine the
possible spatial differential reddening.

Figure 5. UKIRT 3 8×3 8 H-band image of the field around the event (marked with a cross-hair). Dust “stripes” are clearly seen around the target, indicating the
high differential reddening in the field. The yellow box marks the region used to construct the CMD.
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The event is located at Galactic latitude b=−0°.33,
corresponding to ∼50 pc below the Galactic plane at the
distance of the Galactic bulge (∼8 kpc), or 115 pc at the
extreme far disk (20 kpc). Therefore, the Galactic thin disk
population can have a significant contribution to the number of
observed RC stars on the CMD, because the scale height of the
Galactic thin disk is 300 pc (Jurić et al. 2008). This can
partially explain the observed scatter. In addition, the dust scale
height is 120 pc (Jones et al. 2011). First, this can explain the
large differential reddening within the bulge. Second, stars in
the far disk will be significantly more extinguished. The
Marshall et al. (2006) 3D Galactic interstellar extinction model,
which combines 2MASS data (Cutri et al. 2003) and the
Besançon Galactic model (Robin et al. 2003), suggests an
additional extinction toward the event of D »A 0.4KS

behind
the bulge (between 8.5 and 12 kpc where they are limited by
the data). The Green et al. (2015) 3D Galactic dust map, which
combines the 2MASS and Pan-STARRS1 (Kaiser et al. 2010)
data sets, suggests a ∼15% increase in reddening (corresp-
onding to D »-E 0.25H KS ) between 8 and 16 kpc. However,
both of these maps (Marshall et al. 2006; Green et al. 2015) run
out of stars before or around the distance to the Galactic center,
and thus they probably underestimate the true amount of
additional extinction on the far side of the Galaxy. In
conclusion, the combined effects of the significant thin disk
population and the accumulated dust result in the large scatter
of the apparent magnitude of the RC stars in the field.

The source distance and position on the CMD can similarly
be well explained by the above arguments. First, we
estimate the general probability of a far-disk source with

< <K15 17S s, toward the events coordinates using a new
Galactic population synthesis model (M. J. Huston et al. 2018,
in preparation)15 and Monte-Carlo integration of the event rate
(Penny et al. 2013; Awiphan et al. 2016). We find that the
contribution of far-disk sources, at distances Ds>11 kpc, is
50% of the overall general source probability. Next, as we
found above, the source is D - =( )H K 0.25S redder than the
bulge mean clump. If, for example, the source is a typical RC
star at the far disk, then this difference is due to additional
reddening D =-E 0.25H KS . Using the mean extinction-to-
reddening ratio derived by the mean clump position, this
corresponds to D »A 0.28KS . The remaining difference
between the source magnitude and the mean clump from the
change in distance modulus is thus 1.16. This implies a source
that is 1.71 times more distant than the mean clump,
corresponding to Ds≈14 kpc. As we showed above, Galactic
dust models and observations suggest that, at such distance, the
source is likely to suffer from the observed additional

Figure 6. CMD of stars around the event. The red circle indicates the centroid of the RC, with the relatively large dispersion around it indicating the high differential
reddening. The large color offset between the source (blue) and the clump suggests that the source suffers from additional reddening. The blue dashed line indicates
the source position as if it were behind the same dust column as the clump for the range of possible giant colors.

15 The model assumes a bulge with an E3 density distribution from Dwek et al.
(1995), with parameters estimated by Cao et al. (2013) using OGLE-III clump
giants. The bar has an angle of 29°to the line of sight, and kinematics that
match the Bulge Radial Velocity Assay (BRAVA) survey (Howard
et al. 2009). The disk density and age distribution follows that of Robin
et al. (2003). Stellar properties are derived from MIST version 1.1 solar
metallicity isochrones (Choi et al. 2016; Dotter 2016).
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extinction and reddening. The distance could be somehow less
than 14 kpc, if the source is intrinsically fainter than the clump
or if the dust on the other side of the Galaxy has an extinction
curve that is closer to the standard law than the dust between
the Sun and the RC. Later, in our Bayesian analysis (Section 5)
we find that the source is most likely in the far disk
( = -

+D 11.2S 2.6
3.6 kpc), and thus we conclude that this is probably

the correct explanation.

4.2. Spatial Differential Reddening

The field around the event is severely impacted by dust
stripes. While we constructed our CMD by selecting a box
without any obvious dust clouds, it is still possible that the
large differential reddening is due to local spatial variations on
the scale of a few arcminutes. We tried to examine this
possibility by extracting mutli-color photometry of the stars
around the event. By combining extinction ratios (either by
using the RC stars for each band or through color–color
relations) and the colors of stars, we can estimate the extinction
toward individual stars. This will allow, in principle, the
derivation of a spatial reddening map.

We obtained grizY bands catalog of stars near the event using
data from the DECam Plane Survey (Schlafly et al. 2018), with
corresponding AB limiting magnitudes of 23.9, 23.0, 22.6, 21.9,
and 21.2. In addition, we extracted a Spitzer3.6 μm catalog of
stars near the event from an image taken as part of the Galactic
Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE)
Proper project (Benjamin et al. 2015) using the new Infrared
Array Camera (IRAC) crowded-field photometry algorithm
(Calchi Novati et al. 2015b), and calibrating it to Ramírez
et al. (2008). The limiting magnitude is 15.4. Finally, we
extracted VISTA Variables in the Vía Láctea (VVV; Minniti
et al. 2010) J-band catalog,16 with a limiting magnitude of 19.4.
Unfortunately, most of the stars in our field are not detected in
the DECam grizY and VVV J catalogs (see Figure 8). In
particular, the bulge mean RC is not fully covered in all of these
bands. Therefore, we cannot derive the spatial reddening map
using the method suggested above, and thus further observations
are required in order the explore this viable explanation, as we
discuss in Section 7. Nevertheless, we use the limiting
magnitudes of these catalogs to study the extinction curve
toward this field in Section 6.

5. Planetary System Physical Properties

The angular Einstein radius and the relative geocentric
proper motion between the source and the lens can be derived
from the light curve model and CMD analysis, *q q r=E and
m q= tgeo E E. Applying the limits derived above on θ* then
gives

q m< < < <-[ ] [ ]
( )

0.44 mas 1.39 1.5 mas yr 5.5.

1

E geo
1

Unfortunately, even using these limits we cannot determine
directly the physical properties of the planetary system, as the
microlens parallax was not detected. We therefore estimate
them using a Bayesian analysis that incorporates the limits on
θE and μgeo into a Galactic model. We follow the procedures
described in Shvartzvald et al. (2014) and adopt the Galactic
model of Han & Gould (1995, 2003), which reproduces well the

observed statistical distribution of properties of microlensing
events. For the source probability, we apply conservative color
and magnitude limits of < <K15 17S s, and - >( )H K 1.3S s .
We furthermore set two limits on the mass–distance relation of
the lensing system. The first is from the microlens parallax

p k p kº < º 


( )M
G

c M
0.7

4

au
8.14

mas
. 2E rel 2

Here p = -- -( )D Dau L Srel
1 1 is the lens-source relative parallax.

The second limit is an upper limit on the lens flux by using the
5σ upper limit on the blend flux that was derived from the
model,  >K K 17.7S l S b, , . We use 5 Gyr Padova isochrones
(Bressan et al. 2012; Marigo et al. 2017) and assume (as a
conservative limit) that the lens is behind the overall dust
column toward the bulge to convert the flux limit to a mass–
distance limit. This limit alone already gives an upper limit on
the planet mass (if all the blend flux is attributed to the lens),
because at this age the maximal host mass is 1.25Me, and
thus the planet mass will be< M2.7 J . We note that if the host is
a bulge star, with age of ≈10 Gyr, the limits on the host and
planet masses are  M1.05 and <2.2MJ, respectively.
However, as the event is within one scale height of the thin
disk throughout the Galaxy, we use the 5 Gyr isochrones to
derive the limit on the lens flux for all distances, as there is a
non-negligible probability that the lens might be a part of the
disk population even at 6–10 kpc.
The 2D posterior distribution of the host mass and distance is

shown in Figure 7, as well as the limits on θE, πE, and the lens
flux. We infer that the host is a -

+
M0.81 0.27

0.21 dwarf, likely in the
Galactic bulge at -

+6.3 2.1
1.6 kpc. Using the mass ratio and scaled

instantaneous projected separation from the model, we find that
the planet mass is -

+ M1.28 J0.44
0.37 , and it orbits its host beyond the

snowline at a projected separation of -
+4.18 0.88

0.96 au. The
estimated physical properties are summarized in Table 2.
One of the main uncertainties in our Galactic model is the

source distance. However, we note the the posterior probability
for the lens mass (and thus the planet mass) is weakly
dependent on the source distance. For a source at 8 kpc the
mass is only 10% lower than for a source at 15 kpc, well within
the range of our uncertainty. The lens distance, and
consequently the projected separation between the planet and
its host, is more sensitive to the source distance, with a
difference of 45% between a bulge source and a far disk source.
Future observations can resolve this and give a better
estimation of the source distance, as we discuss below in
Section 7.

6. Extinction Law

Recent studies of dust properties in the inner bulge suggest
deviations from the standard extinction law (Nataf et al. 2016;
Alonso-García et al. 2017). The extinction coefficient measured
in our field, á ñ á ñ =-A E 1.14K H KsS , is lower than the value of
1.37 from Nishiyama et al. (2009). This offset is a disconcert-
ingly large ∼0.4 mag in KS. The offset relative to the value of

~-A E 2.07Ks H Ks predicted by Fitzpatrick (1999) is even
larger—about 1.4 mag in Ks.
The magnitude of the RC can also be predicted in the YJ

bands by assuming the color–color relations from Nataf et al.
(2016) and the extinction coefficients from Fitzpatrick (1999).16 We note that our UKIRT data are deeper than the H and KS VVV catalogs.
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These are YRC≈14.63+1.63+(7.35–3.12)≈20.49 and
JRC≈14.63+1.63+(5.44–3.12)≈18.58, where we add
the corresponding intrinsic color offsets and reddening offsets,
respectively, to the observed clump H-band magnitude.

Given that the limiting magnitudes for the DECam and VVV
data sets are, respectively, Y∼21.2 and J∼19.4 (see
Section 4.2 above), the RC should be clearly detected in each
of these bandpasses by a wide margin of 0.7–0.8 mag,
respectively. However, the photometry in both cases barely
covers the RC. Figure 8 shows the HKs CMD of our field (gray
points), with the sources detected in Y shown as yellow circles
in the left panel, and the points detected in J shown as purple in
the right panel. We conclude that the extinction toward this
field is steeper than standard (as defined by Fitzpatrick 1999).

7. Discussion

We have presented the discovery of a roughly Jupiter/Sun
mass ratio planet. The system likely resembles a version of the
Jupiter/Sun system, with the host being a G/K dwarf slightly
less massive than the Sun, located in the Galactic bulge. The
event was detected as part of our UKIRT microlensing survey,
which has the primary goal of deriving the NIR event rate
toward the WFIRST target field region. As such, the survey is
designed to have a ∼daily cadence, which in principle is not
optimal for the detection of short planetary anomalies.
However, the perturbation was due to a resonant planetary
caustic, and the event had a long timescale, so the cadence was
sufficient to detect the planetary anomaly. This event
contributes to the set of interesting planetary microlensing
events that were discovered through resonant caustic perturba-
tions. The resonant caustic parameter space is relatively wide
for giant planets. For q=10−3, resonant caustics exist for
instantaneous projected separations of 0.93<s<1.15,
corresponding to 2.6–3.3 au for a typical Einstein radius.
However, the range in projected separations for which resonant
caustics exist scales as q1/3, and thus resonant caustics are less
important for lower mass ratios q.
The field around the event suffers from high and differential

extinction that creates a challenge for deriving the intrinsic
source properties, and thus the physical properties of the

Figure 7. Posterior probability distributions of the host mass and distance derived from the Bayesian analysis. Also shown are the limits on the lens flux (blue), on θE
for either bulge or far disk sources (red), and on the microlens parallax for a bulge source (green).

Table 2
Physical Properties

M1 [Me] -
+0.81 0.27

0.21

m2 [MJ] -
+1.28 0.44

0.37

r̂ [au] -
+4.18 0.88

0.96

DL [kpc] -
+6.3 2.1

1.6

DS [kpc] -
+11.2 2.6

3.6

mgeo [mas yr−1] -
+2.34 0.42

0.84
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planetary system. Follow-up observations of UKIRT-2017-
BLG-001Lb can reduce these uncertainties in several ways.
First, deep high-angular resolution imaging of the field in
the infrared would enable an accurate measurement of the
extinction toward each star (including the source) using the
Rayleigh–Jeans color excess method (Majewski et al. 2011).
This can be done from the ground with Keck in the NIR or,
preferably, with JWST in mid- and near-infrared bands
allowing for a wider spectral range. Second, JWST could also
measure a medium-resolution spectrum of the source star in the
NIR to estimate its temperature and improve the estimate of the
angular Einstein radius (the upgraded Near Infrared
Spectrograph (NIRSPEC) on Keck will potentially have the
sensitivity for a low-resolution spectrum of the source in
H-band). Third, the high-resolution image will resolve out
possible unrelated sub-arcsecond blend stars around the target
(see, e.g., Beaulieu et al. 2018), allowing the measurement of
any excess flux from the target above the measured source flux.
However, the blend flux from the microlensing model
( >K 17.7S b, ) already sets an upper limit on the excess flux.
For such faint excess the probability for a significant
contribution from stars that are not the lens (i.e., companion
to lens, companion to source, or ambient star) is high (see, e.g.,
Koshimoto et al. 2017). Finally, a second high-resolution epoch
of UKIRT-2017-BLG-001Lb could resolve the lens and the
source and directly measure the relative lens-source proper
motion and the lens flux (e.g., Batista et al. 2015).
Given that the relative proper motion is in the range
1.5<μ[mas yr−1]<5.5 (with Bayesian estimate of μgeo∼
2.5 mas yr−1) the source and the lens will be sufficiently
separated in 10–50 years. However, centroid shifts due to the
relative lens-source proper motion (e.g., Bennett et al. 2015;
Bhattacharya et al. 2017) could be detected earlier.

Future NIR microlensing surveys, such as the planned
WFIRST microlensing program or the one proposed with
Euclid (Penny et al. 2013), may consider avoiding such regions
with large spatial extinction variations. On the other hand, our
current results (Shvartzvald et al. 2017) suggest that the NIR
event rate is highest close to the Galactic center, and thus the

field selection should balance between the high differential
extinction and the high event rate. We note that the currently
planned WFIRST fields (M. T. Penny et al. 2018, in
preparation) lie at lower Galactic latitudes (b≈−2.05 to
−0.45), in regions of lower extinction and lower differential
extinction than UKIRT-2017-BLG-001Lb.17

The multi-band analysis of our field suggests a non-standard
(steeper) extinction law. This supports previous suggestions of
interstellar extinction law variations toward the inner bulge (Nataf
et al. 2016; Alonso-García et al. 2017). Our ongoing UKIRT
survey will enable the creation of extinction and reddening maps
of the Galactic center and bulge. These, combined with deep
optical surveys, will allow us to confirm and fully constrain these
variations. These results can also have important implications for
observational cosmology, as they suggest that, if non-standard
extinction laws occur in external galaxies, they may lead to
systematic errors in the distances derived from studies of SNe Ia
and Cepheids, if those studies adopt standard extinction laws.

We would like to dedicate this paper to the memory of Neil
Gehrels, whose support made the 2017 UKIRT survey
possible. We thank M. Irwin for useful discussions, D. Imel
for assistance with developing cloud processing for the light
curves, and the anonymous referee for important comments that
helped to improve the manuscript. Work by Y.S. was supported
by an appointment to the NASA Postdoctoral Program at the
Jet Propulsion Laboratory, administered by Universities Space
Research Association through a contract with NASA. D.M.N.
was supported by the Allan C. and Dorothy H. Davis
Fellowship. This work was partially supported by NASA
grants NNX17AD73G and NNG16PJ32C. UKIRT is owned by
the University of Hawaii (UH) and operated by the UH Institute
for Astronomy; when some of the data reported here were
acquired, UKIRT was supported by NASA and operated under
an agreement among the University of Hawaii, the University
of Arizona, and Lockheed Martin Advanced Technology

Figure 8. Detection limits of DECam Y-band data (left) and VVV J-band data (right). These limits are brighter than expected using the extinction and reddening of the
UKIRT HKS data (underlying gray points) and standard extinction curve, suggesting a non-standard and steeper extinction law.

17 Based on the extinctions of RC stars measured by Nidever et al. (2012), the
current WFIRST fields have quartile Ks extinctions of 0.38 and 0.64.
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Center; operations were enabled through the cooperation of the
East Asian Observatory. Based on data products from
observations made with ESO Telescopes at the La Silla Paranal
Observatory under programme ID 179.B-2002.
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