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ABSTRACT
This paper studies network design and efficiency loss in open and
discriminatory access platforms under networked Cournot compe-
tition. In open platforms, every firm connects to every market,
while discriminatory platforms limit connections between firms and
markets to improve social welfare. We provide tight bounds on the
efficiency loss of both platforms; (i) that the efficiency loss at a
Nash equilibrium under open access is bounded by 3/2, and (ii) for
discriminatory access platforms, we provide a greedy algorithm for
optimizing network connections that guarantees efficiency loss at a
Nash equilibrium is bounded by 4/3, under an assumption on the
linearity of cost functions.

1. INTRODUCTION
Platforms have changed the way entire industries are run, e.g.,

ride-sharing. Unlike traditional firms, platforms do not manufac-
ture products or provide a service. Instead, they arrange matches
between firms and consumers, and facilitate a safe and simple trad-
ing process, providing value for all parties involved. Today, plat-
forms, e.g. Facebook, Uber, Amazon, Ebay, make up a $3 trillion
market [1].

The design and operation of platforms is extremely diverse, e.g.
platforms like Amazon aim to match buyers to sellers taking into
account sellers’ prices and reviews and buyers’ preferences while
others use pricing and allocation. There are two schools of thought
in platform design: (i) Open access, where the platform allow firms
and markets to make their own choices on matching and alloca-
tions, or (ii) Discriminatory access, where the platform restricts the
set of markets each firm is allowed to enter to promote economical
efficiency [8]. Examples of open access platforms include eBay,
and examples of discriminatory access platforms include Amazon’s
Buy Box. Open access and discriminatory access designs are ap-
proaches with differing benefits. Open access designs are simpler
to maintain, completely transparent, and provide fairness across
firms. On the other hand, discriminatory access offers the plat-
form additional control to optimize social welfare, at the expense
of complexity, transparency, and fairness.

Thus, the question is, how large an improvement in efficiency is
possible by moving from open access to discriminatory access?

1.1 Contributions of this paper
We provide tight efficiency results for both open access and dis-

criminatory access platform designs; quantifying the improvements
in efficiency that discriminatory access designs can provide. Con-
cretely, this paper builds on recent work [15], that studies platform
design using the model of networked Cournot competition. In the
context of this model, this paper makes two main contributions.
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1. Open access efficiency loss bound of 3
2 (1−1/(3n+6)).

2. Greedy algorithm for optimal discriminatory network under
linear cost functions, with a 4/3 efficiency loss bound.

1.2 Related work
Our work relates to both platform design and networked compe-

tition:
Platform design: Recent growth of online platforms has led re-

searchers to focus on identifying design features common to suc-
cessful platforms. Work in this area has covered a variety of de-
sign factors, including pricing [16] and competition [4]. Empirical
findings display significant price dispersion in online marketplaces
[10], causing platforms to differentiate products in order to create
distinct consumer markets [9]. In particular, these results highlight
the need to study platforms in the context of networked competi-
tion.

Competition in networked settings: Models of networked compe-
tition aim to capture the effect of network constraints on the strate-
gic interaction between firms. These models include networked
Bertrand competition, e.g., [7], networked Cournot competition,
e.g., [2, 5], and other non-cooperative bargaining games where
agents trade via bilateral contracts and a network determines the
set of feasible trades, e.g., [3, 14].

Our work fits squarely into the setting of networked Cournot
competition. A large swath of literature on networked Cournot
competitions, e.g., [2, 5], focuses on characterizing and comput-
ing Nash equilibria. Recent streams of literature that closely relate
to our work are (i) characterizing the efficiency loss of networked
Cournot games [11, 15] and (ii) understanding the impacts of sys-
tem operator governance on the resulting Nash equilibria [6]. This
paper is the first to provide a tight bound on the efficiency loss
of open access platforms, improving on the bounds in [15], and
the first to provide an algorithm for network design with provable
guarantees.

2. MODEL AND PRELIMINARIES
We describe competition in online platforms according to the

networked Cournot competition model first introduced by [2] and
[5], and later employed by [15] to describe competition in plat-
forms.

Network and Platform Models
The network specifying connections between firms and markets is
described by a bipartite graph (F,M,E ), where F := {1, . . . ,n} is
the set of n firms and M := {1, . . . ,m} the set of m markets, with
E ⊆ F ×M the set of directed edges connecting firms to markets.
Open access platforms, allowing all firms to access all markets,
corresponds to a complete bipartite graph. Discriminatory access
platforms restrict the set of markets accessible by each firm, with
the goal to improve social welfare.
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Producer Model
Under both platform models, each firm i specifies the quantity qi j ∈
R+ it produces in each market j, and qi := (qi1, . . . ,qim) ∈ R

m
+ de-

notes the supply profile from firm i. We require that qi j = 0 for all
(i, j) /∈ E , and define the set of feasible supply profiles from firm

i as Qi(E ) :=
{

x ∈ R
m
+

∣∣x j = 0, ∀ (i, j) /∈ E
}
. We denote the sup-

ply profile from all firms by q := (q1, . . . ,qn) ∈R
mn
+ . and the set of

profiles from all firms by Q(E ) := ∏n
i=1 Qi(E ).

The production cost of each firm i∈F depends on its supply pro-
file only through its aggregate production quantity, which is given
by si := ∑m

j=1 qi j. The production cost of firm i is defined by Ci(si),

where we assume that the cost function Ci is convex, differentiable
on (0,∞) and satisfies Ci(si) = 0 for all si ≤ 0.1 Finally, we define
C := (C1, . . . ,Cn) as the cost function profile.

Market Model
As is standard in Cournot models, we model price formation ac-
cording to an inverse demand function in each market. Following
[5], we focus on affine inverse demand functions throughout this
paper. Specifically, the price in each market j ∈ M is determined
according to p j(d j) := α j −β jd j, where d j denotes the aggregate
quantity being produced in market j. It is given by d j := ∑n

i=1 qi j.
Here, α j > 0 measures consumers’ maximum willingness to pay,
and β j > 0 the price elasticity of demand.

The Networked Cournot Game
We describe the equilibrium of the market specified above accord-
ing to Nash. In particular, we consider profit maximizing firms,
where the profit of a firm i, given the supply profiles of all other
firms q−i = (q1, ..,qi−1,qi+1, ..,qn), is given by

πi(qi,q−i) :=
m

∑
j=1

qi j p j(d j)−Ci(si), (1)

where π := (π1, . . . ,πn) is the set of payoff functions of all firms.
The triple (F,Q(E ),π) defines a normal-form game, which we

refer to as the networked Cournot game associated with the edge
set E . Its Nash equilibrium is defined as follows:

DEFINITION 1. A supply profile q ∈ Q(E ) constitutes a pure
strategy Nash equilibrium of the game (F,Q(E ),π) if for every
firm i ∈ F, π(qi,q−i)≥ π(qi,q−i), for all qi ∈ Qi(E ).

Under the assumptions of convex cost functions and affine in-
verse demand functions, [2] has shown networked Cournot games
associated with any edge set admit unique Nash equilibria.

Social Welfare and the Price of Anarchy
In this paper, we measure the performance (or efficiency) of a plat-
form according to social welfare. For platforms, the pursuit of so-
cial welfare benefits both buyers and sellers, and in the long run,
promotes their expansion.

The social welfare associated with a supply profile q and a cost
function profile C is defined according to

SW(q,C) :=
m

∑
j=1

∫ d j

0
p j(z)dz−

n

∑
i=1

Ci(si). (2)

Further, we define the efficient social welfare associated with an
edge set E and a cost function profile C as

SW∗(E ,C) := sup
q∈Q(E )

SW(q,C).

and any supply profile q∈Q(E ) that attains it is said to be efficient.
1This family of cost functions represents a generalization of [15],
which assumed that all firms have quadratic cost functions.

In general, the Nash equilibrium of the networked Cournot game
will deviate from the efficient supply profile. We measure this loss

of efficiency according to the price of anarchy of the game [12].2

DEFINITION 2. The price of anarchy associated with the edge
set E , the cost function profile C, and the corresponding networked
Cournot game (F,Q(E ),π) is defined as

ρ(E ,C) :=
SW∗(E ,C)

SW
(
qNE(E ),C

) .
We set ρ(E ,C) = 1 if SW∗(E ,C)/SW(qNE(E ),C) = 0/0.

3. OPEN ACCESS PLATFORMS
For our first set of results, we focus on providing tight bounds

on the price of anarchy of the networked Cournot game in an open
access platform, that depends both on the number of firms and the
degree of asymmetry between firms’ cost functions. These results
improve upon the bounds in [15] and generalize those in [11].

3.1 Identifying the Worst-case Cost Function
Profile

The following lemma establishes piecewise linearity as the worst-
case cost function profile.

LEMMA 1. Given a cost function profile C, define the cost func-
tion profile C = (C1, . . . ,Cn) according to

Ci(si) =

(
C′

i

(
m

∑
j=1

qNE
i j (KF.M)

)
si

)+

for i = 1, . . . ,n. It holds that ρ(KF,M ,C)≤ ρ(KF,M ,C).

In words, given any cost function profile C, it is always possible

to construct another cost function profile C consisting of (piece-
wise) linear functions, which has a price of anarchy that is no
smaller. Therefore, in constructing a price of anarchy bound that
is guaranteed to hold for all cost functions belonging to the family
specified in Section 2, it suffices to consider cost functions that are
linear on (0,∞).

3.2 Efficiency Loss in Open Access Platforms
We examine the role played by (a)symmetry in the cost function

profile in determining platform efficiency.

3.2.1 Symmetric Cost Functions
We begin with the setting in which firms have identical cost func-

tions and propose the following:

PROPOSITION 1. If C1 = C2 = · · · = Cn, then the price of an-
archy associated with the corresponding open access networked
Cournot game (F,Q(KF,M),π) is bounded (tightly) by

ρ(KF,M ,C)≤ 1+
1

(n+1)2 −1
.

This conforms with the intuition that increasing the number of
(symmetric) suppliers increases competition, and thereby reduce
the extent to which any one producer might exert market power.

2Implicit in our definition of the price of anarchy for the networked
Cournot game is the fact that the networked Cournot game admits
a unique Nash equilibrium. In general, for games with a possible
multiplicity of Nash equilibria, the price of anarchy is defined as the
ratio of the efficient social welfare over that of the Nash equilibrium
with the worst social welfare.
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3.2.2 Arbitrary Asymmetric Cost Functions
We now consider the general setting where firms have arbitrarily

asymmetric cost.

THEOREM 1. The price of anarchy associated with a cost func-
tion profile C and the corresponding open access networked Cournot
game (F,Q(KF,M),π) is upper bounded (tightly) by

ρ(KF,M ,C)≤ 3

2

(
1− 1

3n+6

)
.

Taking the number of firms n → ∞ yields a price of anarchy
bound that is valid for any number of firms or markets. This re-
covers the 3/2 price of anarchy bound first established in [11] for a
single market, and improves upon the previously known 16/7 price
of anarchy bound for open access in [15].

4. DISCRIMINATORY ACCESS PLATFORMS
Here, the platform specifies the edge set of the bipartite graph

that connect firms to markets to maximize the social welfare at the
unique Nash equilibrium of the resulting networked Cournot game.

We state without proof that finding the optimal edge set max-
imizing social welfare at Nash equilibrium amounts to a mathe-
matical program with equilibrium constraints (MPEC), and is, in
general, intractable. Under the assumption that each firm’s cost
function is linear, we present a greedy algorithm that obtains an
optimal network design. Furthermore, we present a tight price of
anarchy bound for the resulting game under discriminatory access.

4.1 A Greedy Algorithm for Linear Cost Func-
tions

We propose the following greedy algorithm for solving the opti-
mal network design problem. For each market j ∈M, the algorithm
visits firms in ascending order of marginal cost, and provides each
firm access to market j if its inclusion improves social welfare.

Algorithm 1 The Greedy Algorithm

Require: c1 ≤ ·· · ≤ cn.
1: Initialize edge set E ← /0.
2: for j = 1 to m do
3: Initialize firm index i ← 1.
4: Initialize edge set Ẽ ← E .
5: repeat
6: Update edge set E ← Ẽ .
7: if i ≤ n then
8: Set edge set Ẽ ← E ∪ (i, j).
9: Set firm index i ← i+1.

10: end if
11: until SW(qNE(Ẽ ),C)≤ SW(qNE(E ),C).
12: end for
13: return E .

The implementation of Algorithm 1 yields an edge set E ∗, whose
corresponding Nash equilibrium has social welfare no smaller than
that of the open access one. In the following theorem, we quantify
this improvement in social welfare via a tight bound on the price of
anarchy in discriminatory access networked Cournot games.

THEOREM 2. Assume that each firm’s cost function is linear.
The price of anarchy of discriminatory access platforms is 4/3.

5. CONCLUDING REMARKS
This paper examines the design and efficiency loss of open and

discriminatory access platforms. Open access platforms provide
transparency, while discriminatory access platforms provide addi-
tional control leveraged to improve efficiency. For open access
platforms, we establish a tight upper bound on the price of anar-
chy (PoA) that is decreasing (increasing) in the number of firms,

when costs are symmetric (asymmetric). Consequently, we show
that open access platforms have a PoA at most 3/2.

We contrast this bound with the case of discriminatory access
platforms. Assuming that firms’ costs are linear, we propose and
prove the optimality of a greedy algorithm, recovering the optimal
network design for discriminatory access platforms. In this set-
ting, we show that the PoA bound shrinks to 4/3, thereby improving
upon the worst-case efficiency loss of open access platforms.

Our work builds on a growing literature studying networked Cournot
competition, including [2, 5, 6, 15]. While this literature is matur-
ing, there are still a wide variety of important open questions that
remain. For example, the problem of constructing approximation
algorithms with provable bounds on performance arises as an inter-
esting direction for future work.

A full version of this work (including proofs) is found in [13].
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