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Abstract

The explanation of the coronal heating problem potentially lies in the existence of nanoflares, numerous small-
scale heating events occurring across the whole solar disk. In this Letter, we present the first imaging spectroscopy
X-ray observations of three quiet Sun flares during the Nuclear Spectroscopic Telescope ARray (NuSTAR) solar
campaigns on 2016 July 26 and 2017 March 21, concurrent with the Solar Dynamics Observatory/Atmospheric
Imaging Assembly (SDO/AIA) observations. Two of the three events showed time lags of a few minutes between
peak X-ray and extreme ultraviolet emissions. Isothermal fits with rather low temperatures in the range 3.2–4.1MK
and emission measures of (0.6–15)×1044 cm−3 describe their spectra well, resulting in thermal energies in the
range (2–6)×1026 erg. NuSTAR spectra did not show any signs of a nonthermal or higher temperature component.
However, as the estimated upper limits of (hidden) nonthermal energy are comparable to the thermal energy
estimates, the lack of a nonthermal component in the observed spectra is not a constraining result. The estimated
Geostationary Operational Environmental Satellite (GOES) classes from the fitted values of temperature and
emission measure fall between 1/1000 and 1/100 A class level, making them eight orders of magnitude fainter in
soft X-ray flux than the largest solar flares.
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1. Introduction

The explanation of how the corona keeps its temperature of a
few million Kelvin, termed the “coronal heating problem,” has
eluded scientists for decades. Because solar flares release
energy and heat ambient plasma, it is argued that they may
provide (at least a part of) the needed energy to sustain coronal
temperatures.

Solar flares follow a negative power-law frequency distribu-
tion with increasing energy, with a power-law index ∼2 (e.g.,
Hudson 1991; Hannah et al. 2008). A flat distribution, with a
power-law index below 2, implies that smaller events do not
dominate the energy released in flares. As the largest flares do
not occur frequently enough to heat the solar corona, it has
been instead argued that smaller-scale reconnection events
could have a steeper frequency distribution, providing the
needed energy input due to large numbers. Parker (1988)
introduces the term nanoflares for such events, with energies
speculated to be of the order of 1024 erg or less, as estimated
from ultraviolet fluctuations within active regions (Porter
et al. 1984). This triggered many theoretical studies on the
role of small-scale events in coronal heating (e.g., Walsh &
Ireland 2003; Klimchuk 2006; Browning et al. 2008; Tajfirouze
& Safari 2012; Guerreiro et al. 2015, 2017).

Parker’s basic magnetic energy releases, however, are yet to
be confirmed observationally, most probably due to their
modest sizes and energies, combined with sensitivity limita-
tions of present solar instruments. So far, only measurements of
individual events down to ∼1024 erg (at the “high-energy” end
of Parker’s estimate) have been performed, while less energetic

nanoflares could have even smaller energies and should form
an ensemble of indistinguishable reconnection and heating
processes that make the solar corona. In addition to searches for
nanoflares in soft X-rays (SXRs; e.g., Shimizu & Tsuneta 1997;
Katsukawa & Tsuneta 2001; Terzo et al. 2011), the most
complete statistical study of microflares in hard X-rays is by
Hannah et al. (2008), using six years of Reuven Ramaty High
Energy Solar Spectroscopic Imager (RHESSI; Lin et al. 2002)
data and including more than 25,000 microflares. However,
because RHESSI is sensitive to flares with temperatures above
∼10MK and emission measures (EMs) above 1045 cm−3, the
events included in the above study are much larger and more
energetic than the nanoflares proposed by Parker (1988).
Another distinctive feature is that RHESSI observes microflares
only from active regions, while nanoflares should occupy the
whole solar disk. Quiet Sun (QS) flares, on the other hand, have
been observed only in SXR and extreme ultraviolet (EUV)
narrow-band filter observations (e.g., Krucker et al. 1997;
Krucker & Benz 1998; Aschwanden et al. 2000; Parnell & Jupp
2000). These brightenings have been found to occur on the
magnetic network of the QS, corroborating the magnetic
energy releases as their drivers. Radio events in the GHz range
associated with the EUV brightenings have been speculated to
be signatures of nonthermal electrons accelerated during the
energy release process (Benz & Krucker 1999). Their spectro-
scopic X-ray signatures, however, are too faint for the state-of-
the-art solar X-ray instruments. Therefore, in order to confirm
Parker’s nanoflare scenario of coronal heating, it is crucial to
perform sensitive imaging spectroscopy X-ray observations of
small-scale events across the whole solar disk.
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The Nuclear Spectroscopic Telescope ARray (NuSTAR) is a
focusing optics hard X-ray telescope launched in 2012 and
operating in the energy range 3–79 keV (Harrison et al. 2013).
Even though it is not solar-dedicated, it is capable of observing
the Sun (Grefenstette et al. 2016), providing much higher
sensitivity compared to indirect imaging telescopes such as
RHESSI. It can therefore bridge the gap toward imaging
spectroscopy in X-rays of small-scale heating events in the QS,
and provide the opportunity to search for nonthermal signatures
in them. This can be seen in Figure 1, where we show flare
frequency distributions from various X-ray and EUV studies of
microflares and QS brightenings (Shimizu 1995; Aschwanden
et al. 2000; Parnell & Jupp 2000; Benz & Krucker 2002;
Hannah et al. 2008). The plot can be divided into two
segments: the left one shows EUV observations of flares in the
QS, and the right one shows X-ray observations of microflares
from active regions. QS NuSTAR observations from this study
are shown by the brown box.

In this Letter, we present the first spectroscopically resolved
X-ray measurements of QS flares. NuSTAR observations of QS
heating events are described in Section 2. Data analysis and
spectral fitting of the events are found in Section 3, while the
discussion on this and possible future studies is presented in
Section 4.

2. Observations

The data analyzed in this Letter were obtained in NuSTAR
solar campaigns carried out on 2016 July 26 and 2017 March
21.9 Three QS events were observed during 1.5 hr of analyzed
NuSTAR observations, one on 2016 July 26 and two others on
2017 March 21. They will be referred to as flares 1, 2, and 3 in
the future sections, based on their chronological order.

Figure 2 shows the spatial structure and time evolution for
each of the events. The left panels show Atmospheric Imaging
Assembly (AIA; Lemen et al. 2012) 335Å images of the part
of the solar disk where the events occurred, together with the

30%, 50% and 70% NuSTAR contours in red. NuSTAR images
have been shifted to match the flare locations in the AIA
images in order to accommodate for uncertainties in absolute
pointing (Grefenstette et al. 2016). A zoomed-in image of each
event is shown in the inset. The right panels show the time
evolution of NuSTAR flux above 2.0 keV, as well as the time
evolution of AIA EUV channels. All fluxes are background-
subtracted, where background is defined as the lowest emission
time frame during the pre-event phase.

2.1. Time Evolution

The time profiles of flares generally reveal different
behaviors for the thermal and nonthermal X-ray component.
Nonthermal emissions are most prominently observed during
the rise phase of the thermal emission (impulsive phase) and
can show several peaks with durations from a minute down to a
subsecond timescale (e.g., Aschwanden et al. 1995). The main
thermal emission evolves more gradually, with a time profile
often similar to the integrated nonthermal flux (the so-called
“Neupert effect”; Neupert 1968). (Hard) X-ray peaks that occur
before the thermal peak (seen in SXR and/or EUV) are
therefore often interpreted as a signature of nonthermal
emission (Veronig et al. 2005), but such a classification is
not conclusive. Time lags between X-ray and EUV emission
can also be produced by the different temperature sensitivity of
X-ray and EUV observations: the X-ray peak is produced by
the flare-heated plasma, which then cools to lower temperatures
visible in EUV. To resolve the ambiguities present in the time
evolution of X-ray and EUV emission, a spectral analysis is
required. In the following, we discuss the time evolution of the
individual events focusing on potential nonthermal signatures,
followed by the spectral analysis in Section 3.
Flare 1 shows an intriguing time evolution with two

distinctive X-ray peaks, while flares 2 and 3 have one broad
peak dominating both the X-ray and EUV evolution. Flare 3
shows simultaneous X-ray and EUV peaks; this is in contrast to
flares 1 and 2, which show a time lag of a few minutes between
peak X-ray and EUV emissions. The rise of the EUV emission,
as well as the decay, is slower than in X-rays for all flares. In
order to interpret the observed relative timing, it is important to
consider the difference in temperature responses between
NuSTAR and AIA. NuSTAR has a steeply increasing response
toward higher temperatures between 1 and 10 MK, making it
sensitive primarily to the highest temperature plasma in this
range. The AIA temperature response, on the other hand, is
much broader and the resulting flux represents contributions
from plasma at various temperatures. The time evolution of
flare 2 can be explained by the process of plasma cooling,
where NuSTAR peaks first, followed by the AIA channels
according to their temperature sensitivity. The other events are
more complex, and only a detailed temporal and spatial
differential emission measure analysis might allow us to
understand their complicated time evolution; this is outside
the scope of this Letter. The spectral analysis presented in
Section 3 further addresses the question of whether the delays
between NuSTAR and AIA peaks imply nonthermal emission in
these events.

2.2. Flare Locations and Morphology

Flare locations and morphologies can be found in the insets
of the left panels in Figure 2. Flare 1 evidenced an ejection of

Figure 1. Flare frequency distribution vs. energy from various X-ray and EUV
studies. NuSTAR observations analyzed in this Letter are presented as the
brown rectangle. Note that the presented studies used data from different
phases of the solar cycle, making comparisons of the flare occurrence between
them difficult. The dotted line shows one frequency distribution with a power-
law index of 2 to guide the eye. Taken from Hannah et al. (2011) and adapted
to include our results.

9 Extensive information about all NuSTAR solar campaigns can be found at:
http://ianan.github.io/nsigh_all/.
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Figure 2. Overview plots of the three QS flares. Left panels:400″×400″AIA 335 Å images of the events, together with zoomed-in images of the event morphology
in the insets. The 30%, 50%, and 70% contours of maximum NuSTAR emission are shown in red. Right panels:background-subtracted time evolution of the flaring
region and flux uncertainties in the combined flux of NuSTAR focal plane modules A and B above 2.0 keV, together with AIA 94, 131, 335, 171, 193, and 211 Å
channels. Error bars in 171, 193, and 211 Å channels are smaller than the line thickness.
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material during the impulsive phase, seen in all AIA channels.
It occurred in the QS. Flare 2 was a part of a long-lasting
elongated structure located in proximity to the solar disk center,
with the flaring area that was just a fraction of the whole
structure. The morphology of the structure is reminiscent of
heated flare loops. Flare 3 was a short-duration event that, like
Flare 1, was not associated with any kind of X-ray or EUV
structure. However, it showed an even more complex structure
than flare 1. The March events were clearly associated with the
QS magnetic network structures, while the association is not as
clear for the July event. However, this might be due to its
proximity to the solar disk, where the line of sight effects could
mask the signal.

To conclude, in spite of their modest sizes and emission, the
observed events show very complex spatial and temporal
morphologies and therefore cannot be described as “elemen-
tary” energy releases proposed by Parker. They were not part of
active regions, and are therefore classified as QS events.

3. Data Analysis

3.1. Spectra

NuSTAR allows us to produce spectra for any time range,
energy range (above 2.5 keV), and area. For our study, we use
circular regions with a diameter of 55″ (a value close to
NuSTAR’s half power diameter) at each flare’s location.
Integration times were chosen individually for each flare so
that the majority of X-ray emission is included (presented
spectra are flare-integrated) and are equal to 4, 8, and 3 minutes
for flares 1, 2, and 3, respectively. To perform spectral fitting in
XSPEC (Arnaud 1996), NuSTAR spectra and response matrix
files were obtained using standard NuSTAR data analysis
software.10 In the following, we perform simultaneous fitting in
XSPEC on the data from both focal plane modules, which are

then combined to display the results shown in Figure 3 and
Table 1. We fit an isothermal (APEC in the XSPEC package,
using abundances from Feldman et al. 1992) plus a fixed
background model between 2.5 and 5.0 keV, where we
estimate the background as a two-minute integrated emission
in the pre-flare phase, mostly consisted of ghost-rays (photons
from sources outside the field of view).
NuSTAR spectra are shown in Figure 3. The fits give

temperatures of 3.96 0.40
0.05

-
+ , 4.01 0.22

0.05
-
+ , and 3.28 0.06

0.13
-
+ MK, while

their EMs lie in the range 5.6×1043–1.5×1045 cm−3.
These values of temperature and emission measure place our
events just in between the active region microflares and the QS
events analyzed previously in the EUV. Our events are at or
slightly below the NuSTAR detection limit as derived from
previous observations with lower livetime and much stronger
ghost-ray signal (Marsh et al. 2017). Here we note that the
estimated EM for flare 2 is probably a lower limit, as we
estimate that up to 50% of the total flare emission might not be
accounted for in our fits. This is due both to its proximity to the
chip gap and a lot of changes in the combination of NuSTAR
camera head units used for pointing, which resulted in many
(abrupt) changes in the estimated flare location. This probably
has no effect on the temperature estimates, but the actual EM is
likely a factor of 2 larger than the one reported. This is also
shown in Table 1, with a factor 2 in parenthesis for parameters
affected by this effect. The above-reported temperatures and
EMs place the observed events in the estimated range between
1/1000 and 1/100 GOES A-class equivalents, or between 7
and 8 classes fainter than the largest solar flares.
It is interesting to note the low temperatures of NuSTAR QS

flares. While RHESSI is designed to observe flares with
temperatures above 10 MK, NuSTAR is able to observe lower
temperatures due to its higher low-energy sensitivity. However,
because NuSTAR’s sensitivity also increases with increasing
temperature, the fit-determined temperatures are the highest
temperatures (as weighted by emission measure) present in the

Figure 3. NuSTAR spectra of the observed QS flares. Spectra with best isothermal fits for NuSTAR focal plane modules A and B combined is shown in dark green,
while the background counts are shown in pink. The energy range 2.5–5.0 keV used for spectral fitting is denoted by the gray area between the vertical dashed lines.

Table 1
QS Flare Parameters

Flare Date Time Location Area Temperature Emission Measure Density Energy GOES Class
[yyyy mm dd] [hh:mm] [x, y] [arcsec2] [MK] [1044 cm−3] [109 cm−3] 1026 [erg] [A]

1 2016 Jul 26 21:24 [795, −175] 38 3.96 0.40
0.05

-
+ 8.5 0.9

6.3
-
+ 3.0 0.2

1.0
-
+ 4.5 0.7

1.5
-
+ 0.01

2 2017 Mar 21 19:04 [−40, −55] 75 4.02 0.22
0.05

-
+ (2×) 0.64 0.08

0.22
-
+ 2( ×) 0.51 0.03

0.08
-
+ 2( ×) 2.1 0.2

0.4
-
+ (2×) 0.0009

3 2017 Mar 21 19:30 [300, 150] 85 3.28 0.06
0.13

-
+ 5.3 1.8

1.8
-
+ 1.3 0.3

0.2
-
+ 5.4 1.1

1.1
-
+ 0.003

10 https://heasarc.gsfc.nasa.gov/docs/nustar/analysis/
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events. Therefore, it seems that QS flares reach only modest
temperatures compared to those generally observed in regular
active region flares. The only other possibility is that hotter QS
events have significantly lower EMs, making them hard to
observe even with NuSTAR.

3.2. Thermal Energy Content

We use the standard approach of estimating total thermal
flare energy content from the flare plasma at the highest
temperature as derived from NuSTAR spectra. This approach
assumes that any cooler plasma, such as that observed in the
EUV, is a result of the cooling process. Wright et al. (2017)
estimated that this approximation could be up to ∼30%
different from the estimate from a complete, differential
emission measure analysis of multithermal plasma in an active
region microflare observed with NuSTAR and AIA. In this
approximation, the thermal energy content of an event with
temperature T, emission measure EM, and volume V is given
by the formula (e.g., Hannah et al. 2008)

E NkT kT V3 3 EM . 1th ~ = · ( )

To estimate upper and lower limits on the total thermal energy
content, we use the combination of maximum and minimum of
possible values for temperature and EM as given by the fits.

Because the observed QS flares are not spatially resolved with
NuSTAR, we estimate flare volumes as the area of flaring 335Å
pixels (other channels have similar flaring areas) to the power of
3/2. As NuSTAR is only sensitive to the hottest plasma, while
AIA is sensitive to a broader range of temperatures, this estimate
provides an upper limit for the actual volume and, consequen-
tially, a lower limit for the density and an upper limit for the
thermal energy content (an overestimate up to a factor of 5 in the
thermal energy content is possible). Density estimates can be
calculated with the formula n VEM= and fall in the range
(0.5–4)×109 cm−3. These values are similar to those derived
from SXR QS flares by Krucker et al. (1997) ((1–5)×
109 cm−3), but larger than densities derived from EUV QS
events by Aschwanden et al. (2000) ((0.1–0.5)×109 cm−3). We
calculate the following thermal energy contents for flares 1, 2,
and 3: (3.8–6.0)×1026, (1.8–2.5)×1026, and (3.9–5.9)×
1026 erg. These values are about five orders of magnitude smaller
than in largest solar flares.

3.3. Nonthermal Emission

There is no evidence for a high temperature or a nonthermal
component in the spectra presented in Figure 3, and no counts
above ∼5 keV are observed. By setting an upper limit for the
potentially hidden nonthermal contribution, we estimate an
upper limit of the energy in nonthermal electrons in the same
way as has been in done in Wright et al. (2017) and taking flare
1 as an example. The addition of a hidden nonthermal
component with a low-energy cutoff at 5 keV and a power-
law index of 7 still reproduces the observed spectrum well,
giving undetectable signal above the cutoff. The estimated
upper limit of the nonthermal energy equals ∼5×1026 erg, a
value within the uncertainties of the estimated thermal energy.
Hence, the non-detection of a nonthermal component in the
observed spectra is not a constraining result, with its upper
limits still consistent with the observed heating.

4. Discussion and Conclusions

In this Letter, we analyzed three QS flares observed in
X-rays above 2.0 keV with NuSTAR. We were able to measure
their X-ray spectra for the first time and derive flare peak
temperatures (see Table 1 for the summary of the derived
parameters). Despite their modest sizes and X-ray emission,
these events show very complex spatial morphologies in the
EUV. They are therefore not elementary energy releases and
still much larger than Parker’s idea of nanoflares.
Figure 4 shows our events in the T–EM parameter space,

together with two NuSTAR active region microflares observed in
previous campaigns (Glesener et al. 2017; Wright et al. 2017).
The green box represents SXR QS events from Krucker
et al. 1997, showing that they reach even lower temperatures
and are below the sensitivity limits of our current observations.
The isocurves show GOES classes, while the yellow area
denotes the parameter space observable by RHESSI. For flares
with temperatures between 3 and 4 MK as discussed here,
RHESSI is sensitive to EMs above∼1049 cm−3, meaning that we
gained at least four orders of magnitude in EM sensitivity
compared to RHESSI. Another interesting result are the rather
low temperatures of up to ∼4 MK, indicating that QS flares
might be reaching lower temperatures than the ones generally
observed in active region flares.
In contrast to hints coming from the time evolution of

NuSTAR and AIA fluxes, NuSTAR spectra did not show any
sign of a high-temperature or a nonthermal component.
However, as the estimated upper limits of energy in the hidden
nonthermal component are comparable to the calculated
thermal energies, the lack of a nonthermal component is not
a strong diagnostic result.
What follows next? Solar observations with NuSTAR started

in 2014 September and have been carried out sporadically
every few months, depending on science questions addressed
and solar conditions, giving 12 observations in total at the time

Figure 4. Three analyzed events (orange) in the T–EM parameter space,
together with two active region microflares (blue) observed in previous
NuSTAR solar campaigns. The QS network flares observed with Yohkoh/Soft
X-Ray Telescope (SXT; Krucker et al. 1997) are depicted with the green box,
together with the estimated upper limits in the temperature range of our QS
events. GOES-13 classes between 0.001A and B are shown by isocurves. The
part of the parameter space observable by RHESSI is shown in yellow.
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of writing. Taking into account the EUV QS flare frequency
distribution (Figure 1), we expect a few QS events of energies
∼1026 erg per hour within the NuSTAR field of view. This is
roughly in agreement with our observations of three events in
1.5 hr of data. We overplot our observations in the frequency
distribution plot in Figure 1 as a brown shaded box. The height
of the box represents uncertainty in determining the number of
events in the low-statistics regime following the approach of
Gehrels (1986) and taking the conservative 99% confidence
interval, while the width of the box represents the thermal
energy range of our events.

As the Sun’s activity decreases toward solar minimum in
2019/2020, we expect progressively better conditions for
observations of QS flares. We can get an estimate of this by
inspecting detector livetimes and count rates of the observed
events. The data for flare 3 are taken here as an example. We
emphasize the following points that will improve the sensitivity
during optimal observing conditions.

1. Livetime could improve by a factor of 1/0.59≈1.7 in
periods of low solar activity.

2. NuSTAR detected 900 counts above 2.5 keV during the
event, with background contributing ∼3% of the
emission (see Figure 3). In the absence of any activity
during solar minimum observations, we expect ghost-rays
to largely disappear, reducing the background emission to
values that are close to zero. The spectral analysis could
then be performed with many fewer counts than we
observed for flare 3; an improvement in sensitivity of up
to a factor of 10 seems feasible.

3. Counts below 2.5 keV, where NuSTAR calibration is
inaccurate due to threshold uncertainties and ghost-ray
influence is strongest, have not been used for spectral
fitting. In the absence of ghost-rays, however, using
counts down to 1.6 keV can be used for flare detection.
While spectral fitting will be affected by uncertainties in
calibration below 2.5 keV, we might still get acceptable
energy estimates. Moving the lower energy limit down to
1.6 keV would increase our statistics by a factor of four.

Combining these factors would lead to a sensitivity increase
of a factor of ∼70. Assuming the same flare temperature,
NuSTAR could observe QS flares with EMs of ∼8×1042 cm−3

and thermal energies of ∼7×1025 erg. Assuming the flare
frequency distribution index of 2, we would expect ∼15 events
per hour within the NuSTAR field of view. Of course, smaller
events might have lower temperatures and/or different areas
than the events presented here, making if difficult to estimate a
lower limit of the energy content that can be reached. Even if we
do not reach such low energies, observing even a few events per
hour would be a significant step forward to a statistical study,
which would provide further insights into the energy content and
heating processes in the faintest impulsive events on the Sun.
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