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ABSTRACT 
Reactive molecular-dynamics (MD) simulation is a powerful research tool for describing chemical reactions. 
We eliminate the speed-limiting charge iteration in MD with a novel extended-Lagrangian scheme. The 
extended-Lagrangian reactive MD (XRMD) code drastically improves energy conservation while substantially 
reducing time-to-solution. Furthermore, we introduce a new polarizable charge equilibration (PQEq) model to 
accurately predict atomic charges and polarization. The XRMD code based on hybrid message 
passing+multithreading achieves a weak-scaling parallel efficiency of 0.977 on 786,432 IBM Blue Gene/Q 
cores for a 67.6 billion-atom system. The performance is portable to the 2nd generation Intel Xeon Phi, Knights 
Landing. Blue Gene/Q simulations for the computational synthesis of materials via novel exfoliation 
mechanisms for synthesizing atomically thin transition metal dichalcogenide layers, which will dominate 
nanomaterials science in this century. 
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1. INTRODUCTION 
Molecular dynamics (MD) simulations play pivotal roles in physics, chemistry, biology, and materials science 
by describing material properties and processes in atomistic details. MD simulations follow time evolution of 
the positions, rN = { ri | i = 1,...,N } , of N atoms by numerically integrating Newton’s equations of motion, where 
the atomic force law is mathematically encoded in the interatomic potential energy E(rN) [1]. Reliable 
interatomic potentials are key to accurately describing thermomechanical properties of materials. To describe 
material processes involving chemical reactions, in particular, quantum molecular dynamics (QMD) simulations 
[2] determine the force law by minimizing the potential energy, 
E rN( ) =minψNel E rN ,ψ N el( ) ,         (1) 
as a functional of electronic wave functions, ψNel(r) = {ψn(r) | n = 1,...,Nel }  (Nel is the number of wave functions on 
the order of N), often in the framework of density functional theory (DFT) [3]. Despite remarkable progresses in 
O(N) DFT algorithms [4], the largest QMD simulations to date have been limited to N ~ 104 for the duration of τ 
= 10-11 s [5]. Unfortunately, the spatiotemporal scales covered by QMD simulations are not sufficient for 
studying the synthesis of advanced materials, such as functional layered materials (LM), which have 
outstanding electronic, optical, magnetic and chemical properties. To rationally guide the synthesis of stacked 
LMs by chemical vapor deposition (CVD), exfoliation and intercalation, “computational synthesis” should 
extend beyond N ~ 109 and τ = 10-9 s. 
To extend the limited spatiotemporal scales covered by QMD simulations, reactive molecular dynamics (RMD) 
simulation methods [6] have been developed based on the first principles-informed reactive force-field 
(ReaxFF) approach [7, 8]. The ReaxFF approach significantly reduces the computational cost of simulating 
chemical reactions, while reproducing the energy surfaces and barriers as well as charge distributions of DFT 
calculations. RMD simulations describe formation and breakage of chemical bonds using reactive bond orders 
[7, 9]. In the ReaxFF approach, the potential energy thus comprises valence interactions described with bond 
order (BO) as well as noncovalent interactions [10]: 
E({rij},{rijk},{rijkl},{qi},{BOij}) = Ebond +Elp +Eover +Eunder
+Eval +Epen +Ecoa +Etors +Econj +Ehbond +EvdW +ECoulomb

,  (2) 

in which the valence interactions include the bonding energy Ebond, lone-pair energy Elp, overcoordination 
energy Eover, undercoordination energy Eunder, valence-angle energy Eval, penalty energy Epen, 3-body 
conjugation energy Ecoa, torsion-angle energy Etors, 4-body conjugation energy Econj, and hydrogen bonding 
energy Ehbond. In Eq. (2), the total energy is a function of relative positions of atomic pairs rij, triplets rijk and 
quadruplets rijkl, as well as atomic charges qi and bond orders BOij between atomic pairs. Here, it should be noted 
that BOij themselves are functions of {ri} . Accordingly, the computation of interatomic forces, 

Fi = −
∂
∂ri

E ,   (3) 

involves atomic n-tuples for n ≤ 4 explicitly and n ≤ 6 due to chain-rule differentiation. The noncovalent 
interactions comprise van der Waals (vdW) energy EvdW and Coulombic energy ECoulomb, which are screened by a 
taper function [7]. 
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The most intensive computation in RMD simulations arises from a charge-equilibration (QEq) scheme [11, 12] 
to describe charge transfer between atoms. QEq treats atomic charges as dynamic variables, qN = { qi | i = 
1,...,N } . The charges and the resulting force law are determined by minimizing the potential energy, 
E rN( ) =minqN E rN ,qN( ) ,         (4) 
with respect to qN at every MD time step. This variable N-charge problem is commonly solved iteratively, e.g., 
with the conjugate gradient (CG) method [13], where a large number of CG iterations are required to reach 
sufficient convergence of charges qN to guarantee the conservation of the total energy as a function of time. 
Insufficiently converged charges act as an artificial heat sink of energy, and the resulting broken time 
reversibility causes the total energy to drift over time. A similar trade-off between the computational speed and 
energy conservation is encountered in QMD simulations, where insufficient convergence of the iterative 
refinement of wave functions ψNel in Eq. (1) causes serious energy drift. Niklasson proposed an extended 
Lagrangian scheme [14, 15] that achieves excellent long-time energy conservation with drastically reduced 
number of iterations. In fact, an extended Lagrangian scheme with no iteration (i.e., requiring only one 
evaluation of energy gradient per MD time step) has recently been demonstrated [16].  
In this paper, we report successful elimination of the speed-limiting charge iteration in MD simulations by 
adapting the extended-Lagrangian scheme. The resulting extended-Lagrangian reactive MD (XRMD) 
simulation code has drastically improved energy conservation while substantially reducing the time-to-solution. 
The parallel XRMD code has achieved unprecedented scalability and orders-of-magnitude improvement of the 
time-to-solution over the previous state-of-the-art based on hybrid message passing + multithreading 
implementation and various code transformations. Here, it should be noted that the extended Lagrangian 
method is used in tandem with highly efficient preconditioned conjugate-gradient (PCG) methods [17, 18] to 
achieve a high level of convergence.  
To improve the fidelity of MD simulations, we have recently propsed a new general methodology, called 
polarizable charge equilibration (PQEq) model [19], which is cable of predicting rapidly and dynamically 
accurate atomic charges and polarization under electric fields. In the PQEq, the atomic-sized Gaussian-shaped 
electron density (shell) is used for descripting the polarization, which can be polarized away from the core in 
response to internal and external electric fields. The resulting new ReaxFF model is denoted as ReaxPQ. In 
ReaxPQ, all electrostatic interactions are described with the finite-sized charge distributions of PQEq, rather 
than as point charges as in the original ReaxFF. We have developed efficient schemes to update the atomic 
charges on the cores and assume massless shell, so that it relaxes instantaneously to its zero-force position, with 
no inertial delay. 
2. ALGORITHMIC INNOVATIONS 
2.1 Extended Lagrangian QEq Scheme 
The extended Lagrangian QEq scheme introduces auxiliary variables, θN = { θi | i = 1,...,N }  . System dynamics 
for extended Lagrangian reactive molecular dynamics (XRMD) simulations is derived from the extended 
Lagrangian, 

LXRMD = LRMD +
μ
2 θi

2

i
∑ −

μω 2

2 θi − qi( )2
i
∑ ,         (5) 

where LRMD is the RMD Lagrangian, 

LRMD =
mi
2
ri
2

i
∑ − E(rN ,qN ) ,   (6) 
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with mi being the mass of the i-th atom and the dot denoting time derivative. In Eq. (5), μ and ω are fictitious 
mass and frequency parameters for the auxiliary charge degrees of freedom. 
The time evolution of the dynamical system described by LXRMD is determined by Euler-Lagrange equations of 
motion. In the limit of μ → 0, the equations become 

miri = − ∂
∂ri

E(rN ,qN ) ,   (7) 

θi =ω
2 (qi −θi ) .   (8) 

We numerically integrate Eqs. (7) and (8) using the velocity Verlet algorithm with a unit time step of δt. At 
each time step, we perform just one step of CG iteration toward minimizing the Coulombic energy as a function 
of qN. We use the auxiliary variable θN as an initial guess for the CG optimization of qN. For extended 
Lagrangian-based QMD simulations, the recommended value for the dimensionless parameter, K = ω2δt2, is 2 
[15]. We have found that the same value works for XRMD as well, and K = 2.0 will be use in the numerical 
tests discussed below. 
2.2 Polarizable Charge Equilibration (PQEq) Method 
As described in the introduction, the interatomic potential energy E(rN, qN) in ReaxFF is composed of a number 
of bonded and nonbonded terms [7, 8]. The nonbonded terms are Coulombic and vdW energies. Here, we 
describe the Coulombic energy using the new PQEq methodology [19]. In PQEq, each atom i is partitioned into 
two charged sites (i.e., core and shell). The core (ρic) consists of two parts: ρi with a variable total charge (qi) and 
ρiZ with a fixed total charge (Zi). The shell (ρis) is massless and has a fixed total charge of −Zi. The shell and core 
of an atom are connected by an isotropic harmonic spring with force constant Ks (Figure 1). 
Defining the total charge (core plus shell) on the i-th atom as qi, the individual charges on the core and shell are 
qic = qi + Zi and qis = −Zi, respectively. The Coulombic energy is expressed as 

ECoulomb {ric,ris,qi}( ) = χ i
0qi +

1
2 Jii

0qi2 +
1
2 Ksric,is2

⎡

⎣⎢
⎤

⎦⎥i

N

∑

+ T (rik, jl )Cik, jl rik, jl( )qikqjl
ik> jl
∑ ,          (9) 

where i and j are atomic indices, and k and l represent core (c) or shell (s). In Eq. (9), rik,jl = |rik −rjl| is the distance 
between the i-th atom’s core or shell with the j-th atom’s core or shell. χ0

i is the Mulliken electronegativity and 
J0

ii is the idempotential (hardness) or electron capacity of the i-th atom. The second sum is the pairwise shielded 
Coulombic interaction energy between all cores and shells. In Eq. (9), the electrostatic energy between two 
Gaussian charges is given by 

Cik, jl rik, jl( ) = 1
rik, jl

erf αikα jl

αik +α jl
rik, jl

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟,          (10) 

where the width of the distribution is given by αik = λ/Rik
2. Here, Rik is the covalent atomic radius and λ is a 

parameter that converts the overlap of two Gaussian charges to an effective shielding. In the case of rij = rkl, Cik,jl 
reduces to 

Cik, jl
0 = lim

r→0
Cik, jl r( )= 2

π

αikα jl

αik +α jl
,          (11) 

which means that the Gaussian shielding in PQEq results in a finite Coulombic interaction energy even in the 
limit of zero interatomic distance. Equation (9) can be expanded to give the total electrostatic energy as 
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ECoulomb {ric ,ris ,qi}( ) = χ i
0qi +

1
2
Jii
0qi
2 +
1
2
Ksric,is

2⎡

⎣
⎢

⎤

⎦
⎥

i

N

∑

+ T (ric, jc )Cic, jc (ric, jc )qicqjc⎡⎣
i> j
∑

−T (ric, js )Cic, js (ric, js )qicZ j
−T (ris, jc )Cis, jc (ris, jc )qjcZi
+T (ris, js )Cis, js (ris, js )ZiZ j ⎤⎦.

 (12) 

The Coulombic interaction is screened using a taper function T(r), which has a cutoff length rcnb  as 

T (rik , jl ) = Tα
rik , jl
rcnb

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

α

α=0

7

∑ .  (13) 

In the original ReaxFF, the electronegativity equalization method (EEM) was used to calculate charges. Later,
EEM was replaced by the original QEq model in the LAMMPS and PuReMD codes [17]. With the new 
ReaxPQ, we now calculate all electrostatic interactions using finite-sized charge distributions. 

 
Figure 1. Partition of a two-atom system into core and shell in the PQEq model. 

In ReaxPQ, the atomic charges qi are variables that change dynamically in time. When atomic positions are 
updated during MD simulation, the PQEq subroutine updates charge distribution qN by minimizing ECoulomb subject 
to the conditions that the chemical potentials, ∂ECoulomb/∂qi, are equal for all atoms (which provides N−1 conditions) 
and that the total charge is conserved, 

qic + qis( ) =
i
∑ qi

i
∑ =Q,  (14) 

where Q is the total charge of the system. We use Lagrange multipliers to guarantee this constraint as the 
charges are optimized, 

gi ≡ −
∂ECoulomb
∂qi

= −μec ,  (15) 

where μec is the electrochemical potential. We solve this problem iteratively using a PCG method, which has 
shown satisfactory performance, stability and accuracy for various model systems [20]. As shown below, we 
couple the PCG method with shell relaxation to calculate the PQEq charges, while updating the shell position. 
The shell position for each atom is obtained by balancing the effect of the electrostatic field due to all external 
atoms with intra-atomic interactions involving only the core and shell.
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Fintra = −
∂
∂ris

1
2 Ksric,is2
⎛

⎝
⎜

⎞

⎠
⎟,          (16) 

Fexternal = −
∂
∂ris

T (rik, jl )Cik, jl rik, jl( )qikqjl
ik> jl
∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.          (17) 

We solve Eqs. (16) and (17) to find the optimal positions of shells ris using a single iteration of the Newton-
Raphson method. We assume here that the shell is massless, so that it relaxes instantaneously to its zero-force 
position. The PQEq parameters are derived from valence-averaged experimental ionization potential and 
electron affinity data and standard bond distances for all elements up to Nobelium (atomic number = 102). 
PQEq has been validated by comparing to quantum-mechanical (QM) interaction energies as probe dipoles are 
brought along various directions to various molecules [19]. It was found that the interaction energies from 
PQEq are in excellent agreement with QM results, much better than other common charge models, generally 
fixed QM charges based on Mulliken or electrostatic potential models, and those from standard force fields. 
2.3 Parallelization 
We have implemented the extended Lagrangian QEq scheme in section 2.1 in a scalable parallel reactive MD 
simulation code. The new PQEq methodology in section 2.2 requires several modifications of the MPI 
parallelization scheme described in [21]. For large granularity (the number of atoms per spatial domain, N/D > 
102, where D specifies the number of spatial domain), simple spatial decomposition (i.e., each MPI rank is 
responsible for the computation of the forces on the atoms within its subsystem) suffices, whereas for finer 
granularity (N/D ~ 1), neutral-territory [22] or other hybrid decomposition schemes [23-25] can be incorporated 
into the framework. Our parallelization framework also includes load-balancing capability. For irregular data 
structures, the number of atoms assigned to each MPI rank varies significantly, and this load imbalance 
degrades the parallel efficiency. We minimize the load-imbalance cost as well as the size and number of 
messages. We employ a topology-preserving spatial decomposition, which allows message passing to be 
performed in a structured way in only 6 steps, so that the number of messages (hence the latency) is minimized. 
Within each computing node, we introduce an additional layer of shared-memory parallelism using the Open 
Multi-Processing (OpenMP) application programming interface. OpenMP allows XRMD to take advantage of 
the simultaneous multithreading support provided by modern processors, such as the PowerPC A2 architecture 
of IBM Blue Gene/Q and the 2nd generation Intel Xeon Phi named Knights Landing (KNL), to achieve better 
utilization of the computing resources within each core. With multithreading, the most computationally 
expensive bond-order and force computations within XRMD are greatly accelerated, serving to reduce the 
overall runtime. A secondary benefit of multithreading is that it allows MPI ranks to be exchanged for local 
threads, thereby reducing the total number of ranks in a MPI job and similarly reducing the communication and 
atom-caching overheads at large scales. 
3. PERFORMANCE PLATFORM 
3.1 Experimental Platform 
Initial numerical tests were performed on an IBM Blue Gene/Q supercomputer [26] at Argonne Leadership 
Computing Facility (ALCF) named Mira. This supercomputer consists of 48 racks, each with 1,024 nodes. Each 
Blue Gene/Q node has a 16-core processor operating at 1.6 GHz, 32 MB L2 cache with hardware transactional 
memory and speculative operation functionalities, and 16 GB DDR3 memory. The processor employs the 
PowerPC A2 architecture that supports quad floating-point processing units (QPUs), 16 KB L1 instruction 
cache, 16 KB L1 data cache, and 4-way multithreading per core enabling 64 concurrent threads on one node. 
Though it is highly energy efficient (55 watts per node) due to the relatively low clock speed, the Blue Gene/Q 
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chip delivers a peak performance of 204.8 GFLOP/s. At every clock cycle, each PowerPC A2 core can issue 
one instruction to the auxiliary execution unit (AXU) for floating-point operations and another to the main 
execution unit (XU) for load/store, branch and integer operations, etc. It thus requires at least 2 instruction 
streams per core to maximize the instruction throughput. Assigning 4 threads per core could further improve the 
performance by hiding latency, assuming that the memory bandwidth is not saturated. 
Additionally, we perform benchmarks of the XRMD code on ALCF’s Intel Xeon Phi Knights Landing (KNL) 
based supercomputer named Theta. KNL is Intel’s 2nd generation processor in the Xeon Phi series [27]. On 
Theta, each computing node contains 64 cores and each core has 4 hardware threads. Each core has 32 KB L1
instruction cache, 32 KB L1 data cache, and two independent floating-point units capable of executing 512-bit 
wide SIMD instructions. The peak instruction throughput of the KNL microarchitecture is 2 instructions per 
clock cycle, and they can be issued back-to-back from the same thread. Two cores and a shared 1 MB L2 cache 
form a tile, and the tiles are connected with a 2D-mesh network-on-chip with 16 GB of high-bandwidth in-
package multichannel DRAM memory (MCDRAM) and 192 GB of regular DRAM.  
4. SCALABILITY AND TIME-TO-SOLUTION 
4.1 Algorithmic Improvements 
We first validate the extended Lagrangian QEq scheme using oxidation of a silicon carbide nanoparticle 
(nSiC)[28] as an example, where the initial oxidation is found to produce a molten silica shell that acts as an 
autocatalytic ‘nanoreactor’[29, 30] by actively transporting oxygen while protecting the nanocarbon product 
from harsh oxidizing environment. Figure 2 shows the deviation of the total energy from its initial value as a 
function of time during simulation, which specify how few drift could be yielded for production science. We 
compare three cases: (1) the new XRMD code; (2) the original RMD code, where CG iterations at each MD 
step are continued until the change in the Coulombic energy ECoulomb per iteration falls below 10-8 of |ECoulomb|; and (3) 
the RMD code performing only one CG iteration per MD step. Total energy conservation of XRMD is 
comparable to well-converged RMD, while RMD with single CG step exhibits significant energy drift. Most 
importantly, the XRMD total-energy only fluctuates around an average value but does not exhibit a systematic
drift, signifying the long-time stability of the simulation. As demonstrated above, XRMD provides sufficient 
accuracy that is comparable to well-converged RMD but at much less computational cost, which could reduce
the number of CG iterations on average by a factor of 10~102.  
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Figure 2. Absolute value of the deviation of the total energy from its initial value (normalized by the 
initial total energy) as a function of time for the new XRMD code (black curve), compared with two 
results using the original RMD code: (1) converged CG iterations with a tolerance of 10-8 (red); and (2) 
one CG iteration per MD step (blue). 

4.2 Weak and Strong Scaling on Blue Gene/Q
We perform an isogranular-scaling test of the XRMD code with an MPI-only version on the Blue Gene/Q, in 
which the number of atoms per core N/P is kept constant. To fully utilize the available cores on the Blue 
Gene/Q, the pure MPI implementation takes one MPI rank per core, 16 ranks per node. We measure the wall-
clock time per XRMD simulation step with scaled workloads — 86,016P-atom cyclotrimethylenetrinitramine 
(C3H6N6O6 or RDX) molecular crystal on P cores of Blue Gene/Q. By increasing the number of atoms linearly 
with the number of cores, the wall-clock time remains almost constant, indicating excellent weak scalability. To 
quantify the parallel efficiency, we first define the speed of the XRMD code as a product of the total number of 
atoms and the number of MD steps executed per second. The isogranular (or weak-scaling) speedup is given by 
the ratio between the speed of P cores and that of 8,192 cores as a reference system. The weak-scaling parallel 
efficiency is the isogranular speedup divided by P/8,192. With the granularity of 86,016 atoms per core, the 
parallel efficiency is 0.977 on P = 786,432 for a 67,645,734,912-atom system. Figure 3 shows a very high 
scalability for the XRMD code.  

 
Figure 3.  Weak-scaling parallel efficiency of the parallel XRMD code, with scaled workloads — 86,016P-
atom RDX system on P cores (P = 8,192, ..., 786,432) of Blue Gene/Q. The measured efficiency values 
(solid red circles) are compared with the ideal efficiency of 1 (blue line). 

We next perform a strong-scaling test by simulating RDX crystal containing a total of 4,227,858,432 atoms. In 
this test, the number of cores ranges from P = 49,152 to 786,432, while keeping the total problem size constant. 
We measure the wall-clock time per MD simulation step as a function of P. The time-to-solution is reduced by a 
factor of 14.17 on 786,432 cores compared with the 49,152-core run (i.e., using 16-times larger number of 
cores). This signifies a strong-scaling speedup of 14.17, with the corresponding strong-scaling parallel 
efficiency of 0.886. Figure 4 shows the measured strong-scaling speedup as a function of the number of cores 
(solid red circles), while the blue line denotes the ideal speedup. It is more difficult to achieve high strong-
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scaling parallel efficiency compared with weak-scaling parallel efficiency, as a comparison of Figs. 3 and 4 
suggests. This is due to decreasing granularity, and accordingly increasing communication/computation ratio for 
larger number of processors, in the former. With 16 times smaller system size of the weak-scaling test, the 
observed strong-scaling parallel efficiency is considered excellent. 

 
Figure 4.  Strong-scaling speedup of the parallel XRMD code with a fixed problem size — 4,227,858,432-
atom RDX system on P cores (P = 49,152, ..., 786,432) of Blue Gene/Q. The measured speedup values 
(solid red circles) are compared with the ideal speedup (blue). 

4.3 Performance on KNL 
We first port the pure MPI implemented XRMD code onto a KNL-based supercomputer, Theta, to verify the 
portability and to compare the performance. Then we also measure the performance of the XRMD code on
Theta, using the newly implemented hybrid MPI + OpenMP approach for ReaxFF bond-order and force 
calculations. Here, we use a fine granularity to test an alternative high-throughput scenario that acquires an 
extremely fast turnaround. 
In the first experiment, we study the capabilities of a core to execute multiple processes simultaneously. Even 
though both Blue Gene/Q’s Power A2 and Theta’s KNL processors can execute up to two instructions per clock 
cycle and have nearly identical frequencies, reaching peak instruction throughput requires different execution 
conditions. In all experiments, we simulate RDX crystal with 96,768 atoms. We use 4 computing nodes of Blue 
Gene/Q versus 1 node of KNL in order to keep the total number of cores to be 64 on both systems. We place 1, 
2 and 4 MPI ranks on each core for the pure MPI implementation, so that the level of concurrency given to each 
core is also the same on Power A2 and on KNL. 
The results of this test are shown in Table 1. As expected, placing 1 MPI rank on a core of either system does 
not provide a good performance. On Blue Gene/Q, we must have at least two processes running on a core to 
have peak instruction throughput, but placing 4 processes eventually put more pressure on shared resources. On
the other hand, the KNL architecture allows having the peak instruction throughput even with 1 process on a 
core; however, long data-dependency chains prevent instructions from progressing, which degrades the
performance. Placing more processes on a KNL core increases the instruction-level parallelism and gives more 
opportunities to fill the execution pipelines. Thus, it is not surprising that core utilization is maximal when two 
processes are running on Power A2 core, and when four processes are running on KNL core (denoted by the 
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wall-clock times in boldface in Table 1, respectively). As expected, a 2-floating-point unit (FPU) KNL core is 
about twice faster than a 1-FPU Power A2 core. 
 

Table 1. Wall-clock time of 1,000 MD steps for 96,768-atom RDX system using 4 computing nodes of Blue 
Gene/Q versus 1 computing node of KNL, both from the pure MPI implementation, with varying 
configurations of hardware threads. The shortest wall-clock time on each platform is marked by 
boldface. 

Platform Number 
of nodes Cores/node MPI 

ranks/core 
Wall-

clock time 
(s) 

Speed-
up 

Blue 
Gene/Q 

4 16 1 2173.6 1 
4 16 2 1638.7 1.33 
4 16 4 1849.8 1.18 

KNL 
1 64 1 2319.5 1 
1 64 2 1325.3 1.75 
1 64 4 791.3 2.93 

We next study the effect of the number of OpenMP threads on the time-to-solution on KNL. Figure 5 shows the 
wall-clock time of 1,000 MD simulation steps as a function of the number of computing nodes, m, on KNL, 
with varying numbers of OpenMP threads per core, t. We see nearly constant wall-clock times from m = 2 to 
256, indicating a high weak-scaling (isogranular) speedup for all values of t. We also observe decreasing wall-
clock times for increasing numbers of threads, t. However, the relative speedup of using two OpenMP threads 
per core is less than 2 compared to one OpenMP thread per core for KNL. 
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Figure 5. Wall-clock time of the hybrid MPI + OpenMP implementation of the XRMD code for 1,000 
time steps with scaled workloads — 96,768m-atom RDX system on m computing nodes (m = 2, 4, 8, ..., 
256) of KNL. Different curves correspond to different numbers of threads per core, t = 1 (black), 2 (red), 
4 (blue).

To understand why the speedup is sublinear to the number of OpenMP threads per core for KNL, we analyze 
the relative speedups of the most time-consuming subroutines in the XRMD code by increasing the number of 
OpenMP threads per core, as shown in Fig. 6. It is clearly seen that ReaxFF force calculations (e.g., Enbond, 
Ebond, Elnpr, Ehb, E3b, E4b, ForceTerms) scale well with respect to the increasing number of OpenMP
threads. In contrast to these highly numerical subroutines, less-numerically intensive list-processing subroutines 
such as LINKEDLIST and NEIGHBORLIST are less scalable and would require further optimization. 
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Figure 6. The absolute time of the most time-comsuming subroutines in XRMD code for 1,000 MD steps 
on 1 node of KNL for t = 1 thread per core for 96,768-atom RDX system in logarithmic scale. Also shown 
are the speedup of those subroutines and the wall-clock time in the XRMD code by increasing the 
number of OpenMP threads on KNL. The red and blue circles denote the speedups for the numbers of 
threads per core, t = 2 and 4, respectively. 

5. COMPUTATIONAL SYNTHESIS APPLICATIONS 
The accurate description of atomic charges and polarization by the new ReaxPQ method, combined with the 
extended-Lagrangian method to eliminate the speed-limiting charge iterations and their scalable parallel 
implementations, have opened a new avenue for computational synthesis of novel materials. This section 
demonstrates the capability of the XRMD code for computational synthesis of atomically thin layered materials 
(LM). The attractiveness of LMs lies not only in their outstanding electronic, optical, magnetic and chemical 
properties, but also in the possibility of tuning these properties in desired ways by building van der Waals
(vdW) heterostructures composed of unlimited combinations of atomically thin layers. 
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Figure 7. Exfoliation of MoS2 assisted by cavitation bubble collapse. The atoms are colored as Mo: 
magenta, S: yellow, H: white, C: cyan, and O: red. For the clarity of presentation, only 4% of the water 
and alcohol molecules are shown in the bottom half of the simulation box.  (a) Initial simulation setup, 
where the spherical bubble is colored blue.  (b) Bulk MoS2 breaks up into nanosheets after 2 ps, where the 
atoms exposed on the surface of MoS2 are colored grey.  (c) Close up of the partially exfoliated MoS2. 

XRMD simulations can guide the synthesis of stacked LMs by exfoliation. Liquid exfoliation is an ideal route 
for synthesizing 2D materials such as graphene, BN and transition metal dichalcogenides (TMDC). Although 
several experimental studies have reported the selection and optimization of exfoliated LMs, the exfoliation 
mechanism is not completely understood and hence it is difficult to engineer the size, number of layers, and 
quality of the exfoliated material. Our hypothesis is that sonication generates cavitation bubbles in a liquid and 
collapsing bubbles produce high-energy water jets that break up bulk materials into nanosheets. While previous 
XRMD simulations showed bubble collapse-induced damage of solid surfaces, neither experimental nor 
theoretical work has demonstrated the hypothesized bubble collapse-induced exfoliation. 
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To study possible exfoliation of TMDC due to the collapse of cavitation bubbles in solution, we perform 
XRMD simulations of an archetypal TMDC, molybdenum disulfide (MoS2), in water-isopropyl alcohol mixture, 
which is a solution commonly used for exfoliation (Fig. 7). A MoS2 crystal, which is a stack of atomically thin 
MoS2 layers, is placed in a 53:47 mixture of water and isopropyl alcohol (in weight), and a cavitation bubble is 
created by removing the liquid molecules inside a sphere of radius 47 Å as shown in Fig. 7(a). A planar shock 
wave is applied to cause rapid collapse of the bubble. 
In one simulation, where the MoS2 sheets are parallel to the shock wave, the shock velocity vs is 3.7 km/s. After 
2 ps, the bubble collapses to create a nanojet, which hits the surface of bulk MoS2 and peel the MoS2 sheets apart 
as shown in Fig. 7(b). Figure 7(c) shows the partially exfoliated MoS2, where the solution atoms are not shown 
for the clarity of presentation. We have found that the tensile wave created by reflection of the shock wave from 
the backend of MoS2 facilitates the exfoliation and breaks the MoS2 into nanosheets. This simulation result 
supports our hypothesis of novel bubble-collapse-induced exfoliation. 
6. CONCLUSION 
To perform accurate and large reactive MD simulations, we have proposed a new polarizable reactive force-
field (ReaxPQ) method and eliminated its computational bottleneck — speed-limiting charge iterations — by 
innovative adaptation of an extended Lagrangian scheme. The resulting XRMD code has drastically improved 
the energy conservation compared with previous RMD codes, while substantially reducing the time-to-solution. 
With various code transformations and hybrid MPI+OpenMP parallelization, the XRMD code has demonstrated 
high parallel efficiency, 0.977, on 786,432 Blue Gene/Q IBM processors as well as 2-3.0× speedups on the 
Knights Landing based Intel machine. Such scalable XRMD simulations could revolutionize the computational 
synthesis of advanced materials, as the example in this paper provide a glimpse. 
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