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Separable and Localized System Level Synthesis for
Large-Scale Systems
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Abstract—A major challenge faced in the design of large-scale
cyber-physical systems, such as power systems, the Internet of
Things or intelligent transportation systems, is that traditional
distributed optimal control methods do not scale gracefully,
neither in controller synthesis nor in controller implementation,
to systems composed of millions, billions or even trillions of
interacting subsystems. This paper shows that this challenge can
now be addressed by leveraging the recently introduced System
Level Approach (SLA) to controller synthesis. In particular, in the
context of the SLA, we define suitable notions of separability for
control objective functions and system constraints such that the
global optimization problem (or iterate update problems of a dis-
tributed optimization algorithm) can be decomposed into parallel
subproblems. We then further show that if additional locality (i.e.,
sparsity) constraints are imposed, then these subproblems can be
solved using local models and local decision variables. The SLA
is essential to maintaining the convexity of the aforementioned
problems under locality constraints. As a consequence, the
resulting synthesis methods have O(1) complexity relative to the
size of the global system. We further show that many optimal
control problems of interest, such as (localized) LQR and LQG,
H2 optimal control with joint actuator and sensor regularization,
and (localized) mixed H2/L1 optimal control problems, satisfy
these notions of separability, and use these problems to explore
tradeoffs in performance, actuator and sensing density, and
average versus worst-case performance for a large-scale power
inspired system.

Index Terms—Large-scale systems, constrained & structured
optimal control, decentralized control, system level synthesis

PRELIMINARIES & NOTATION

We use lower and upper case Latin letters such as x and
A to denote vectors and matrices, respectively, and lower and
upper case boldface Latin letters such as x and G to denote
signals and transfer matrices, respectively. We use calligraphic
letters such as S to denote sets.

We work with discrete time linear time invariant systems.
We use standard definitions of the Hardy spaces H2 and
H∞, and denote their restriction to the set of real-rational
proper transfer matrices by RH2 and RH∞. We use G[i] to
denote the ith spectral component of a transfer function G,
i.e., G(z) =

∑∞
i=0

1
ziG[i] for |z| > 1. Finally, we use FT
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to denote the space of finite impulse response (FIR) transfer
matrices with horizon T , i.e., FT := {G ∈ RH∞ |G =∑T

i=0
1
ziG[i]}.

Let Z+ be the set of all positive integers. We use calligraphic
lower case letters such as r and c to denote subsets of Z+.
Consider a transfer matrix Φ with nr rows and nc columns.
Let r be a subset of {1, . . . , nr} and c a subset of {1, . . . , nc}.
We use Φ(r , c) to denote the submatrix of Φ by selecting
the rows according to the set r and columns according to the
set c. We use the symbol : to denote the set of all rows or
all columns, i.e., we have Φ = Φ(:, :). Let {c1, . . . cp} be a
partition of the set {1, . . . , nc}. Then {Φ(:, c1), . . . ,Φ(:, cp)}
is a column-wise partition of the transfer matrix Φ.

I. INTRODUCTION

LARGE-SCALE networked systems have emerged in ex-
tremely diverse application areas, with examples includ-

ing the Internet of Things, the smart grid, automated highway
systems, software-defined networks, and biological networks
in science and medicine. The scale of these systems poses fun-
damental challenges to controller design: simple locally tuned
controllers cannot guarantee optimal performance (or at times
even stability), whereas a traditional centralized controller is
neither scalable to compute nor physically implementable.
Specifically, the synthesis of a centralized optimal controller
requires solving a large-scale optimization problem that relies
on the global plant model. In addition, information in the con-
trol network is assumed to be exchanged instantaneously. For
large systems, the computational burden of computing a cen-
tralized controller, as well as the degradation in performance
due to communication delays between sensors, actuators and
controllers, make a centralized scheme unappealing.

The field of distributed (decentralized) optimal control de-
veloped to address these issues, with an initial focus placed
on explicitly incorporating communication constraints between
sensors, actuators, and controllers into the control design
process. These communication delays are typically imposed
as information sharing constraints on the set of admissible
controllers in the resulting optimal control problem. The
additional constraint makes the distributed optimal control
problem significantly harder than its unconstrained centralized
counterpart, and certain constrained optimal control problems
are indeed NP-hard [5], [6]. It has been shown that in
the model-matching framework, distributed optimal control
problems admit a convex reformulation in the Youla domain
if [7] and only if [8] the information sharing constraint is
quadratically invariant (QI) with respect to the plant. With the
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identification of quadratic invariance as a means of convexify-
ing the distributed optimal control problem, tractable solutions
for various types of distributed objectives and constraints have
been developed [9]–[15].

As promising and impressive as all of the results have
been, QI focuses primarily on identifying the tractability (e.g.,
the convexity) of the constrained optimal control problem,
and places less emphasis on the scalability of synthesizing
and implementing the resulting constrained optimal controller.
In particular, for a strongly connected networked system,1

quadratic invariance is only satisfied if each sub-controller
communicates its locally acquired information with every
other sub-controller in the system – this density in communi-
cation has negative consequences on the scalability of both the
synthesis and implementation of such distributed controllers.

To address these scalability issues, techniques based on
regularization [16], [17], convex approximation [18]–[20], and
spatial truncation [21] have been used to find sparse (static)
feedback controllers that are scalable to implement (i.e., local
control actions can be computed using a local subset of
global system state). These methods have been successful in
extending the size of systems for which a distributed controller
can be implemented and computed, but there is still a limit
to their scalability as they rely on an underlying centralized
synthesis procedure.

In our companion paper [22], we proposed a System Level
Approach (SLA) to controller synthesis, and showed it to be
a generalization of the distributed optimal control framework
studied in the literature. The key idea is to directly design the
entire response of the feedback system first, and then use this
system response to construct an internally stabilizing controller
that achieves the desired closed loop behavior. Specifically,
the constrained optimal control problem is generalized to the
following System Level Synthesis (SLS) problem:

minimize
Φ

g(Φ) (1a)

subject to Φ stable and achievable (1b)
Φ ∈ S, (1c)

where Φ is the system response from disturbance to state
and control action (formally defined in Section II), g(·) is a
functional that quantifies the performance of the closed loop
response, the first constraint ensures that an internally stabilz-
ing controller exists that achieves the synthesized response Φ,
and S is a set. An important consequence of this approach to
constrained controller synthesis is that for any system, convex
constraints can always be used to impose sparse structure
on the resulting controller. If the resulting SLS problem is
feasible, it follows that the resulting controller is scalable to
implement, as this sparse structure in the controller implies
that only local information (e.g., measurements and controller
internal state) need to be collected and exchanged to compute
local control laws.

In this paper, we show that the SLA developed in [22]
further allows for constrained optimal controllers to be syn-

1A networked system is strongly connected if the state of any subsystem
can eventually alter the state of all other subsystems.

thesized in a localized way, i.e., by solving (iterate) sub-
problems of size scaling as O(1) relative to the dimension of
the global system. Specifically, we first introduce the notion
of separability of the objective functional g(·) and the convex
set constraint S such that the global optimization problem (1)
can be solved via parallel computation. We then show that
if additional locality (sparsity) constraints are imposed, then
these subproblems can be solved in a localized way. We show
that such locality and separability conditions are satisfied by
many problems of interest, such as the Localized LQR (LLQR)
and Localized Distributed Kalman Filter (LDKF) [1], [2]. We
then introduce the weaker notion of partially separable objec-
tives and constraints sets, and show that this allows for iterate
subproblems of distributed optimization techniques such as the
alternating direction method of multipliers (ADMM) [23] to
be solved via parallel computation. Similarly to the separable
case, when additional locality constraints are imposed, the
iterate subproblems can further be solved in a localized way.
We show that a large class of SLS problems are partially
separable. Examples include the (localized) mixed H2/L1

optimal control problem and the (localized)H2 optimal control
problem with sensor and actuator regularization [4], [24].

The rest of the paper is organized as follows. In Section II,
we formally define networked systems as a set of interacting
discrete-time LTI systems, recall the distributed optimal con-
trol formulation and comment on its scalability limitations,
and summarize the SLA to controller synthesis defined in
our companion paper [22]. In Section III, we introduce the
class of column/row-wise separable problems as a special
case of (1), and show that such problems decompose into
subproblems that can be solved in parallel. We then extend
the discussion to the general case in Section IV, where we
define the class of partially separable problems. When the
problem is partially separable, we use distributed optimization
combined with the techniques introduced in Section III to
solve (1) in a scalable way. We also give many examples
of partially separable optimal control problems, and introduce
some specializations and variants of the optimization algorithm
in the same section. Simulation results are shown in Section V
to demonstrate the effectiveness of our method. Specifically,
we synthesize a localized H2 optimal controller for a power-
inspired system with 12800 states composed of dynamically
coupled randomized heterogeneous subsystems, demonstrate
the optimal co-design of localized H2 controller with sensor
actuator placement, and solve a mixed H2/L1 optimal con-
trol problem. Conclusions and future research directions are
summarized in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

We first introduce the networked system model that we
consider in this paper. We then explain why the traditional
distributed optimal control problem, as studied in the QI
literature, does not scale gracefully to large systems. We then
recall the SLA to controller synthesis defined and analyzed
in [22]. This section ends with the formal problem statement
considered in this paper.
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A. Interconnected System Model

We consider a discrete-time LTI system of the form

x[t+ 1] = Ax[t] +B2u[t] + δx[t]

z̄[t] = C1x[t] +D12u[t]

y[t] = C2x[t] + δy[t] (2)

where x is the global system state, u is the global system input,
z̄ is the global controlled output, y is the global measured
output, and δx and δy are the global process and sensor
disturbances, respectively. We assume that these disturbances
are generated by an underlying disturbance w satisfying δx =
B1w and δy = D21w, allowing us to concisely describe the
system in transfer function form as

P =

 A B1 B2

C1 0 D12

C2 D21 0

 =

[
P11 P12

P21 P22

]
where Pij = Ci(zI −A)−1Bj +Dij . We use nx, ny , and nu
to denote the dimension of x, y, and u, respectively.

We further assume that the global system is composed of
n dynamically coupled subsystems that interact with each
other according to an interaction graph G = (V, E). Here
V = {1, . . . , n} denotes the set of subsystems. We denote by
xi, ui, and yi the state vector, control action, and measurement
of subsystem i – we further assume that the corresponding
state-space matrices (2) admit compatible block-wise parti-
tions. The set E ⊆ V × V encodes the physical interaction
between these subsystems – an edge (i, j) is in E if and only
if the state xj of subsystem j directly affects the state xi of
subsystem i.

We also assume that the controller, which is the map-
ping from measurements to control actions, is composed
of physically distributed sub-controllers interconnected via a
communication network. This communication network defines
the information exchange delays that are imposed on the set of
admissible controllers, which for the purposes of this paper, are
encoded via subspace constraints (cf. [9]–[15] for examples of
how information exchange delays can be encoded via subspace
constraints).

The objective of the optimal control problem (formally
defined in the next subsection) is then to design a feedback
strategy from measurement y to control action u, subject
to the aforementioned information exchange constraints, that
minimizes the norm of the closed loop transfer matrix from
the disturbance w to regulated output z̄.

Example 1 (Chain topology): Figure 1 shows an example
of such an interconnected system. The interaction graph of
this system is a chain, and further, as illustrated, local control
and disturbance inputs only directly affect local subsystems.
This allows us to write the dynamics of a subsystem i as

xi[t+ 1] = Aiixi[t] +
∑
j∈Ni

Aijxj [t] +Biiui[t] + δxi [t]

yi[t] = Ciixi[t] + δyi [t], (3)

where Ni = {j|(i, j) ∈ E} is the (incoming) neighbor set of
subsystem i, Aii, Aij , Bii, Cii are suitably defined sub-blocks
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Fig. 1. An Example of Interconnected System

of A, B2 and C2 matrices of compatible dimensions, and δxi
and δyi are the process and sensor disturbances, respectively.

B. Distributed Optimal Control Framework

Interconnected systems (such as that defined in equation (3))
pose fundamental challenges to controller synthesis: imposing
information exchange constraints between sub-controllers can
make the distributed optimal control problem non-convex,
and even when these problems are tractable, the synthesis
and implementation of the resulting optimal controller often
does not scale well to large systems. Here we briefly recall
the distributed optimal control framework, and illustrate why
scalability issues may arise when dealing with large systems.

Consider a dynamic output feedback control law u = Ky.
The distributed optimal control problem of minimizing the
norm of the closed loop transfer matrix from external dis-
turbance w to regulated output z̄ [7], [9], [10], [13]–[15] is
commonly formulated as

minimize
K

||P11 + P12K(I −P22K)−1P21‖ (4a)

subject to K internally stabilizes P (4b)
K ∈ CK (4c)

where the constraint K ∈ CK enforces information sharing
constraints between the sub-controllers. When CK is a sub-
space constraint, it has been shown that (4) is convex if [7]
and only if [8] CK is quadratically invariant (QI) with respect
to P22, i.e., KP22K ∈ CK for all K ∈ CK. Informally,
quadratic invariance holds when sub-controllers are able to
share information with each other at least as quickly as their
control actions propagate through the plant [25].

When the interaction graph of the system (2) is strongly
connected, the transfer matrix P22 = C2(zI − A)−1B2

is generically dense, regardless as to whether the matrices
(A,B2, C2) are structured or not. In such cases, the conditions
in [7] imply that any sparsity constraint CK imposed on K
in (4) does not satisfy the QI condition, and therefore (4)
cannot be reformulated in a convex manner in the Youla
domain [8]. In other words, for a strongly connected system,
the distributed optimal control problem is convex only when
the transfer matrix K is dense, i.e., only when each local
measurement yi is shared among all sub-controllers uj in the
network. For such systems, neither controller synthesis nor
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implementation scales gracefully to large systems. Although
recent methods based on convex relaxations [18] can be
used to solve certain cases of the non-convex optimal control
problem (4) approximately for a sparse constraint set CK, the
underlying synthesis problem is still large-scale and does not
admit a scalable reformulation. The need to address scalability,
both in the synthesis and implementation of a controller, is
the driving motivation behind the SLA framework, which we
recall in the next subsection.

C. The System Level Approach

In our companion paper [22], we define and analyze the
SLA to controller synthesis, defined in terms of three “system
level” (SL) components: SL Parameterizations (SLPs), SL
Constraints (SLCs) and SL Synthesis (SLS) problems. We
showed that the SLS problem is a substantial generalization
of the distributed optimal control problem (4). We summarize
the key results that we build upon here: conceptually, the key
idea is to reformulate the optimal control problem in terms of
the closed loop system response, as opposed to the controller
itself.

For an LTI system with dynamics given by (2), we define
a system response {R,M,N,L} to be the maps satisfying[

x
u

]
=

[
R N
M L

] [
δx
δy

]
. (5)

We call a system response {R,M,N,L} stable and achiev-
able with respect to a plant P if there exists an internally
stabilizing controller K such that the control rule u = Ky
leads to closed loop behavior consistent with (5). We showed
in [22] that the parameterization of all stable achievable system
responses {R,M,N,L} is defined by the following affine
space: [

zI −A −B2

] [R N
M L

]
=
[
I 0

]
(6a)[

R N
M L

] [
zI −A
−C2

]
=

[
I
0

]
(6b)

R,M,N ∈ 1

z
RH∞, L ∈ RH∞. (6c)

The parameterization of all internally stabilizing controllers is
further given by the following theorem.

Theorem 1 (Theorem 2 in [22]): Suppose that a set of
transfer matrices (R,M,N,L) satisfy the constraints (6a)
- (6c). Then an internally stabilizing controller yielding the
desired system response (5) can be implemented as

zβ = R̃+β + Ñy (7a)

u = M̃β + Ly (7b)

where R̃+ = z(I − zR), Ñ = −zN, M̃ = zM, L are in
RH∞. Further, the solutions of (6a) - (6c) with the implemen-
tation (7) parameterize all internally stabilizing controllers.

Remark 1: Equation (7) can be considered as a natural
extension of the state space realization of a controller K,
which is given by

zξ = AKξ +BKy

u = CKξ +DKy. (8)

Here we allow the state-space matrices AK , BK , CK , DK of
the controller, as specified in (8), to instead be stable proper
transfer matrices R̃+, M̃, Ñ,L in (7). As a result, we call the
variable β in (7b) the controller state.

With the parameterization of all stable achievable system
response in (6a) - (6c), we now introduce a convex objective
functional g(·) and an additional convex set constraint S
imposed on the system response. We call g(·) a system level
objective (SLO) and S a system level constraint (SLC). The
complete form of the SLS problem (1) is then given by

minimize
{R,M,N,L}

g(R,M,N,L) (9a)

subject to (6a)− (6c) (9b)[
R N
M L

]
∈ S. (9c)

We showed in [22] that the SLS problem (9) is a generalization
of the distributed optimal control problem (4) in the follow-
ing sense: (i) any quadratically invariant subspace constraint
imposed on the control problem (4c) can be formulated as a
special case of a convex SLC in (9c), and (ii) the objective
(4a), which can be written as

||
[
C1 D12

] [R N
M L

] [
B1

D21

]
||, (10)

is a special case of a convex SLO in (9a). In particular, the
SLS problem defines the broadest known class of constrained
optimal control problems that can be solved using convex
programming [22].

D. Localized Implementation

In our prior work [1], [3], [22], we showed how to use the
SLC (9c) to design a controller that is scalable to implement.
We first express the SLC set S as the intersection of three
convex set components: a locality (sparsity) constraint L, a
finite impulse response (FIR) constraint FT , and an arbitrary
convex set component X , i.e., S = L ∩FT ∩X . The locality
constraint L imposed on a transfer matrix G is a collection of
sparsity constraints of the form Gij = 0 for some i and j. The
constraint FT restricts the optimization variables to be a finite
impulse response transfer matrix of horizon T , thus making
optimization problem (9) finite dimensional. The constraint X
includes any other convex constraint imposed on the system,
such as communication constraints, bounds on system norms,
etc. This leads to a localized SLS problem given by

minimize
{R,M,N,L}

g(R,M,N,L) (11a)

subject to (6a)− (6c) (11b)[
R N
M L

]
∈ L ∩ FT ∩ X . (11c)

To design a controller that is scalable to implement, i.e.,
one in which each sub-controller needs to collect information
from O(1) other sub-controllers to compute its local control
action, is to impose sparsity constraints on the system response
(R,M,N,L) through the locality constraint L. Theorem
1 makes clear that the structure of the system response
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(R,M,N,L) translates directly to the structure, and hence
the implementation complexity, of the resulting controller (7).
For instance, if each row of these transfer matrices has a
small number of nonzero elements, then each sub-controller
only needs to collect a small number of measurements and
controller states to compute its control action [1], [3], [22].
This holds true for arbitrary convex objective functions g(·)
and arbitrary convex constraints X .

Remark 2: For a state feedback problem (C2 = I and
D21 = 0), we showed in [22] that the localized SLS problem
(11) can be simplified to

minimize
{R,M}

g(R,M)

subject to
[
zI −A −B2

] [R
M

]
= I[

R
M

]
∈ L ∩ FT ∩ X . (12)

In addition, the controller achieving the desired system re-
sponse can be implemented directly using the transfer matrices
R and M [22].

Remark 3: It should be noted that although the optimization
problems (11) and (12) are convex for arbitrary locality
constraints L, they are not necessarily feasible. Hence in the
SLA framework, the burden is shifted from verifying the
convexity of a structured optimal control problem to verifying
its feasibility. In [4], we showed that a necessary condition
for the existence of a localized (sparse) system response is
that the communication speed between sub-controllers is faster
than the speed of disturbance propagation in the plant. This
condition can be more restrictive than the delay conditions
[25] that must be satisfied for a system to be QI . However,
when such a localized system response exists, we only require
fast but local communication to implement the controller.

E. Problem Statement

In previous work [1]–[4], [22], we showed that by imposing
additional constraints L and FT in (11), we can design a
localized optimal controller that is scalable to implement. In
this paper, we further show that the localized SLS problem
(11) can be solved in a localized and scalable way if the
SLO (11a) and the SLC (11c) satisfy certain separability
properties. Specifically, when the localized SLS problem (11)
is separable and the locality constraint L is suitably specified,
the global problem (11) can be decomposed into parallel
local subproblems. The complexity of synthesizing each sub-
controller in the network is then independent of the size of
the global system.

III. COLUMN-WISE SEPARABLE SLS PROBLEMS

In this section, we consider the state feedback localized SLS
problem (12), which is a special case of (11). We begin by
defining the notion of a column-wise separable optimization
problem. We then show that under suitable assumptions on
the objective function and the additional constraint set S, the
state-feedback SLS problem (12) satisfies these conditions. We
then give examples of optimal control problems, including

the (localized) LQR [1] problem, that belong to the class
of column-wise separable problems. In Section III-C, we
propose a dimension reduction algorithm to further reduce the
complexity of each column-wise subproblem from global to
local scale. This section ends with an overview of row-wise
separable SLS problems that are naturally seen as dual to their
column-wise separable counterparts.

A. Column-wise Separable Problems

We begin with a generic optimization problem given by

minimize
Φ

g(Φ) (13a)

subject to Φ ∈ S, (13b)

where Φ is a m×n transfer matrix, g(·) a functional objective,
and S a set constraint. Our goal is to exploit the structure of
(13) to solve the optimization problem in a computationally
efficient way. Recall that we use calligraphic lower case letters
such as c to denote subsets of positive integer. Let {c1, . . . , cp}
be a partition of the set {1, . . . , n}. The optimization variable
Φ can then be partitioned column-wise as {Φ(:, c1), . . . ,Φ(:
, cp)}. With the column-wise partition of the optimization
variable, we can then define the column-wise separability of
the functional objective (13a) and the set constraint (13b) as
follows.

Definition 1: The functional objective g(Φ) in (13a) is said
to be column-wise separable with respect to the column-wise
partition {c1, . . . , cp} if

g(Φ) =

p∑
j=1

gj(Φ(:, cj)) (14)

for some functionals gj(·) for j = 1, . . . , p.
We now give a few examples of column-wise separable

objectives.
Example 2 (Frobenius norm): The square of the Frobenius

norm of a m× n matrix Φ is given by

‖Φ‖2F =
m∑
i=1

n∑
j=1

Φ2
ij .

This objective function is column-wise separable with respect
to arbitrary column-wise partition.

Example 3 (H2 norm): The square of the H2 norm of a
transfer matrix Φ is given by

‖Φ‖2H2
=

∞∑
t=0

‖Φ[t]‖2F , (15)

which is column-wise separable with respect to arbitrary
column-wise partition.

Definition 2: The set constraint S in (13b) is said to be
column-wise separable with respect to the column-wise parti-
tion {c1, . . . , cp} if the following condition is satisfied:

Φ ∈ S if and only if Φ(:, cj) ∈ Sj for j = 1, . . . , p (16)

for some sets Sj for j = 1, . . . , p.
Example 4 (Affine Subspace): The affine subspace con-

straint
GΦ = H
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is column-wise separable with respect to arbitrary column-
wise partition. Specifically, we have

GΦ(:, cj) = H(:, cj)

for cj any subset of {1, . . . , n}.
Example 5 (Locality and FIR Constraints): The locality

and FIR constraints introduced in Section II-D

Φ ∈ L ∩ FT

are column-wise separable with respect to arbitrary column-
wise partition. This follows from the fact that both locality
and FIR constraints can be encoded via sparsity structure: the
resulting linear subspace constraint is trivially column-wise
separable.

Assume now that the objective function (13a) and the set
constraint (13b) are both column-wise separable with respect
to a column-wise partition {c1, . . . , cp}. In this case, we say
that optimization problem (13) is a column-wise separable
problem. Specifically, (13) can be partitioned into p parallel
subproblems as

minimize
Φ(:,cj)

gj(Φ(:, cj)) (17a)

subject to Φ(:, cj) ∈ Sj (17b)

for j = 1, . . . , p.

B. Column-wise Separable SLS Problems

We now specialize our discussion to the localized SLS
problem (12). We use

Φ =

[
R
M

]
to represent the system response we want to optimize for, and
we denote ZAB the transfer matrix

[
zI −A −B2

]
. The state

feedback localized SLS problem (12) can then be written as

minimize
Φ

g(Φ) (18a)

subject to ZABΦ = I (18b)
Φ ∈ S, (18c)

with S = L∩FT ∩X . Note that the affine subspace constraint
(18b) is column-wise separable with respect to any column-
wise partition, and thus the overall problem is column-wise
separable with respect to a given column-wise partition if the
SLO (18a) and SLC (18c) are also column-wise separable with
respect to that partition.

Remark 4: Recall that the locality constraint L and the
FIR constraint FT are column-wise separable with respect
to any column-wise partition. Therefore, the column-wise
separability of the SLC S = L∩FT ∩X in (18) is determined
by the column-wise separability of the constraint X . If S is
column-wise separable, then we can express the set constraint
Sj in (25) as Sj = L(:, cj) ∩ FT ∩ Xj for some Xj for each
j.

Assume that the SLO (18a) and the SLC (18c) are both
column-wise separable with respect to a column-wise partition
{c1, . . . , cp}. In this case, we say that the state feedback

localized SLS problem (18) is a column-wise separable SLS
problem. Specifically, (18) can be partitioned into p parallel
subproblems as

minimize
Φ(:,cj)

gj(Φ(:, cj)) (19a)

subject to ZABΦ(:, cj) = I(:, cj) (19b)
Φ(:, cj) ∈ L(:, cj) ∩ FT ∩ Xj (19c)

for j = 1, . . . , p.
Here we give a few examples of column-wise separable SLS

problems.
Example 6 (LLQR with uncorrelated disturbance): In [1],

we formulate the LLQR problem with uncorrelated process
noise (i.e., B1 = I) as

minimize
{R,M}

||
[
C1 D12

] [R
M

]
||2H2

(20a)

subject to
[
zI −A −B2

] [R
M

]
= I (20b)[

R
M

]
∈ L ∩ FT ∩

1

z
RH∞. (20c)

The SLO (20a) and the SLC (20c) are both column-wise
separable with respect to arbitrary column-wise partition. The
separable property of the SLO is implied by the separability
of the H2 norm and the assumption that the process noise is
pairwise uncorrelated. The separability of the constraints (20b)
- (20c) is follows from the above discussion pertaining to affine
subspaces. The physical interpretation of the column-wise
separable property is that we can analyze the system response
of each local process disturbance δxj in an independent and
parallel way, and then exploit the superposition principle
satisfied by LTI systems to reconstruct the full solution to
the LLQR problem. We also note that removing the locality
and FIR constraints does not affect column-wise separability,
and hence the standard LQR problem with uncorrelated noise
is also column-wise separable.

Example 7 (LLQR with locally correlated disturbances):
Building on the previous example, we now assume that the
covariance of the process noise δx is given by B>1 B1 for
some matrix B1, i.e., δx ∼ N (0, B>1 B1). In addition, suppose
that there exists a permutation matrix Π such that the matrix
ΠB1 is block diagonal. This happens when the global noise
vector δx can be partitioned into uncorrelated subsets. The
SLO for this LLQR problem can then be written as

||
[
C1 D12

]
ΦB1||2H2

= ||
[
C1 D12

]
ΦΠ>ΠB1||2H2

.

Note that ΦΠ> is a column-wise permutation of the optimiza-
tion variable. We can define a column-wise partition on ΦΠ>

according to the block diagonal structure of the matrix ΠB1 to
decompose the SLO in a column-wise manner. The physical
meaning is that we can analyze the system response of each
uncorrelated subset of the noise vector in an independent and
parallel way.

Example 8 (Element-wise `1): In the LLQR examples
above, we rely on the separable property of the H2 norm,
as shown in (15). Motivated by the H2 norm, we define the
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element-wise `1 norm (denoted by e1) of a transfer matrix
G ∈ FT as

||G||e1 =
∑
i

∑
j

T∑
t=0

|Gij [t]|.

The previous examples still hold if we change the square of
the H2 norm to the element-wise `1 norm.

C. Dimension Reduction Algorithm

In this subsection, we discuss how the locality constraint
L(:, cj) in (19c) can be exploited to reduce the dimension of
each subproblem (19) from global to local scale, thus yielding
a localized synthesis procedure. The general and detailed
dimension reduction algorithm for arbitrary locality constraints
can be found in Appendix A. Here we rather highlight the main
results and consequences of this approach through the use of
some examples.

In particular, in Appendix A we show that the optimization
subproblem (19) is equivalent to

minimize
Φ(sj ,cj)

ḡj(Φ(sj , cj)) (21a)

subject to ZAB(tj , sj)Φ(sj , cj) = I(tj , cj) (21b)
Φ(sj , cj) ∈ L(sj , cj) ∩ FT ∩ X̄j (21c)

where sj and tj are sets of positive integers, and ḡj and
X̄j are objective function and constraint set restricted to the
reduced dimensional space, respectively. Roughly speaking,
the set sj is the collection of optimization variables contained
within the localized region specified by L(:, cj), and the set
tj is the collection of states that are directly affected by the
optimization variables in sj . The complexity of solving (21) is
determined by the cardinality of the sets cj , sj , and tj , which
in turn are determined by the number of nonzero elements
allowed by the locality constraint and the structure of the
system state-space matrices (2). For instance, the cardinality of
the set sj is equal to the number of nonzero rows of the locality
constraint L(:, cj). When the locality constraint and the system
matrices are suitably sparse, it is possible to make the size of
these sets much smaller than the size of the global network.
In this case, the global optimization subproblem (19) reduces
to a local optimization subproblem (21) which depends on the
local plant model ZAB(tj , sj) only.

……

……

Localized Region

Fig. 2. The localized region for w1

We illustrate the idea of dimension reduction through a
simple example below.

Example 9: Consider a chain of n LTI subsystems with a
single disturbance w1 directly affecting state x1, as shown in

Figure 2. We analyze the first column of the LLQR problem
(20), which is given by

minimize
{R(:,1),M(:,1)}

||
[
C1 D12

] [R(:, 1)
M(:, 1)

]
||2H2

(22a)

subject to
[
zI −A −B2

] [R(:, 1)
M(:, 1)

]
= I(:, 1) (22b)[

R(:, 1)
M(:, 1)

]
∈ L(:, 1) ∩ FT ∩

1

z
RH∞. (22c)

The optimization variables are the system response from the
disturbance w1 to the global state x and global control action
u. Assume that the locality constraint imposed on R and M
are such that the closed loop response due to w1 satisfies
x3 = · · · = xn = 0 and u4 = · · · = un = 0. In this
case, we can solve (22) using only the information contained
within the localized region shown in Figure 2. Intuitively,
as long as the boundary constraint x3 = 0 is enforced, the
perturbation on the system caused by w1 cannot propagate
beyond the localized region (this intuition is formalized in
Appendix A). Note that the complexity to analyze the system
response of w1 is completely independent of the size of the
global system. Even more dramatically, one could replace the
section of the system outside of the localized region with any
other set of dynamics, and the localized synthesis problem
(22c) addressing the system response to w1 would remain
unchanged. This localized disturbance-wise analysis can then
be performed independently for all other disturbances by
exploiting the superposition principle satisfied by LTI systems.

D. Row-wise Separable SLS Problems

The technique described in the previous subsections can be
readily extended to row-wise separable SLS problems – we
briefly introduce the corresponding definitions and end with
an example of a row-wise separable SLS problem.

Consider a state estimation SLS problem [22] given by

minimize
Φ

g(Φ) (23a)

subject to ΦZAC = I (23b)
Φ ∈ S. (23c)

with Φ =
[
R N

]
and ZAC =

[
zI −A> −C>2

]>
. Let

{r1, . . . , rq} be a partition of the set {1, . . . , nx}. The row-
wise separability of the SLO and SLC in (23) are defined as
follows.

Definition 3: The system level objective g(Φ) in (23a) is
said to be row-wise separable with respect to the row-wise
partition {r1, . . . , rq} if

g(Φ) =

q∑
j=1

gj(Φ(rj , :)) (24)

for some functionals gj(·) for j = 1, . . . , q.
Definition 4: The system level constraint S in (23c) is said

to be row-wise separable with respect to the row-wise partition
{r1, . . . , rp} if

Φ ∈ S if and only if Φ(rj , :) ∈ Sj for j = 1, . . . , p (25)
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for some sets Sj for j = 1, . . . , p.
An example of a SLS problem satisfying row-wise sep-

arabaility is the localized distributed Kalman filter (LDKF)
problem in [2] (naturally seen as the dual to the LLQR
problem), which can be posed as

minimize
{R,N}

||
[
R N

] [ B1

D21

]
||2H2

subject to
[
R N

] [zI −A
−C2

]
= I[

R N
]
∈
[
LR LN

]
∩ FT ∩

1

z
RH∞.

IV. PARTIALLY SEPARABLE SLS PROBLEMS

In this section, we define the notion of partially-separable
objectives and constraints, and show how these properties can
be exploited to solve the general form of the localized SLS
problem (11) in a localized way using distributed optimization
techniques such as ADMM.2 We further show that many
constrained optimal control problems are partially separable.
Examples include the (localized) H2 optimal control problem
with joint sensor and actuator regularization and the (localized)
mixed H2/L1 optimal control problem.

Similar to the organization of the previous section, we begin
by defining the partial separability of a generic optimization
problem. We then specialize our discussion to the partially
separable SLS problem (11), before ending this section with
a discussion of computational techniques that can be used to
accelerate the ADMM algorithm as applied to solving partially
separable SLS problems.

A. Partially Separable Problems

We begin with a generic optimization problem given by

minimize
Φ

g(Φ) (26a)

subject to Φ ∈ S, (26b)

where Φ is a m×n transfer matrix, g(·) a functional objective,
and S a set constraint. We assume that the optimization
problem (26) can be written in the form

minimize
Φ

g(r)(Φ) + g(c)(Φ) (27a)

subject to Φ ∈ S(r) ∩ S(c), (27b)

where g(r)(·) and S(r) are row-wise separable and g(c)(·) and
S(c) are column-wise separable. If optimization problem (26)
can be written in the form of problem (27), then optimization
problem (26) is called partially separable.

Due to the coupling between the row-wise and column-
wise separable components, optimization problem (27) admits
neither a row-wise nor a column-wise decomposition. Our
strategy is to instead use distributed optimization techniques
such as ADMM to decouple the row-wise separable compo-
nent and the column-wise separable components: we show
that this leads to iterate subproblems that are column/row-
wise separable, allowing the results of the previous section to

2Note that (11) is neither column-wise nor row-wise separable due to the
coupling constraints (6a) and (6b).

be applied to solve the iterate subproblems using localized and
parallel computation.

Definition 5: Let {r1, . . . , rq} be a partition of the set
{1, · · · ,m} and {c1, . . . , cp} be a partition of the set
{1, · · · , n}. The functional objective g(Φ) in (26a) is said to
be partially separable with respect to the row-wise partition
{r1, . . . , rq} and the column-wise partition {c1, . . . , cp} if g(Φ)
can be written as the sum of g(r)(Φ) and g(c)(Φ), where
g(r)(Φ) is row-wise separable with respect to the row-wise
partition {r1, . . . , rq} and g(c)(Φ) is column-wise separable
with respect to the column-wise partition {c1, . . . , cp}. Specif-
ically, we have

g(Φ) = g(r)(Φ) + g(c)(Φ)

g(r)(Φ) =

q∑
j=1

g
(r)
j (Φ(rj , :))

g(c)(Φ) =

p∑
j=1

g
(c)
j (Φ(:, cj)) (28)

for some functionals g(r)
j (·) for j = 1, . . . , q, and g

(c)
j (·) for

j = 1, . . . , p.
Remark 5: The column and row-wise separable objective

functions defined in Definition 1 and 3, respectively, are
special cases of partially separable objective functions.

Example 10: Let Φ be the optimization variable, and E and
F be two matrices of compatible dimension. The objective
function

‖EΦ‖2F + ‖ΦF‖2F

is then partially separable. Specifically, the first term is
column-wise separable, and the second term is row-wise
separable.

Definition 6: The set constraint S in (26b) is said to be
partially separable with respect to the row-wise partition
{r1, . . . , rq} and the column-wise partition {c1, . . . , cp} if S
can be written as the intersection of two sets S(r) and S(c),
where S(r) is row-wise separable with respect to the row-wise
partition {r1, . . . , rq} and S(c) is column-wise separable with
respect to the column-wise partition {c1, . . . , cp}. Specifically,
we have

S = S(r) ∩ S(c)

Φ ∈ S(r) ⇐⇒ Φ(rj , :) ∈ S(r)
j ,∀j

Φ ∈ S(c) ⇐⇒ Φ(:, cj) ∈ S(c)
j ,∀j (29)

for some sets S(r)
j for j = 1, . . . , q and S(c)

j for j = 1, . . . , p.
Remark 6: The column and row-wise separable constraints

defined in Definition 2 and 4, respectively, are special cases
of partially separable constraints.

Example 11 (Affine Subspace): The affine subspace con-
straint

GΦ = H and ΦE = F

is partially separable. Specifically, the first constraint is
column-wise separable, and the second is row-wise separable.
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Example 12 (Induced Matrix Norm): The induced 1-norm
of a matrix Φ is given by

‖Φ‖1 = max
1≤j≤n

m∑
i=1

|Φij |,

and the induced ∞-norm of a matrix is given by

‖Φ‖∞ = max
1≤i≤m

n∑
j=1

|Φij |.

The following constraint is partially separable:

‖Φ‖1 ≤ γ1 and ‖Φ‖∞ ≤ γ∞.

Specifically, the first term is column-wise separable, and the
second term is row-wise separable.

Assume now that the objective and the constraints in
optimization problem (26) are both partially separable with
respect to a row-wise partition {r1, . . . , rq} and a column-wise
partition {c1, . . . , cp}. In this case, the optimization problem
(26) is partially separable and can be rewritten in the form
specified by equation (27). We now propose an ADMM based
algorithm that exploits the partially separable structure of the
optimization problem. As we show in the next subsection,
when this method is applied to the SLS problem (11), the
iterate subproblems are column/row-wise separable, allowing
us to apply the methods described in the previous section. In
particular, if locality constraints are imposed, iterate subprob-
lems can be solved using localized and parallel computation.

Let Ψ be a duplicate of the optimization variable Φ.
We define the extended-real-value functionals h(r)(Φ) and
h(c)(Ψ) by

h(r)(Φ) =

{
g(r)(Φ) if Φ ∈ S(r)

∞ otherwise

h(c)(Ψ) =

{
g(c)(Ψ) if Ψ ∈ S(c)

∞ otherwise.
(30)

Problem (27) can then be reformulated as

minimize
{Φ,Ψ}

h(r)(Φ) + h(c)(Ψ)

subject to Φ = Ψ. (31)

Problem (31) can be solved using ADMM [23]:

Φk+1 = argmin
Φ

(
h(r)(Φ) +

ρ

2
||Φ−Ψk + Λk||2H2

)
(32a)

Ψk+1 = argmin
Ψ

(
h(c)(Ψ) +

ρ

2
||Ψ−Φk+1 −Λk||2H2

)
(32b)

Λk+1 = Λk + Φk+1 −Ψk+1 (32c)

where the square of the H2 norm is computed as in (15).
In Appendix B, we provide stopping criterion and prove

convergence of the ADMM algorithm (32a) - (32c) to an
optimal solution of (27) (or equivalently, (31)) under the
following assumptions.

Assumption 1: Problem (27) has a feasible solution in the
relative interior of the set S.

Assumption 2: The functionals g(r)(·) and g(c)(·) are
closed, proper, and convex.

Assumption 3: The sets S(r) and S(c) are closed and con-
vex.

B. Partially Separable SLS Problems

We now specialize our discussion to the output feedback
SLS problem (11). We use

Φ =

[
R N
M L

]
to represent the system response we want to optimize for.
Denote ZAB the transfer matrix

[
zI −A −B2

]
and ZAC the

transfer matrix
[
zI −A> −C>2

]>
. Let JB be the matrix in

the right-hand-side of (6a) and JC be the matrix in the right-
hand-side of (6b). The localized SLS problem (11) can then
be written as

minimize
Φ

g(Φ) (33a)

subject to ZABΦ = JB (33b)
ΦZAC = JC (33c)
Φ ∈ S (33d)

with S = L∩FT∩X . Note that as already discussed, the affine
subspace constraints (33b) and (33c) are partially separable
with respect to arbitrary column-wise and row-wise partitions,
respectively. Thus the SLS problem (33) is partially separable
if the SLO (33a) and the SLC Φ ∈ X are partially separable.

In particular, if X is partially separable, we can express the
original SLC S as an intersection of the sets S(r) = L∩FT ∩
X (r) and S(c) = L ∩ FT ∩ X (c), where X (r) is a row-wise
separable component of X and X (c) a column-wise separable
component of X . Note that the locality constraint and the FIR
constraint are included in both S(r) and S(c). This is the key
point to allow the subroutines (32a) - (32b) of the ADMM
algorithm to be solved using the techniques described in the
previous section.

To illustrate how the iterate subproblems of the ADMM
algorithm (32), as applied to the SLS problem (33), can be
solved using localized and parallel computation, we analyze
in more detail the iterate subproblem (32b), which is given by

minimize
Ψ

g(c)(Ψ) +
ρ

2
||Ψ−Φk+1 −Λk||2H2

(34a)

subject to Ψ ∈ S(c) (34b)

with S(c) = L∩FT ∩X (c). The H2 norm regularizer in (34a)
is column-wise separable with respect to arbitrary column-
wise partition. As the objective g(c)(·) and the constraint S(c)

are column-wise separable with respect to a given column-
wise partition, we can use the column-wise separation tech-
nique described in the previous section to decompose (34)
into parallel subproblems. We can then exploit the locality
constraint L and use the technique described in Section III-C
and Appendix A to reduce the dimension of each subproblem
from global to local scale. Similarly, iterate subproblem (32a)
can also be solved using parallel and localized computation by
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exploiting its row-wise separability. Finally, update equation
(32c) trivially decomposes element-wise since it is a matrix
addition.

We now give some examples of partially separable SLOs.
Example 13 (Norm Optimal Control): Consider the SLO

of the distributed optimal control problem in (10), with the
norm given by either the square of theH2 norm or the element-
wise `1 norm defined in Example 8. Suppose that there exists
a permutation matrix Π such that the matrix

[
B>1 D>21

]
Π

is block diagonal. Using a similar argument as in Example 7,
we can find a column-wise partition to decompose the SLO
in a column-wise manner. Similarly, suppose that there exists
a permutation matrix Π such that the matrix

[
C1 D12

]
Π is

block diagonal. We can find a row-wise partition to decompose
the SLO in a row-wise manner. In both cases, the SLO is
column/row-wise separable and thus partially separable.

Example 14 (Sensor and Actuator Norm): Consider the
weighted actuator norm defined in [4], [24], which is given
by

||µ
[
M L

]
||U =

nu∑
i=1

µi||e>i
[
M L

]
||H2 (35)

where µ is a diagonal matrix with µi being its ith diagonal
entry, and ei is a unit vector with 1 on its ith entry and 0
elsewhere.The actuator norm (35) can be viewed as an infinite
dimensional analog to the weighted `1/`2 norm, also known
as the group lasso [26] in the statistical learning literature.
Adding this norm as a regularizer to a SLS problem induces
row-wise sparse structure in the the transfer matrix

[
M L

]
.

Recall from Theorem 1 that the controller achieving the
desired system response can be implemented by (7). If the ith
row of the transfer matrix

[
M L

]
is identically zero, then

the ith component of the control action ui is always equal
to zero, and therefore the actuator at node i corresponding
to control action ui can be removed without changing the
closed loop response. It is clear that the actuator norm defined
in (35) is row-wise separable with respect to arbitrary row-
wise partition. This still holds true when the actuator norm is
defined by the `1/`∞ norm. Similarly, consider the weighted
sensor norm given by

||
[
N
L

]
λ||Y =

ny∑
i=1

λi||
[
N
L

]
ei||H2

(36)

where λ is a diagonal matrix with λi being its ith diagonal en-
try. The sensor norm (36), when added as a regularizer, induces
column-wise sparsity in the transfer matrix

[
N> L>

]>
.

Using the controller implementation (7), the sensor norm can
therefore be viewed as regularizing the number of sensors used
by a controller. For instance, if the ith column of the transfer
matrix

[
N> L>

]>
is identically zero, then the sensor at

node i and its corresponsing measurement yi can be removed
without changing the closed loop response. The sensor norm
defined in (35) is column-wise separable with respect to any
column-wise partition.

Example 15 (Combination): From Definition 5, it is
straightforward to see that the class of partially separable
SLOs with respect to the same partitions are closed under

summation. Therefore, we can combine the partially separable
SLOs described above, and the resulting SLO is still partially
separable. For instance, consider the SLO given by

g(R,M,N,L) = ||
[
C1 D12

] [R N
M L

] [
B1

D21

]
||2H2

+||µ
[
M L

]
||U + ||

[
N
L

]
λ||Y (37)

where µ and λ are the relative penalty between the H2

performance, actuator and sensor regularizer, respectively. If
there exists a permutation matrix Π such that the matrix[
C1 D12

]
Π is block diagonal, then the SLO (37) is par-

tially separable. Specifically, the H2 norm and the actuator
regularizer belong to the row-wise separable component, and
the sensor regularizer belongs to the column-wise separable
component.3

We now provide some examples of partially separable SLCs.

Example 16 (L1 Constraint): The L1 norm of a transfer
matrix is given by its worst case `∞ to `∞ gain. In particular,
the L1 norm [27] of a FIR transfer matrix G ∈ FT is given
by

||G||L1 = max
i

∑
j

T∑
t=0

|gij [t]|. (38)

We can therefore add the constraint

||
[

R N
M L

] [
B1

D21

]
||L1
≤ γ (39)

to the optimization problem (33) for some γ to control the
worst-case amplification of `∞ bounded signals. From the
definition (38), the SLC (39) is row-wise separable with
respect to any row-wise partition.

Example 17 (Combination): From Definition 6, the class
of partially separable SLCs with respect to the same row
and column partitions are closed under intersection, allowing
for partially separable SLCS to be combined. For instance,
the combination of a locality constraint L, a FIR constraint
FT , and an L1 constraint as in equation (39) is partially
separable. This property is extremely useful as it provides a
unified framework for dealing with several partially separable
constraints at once.

Using the previously described examples of partially separa-
ble SLOs and SLCs, we now consider two partially separable
SLS problems: (i) the localized H2 optimal control problem
with joint sensor and actuator regularization, and (ii) the
localized mixed H2/L1 optimal control problem. These two
problems are used in Section V as case study examples.

Example 18: The localized H2 optimal control problem

3Note that an alternative penalty is proposed in [24] for the design of joint
actuation and sensing architectures; it is however more involved to define,
and hence we restrict ourself to this alternative penalty for the purposes of
illustrating the concept of partially separable SLOs.
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with joint sensor and actuator regularization is given by

minimize
{R,M,N,L}

(37) (40a)

subject to (6a)− (6c) (40b)[
R N
M L

]
∈ C ∩ L ∩ FT . (40c)

where C encodes the information sharing constraints of the
distributed controller. If there exists a permutation matrix Π
such that the matrix

[
C1 D12

]
Π is block diagonal, then (40)

is partially separable.
Remark 7: When the penalty of the sensor and actuator

norms are zero, problem (40) reduces to the localized LQG
optimal control problem defined and solved in [3]. Further, if
the locality and FIR constraints are removed, we recover the
standard LQG optimal control problem, which is also seen to
be partially separable.

Next we consider the localized mixed H2/L1 optimal
control problem.

Example 19: The localized mixed H2/L1 optimal control
problem is given by

minimize
{R,M,N,L}

||
[

R N
M L

] [
B1

D21

]
||2H2

(41a)

subject to (6a)− (6c), (39), (40c) (41b)

which is partially separable.
The localized mixed H2/L1 optimal control problem can

be used to design the tradeoff between average and worst-
case performance, as measured by the H2 and L1 norms of
the closed loop system, respectively.

C. Analytic Solution and Acceleration

Suppose that the Assumptions 1 - 3 in Section IV-B hold.
The ADMM algorithm presented in (32) is a special case
of the proximal algorithm [23], [28], [29]. For certain type
of objective functionals h(r)(·) and h(c)(·), the proximal
operators can be evaluated analytically (see Ch. 6 of [29]). In
this situation, we only need to evaluate the proximal operators
once, and iterate (32a) and (32b) in closed form. This improves
the overall computation time significantly. We explain how
to express the solutions of (32a) and (32b) using proximal
operators in detail in Appendix C. Here we list a few examples
for which the proximal operators can be evaluated analytically.

Example 20: Consider the LLQG problem proposed in [3].
When the global optimization problem is decomposed into
parallel subproblems, each subproblem is a convex quadratic
program restricted to an affine set. In this case, the proximal
operator is an affine function [3], [23], [29]. We only need
to calculate this affine function once. The iteration in (32a) -
(32c) can then be carried out using multiple matrix multiplica-
tions in the reduced dimension, which significantly improves
the overall computation time.

Example 21: Consider the LLQR problem with actuator
regularization [4], which is the state feedback version of
(40). The column-wise separable component of this problem
is identical to that of the LLQG example, and therefore
the update subproblem (32b) can be solved using matrix

multiplication, as described in the previous example. We
further showed in [4] that the row-wise separable component
of this problem can be simplified to multiple unconstrained
optimization problems, each with proximal operators given by
vectorial soft-thresholding [29]. This offers an efficient way
to solve the update supbroblem (32a).

We end this section by noting that although our focus has
been on how ADMM can be used to efficiently solve the local-
ized SLS problem (11), there exist other distributed algorithms
that can exploit partial separability to improve computational
efficiency. For instance, if either g(r)(·) or g(c)(·) is strongly
convex, we can use the alternating minimization algorithm
(AMA) [30] to simplify the ADMM algorithm.

V. SIMULATIONS

In this section, we apply the localized H2 optimal control
with sensor actuator regularization (40) problem and the local-
ized mixed H2/L1 optimal control problem (41) to a power
system inspired example. After introducing the power system
model, we show that the localized H2 controller, with its
additional locality, FIR and communication delay constraints
can achieve comparable closed loop performance to that of a
centralized H2 optimal controller. We further demonstrate the
scalability of the proposed method by synthesizing a localized
H2 controller for a randomized heterogeneous networked
system with 12800 states using a single laptop; for such a
large system, neither the centralized nor the distributed optimal
controllers can be computed. We then solve the localized H2

with joint sensor and actuator regularization to co-design an
output feedback controller and its actuation/sensing architec-
ture. Finally, we solve the localized mixed H2/L1 optimal
control problem, thus identifying the achievable tradeoff curve
between the average and worst-case performance of the closed
loop system.

A. Power System Model

We begin with a randomized spanning tree embedded on
a 10 × 10 mesh network representing the interconnection
between subsystems. The resulting interconnected topology is
shown in Fig. 3(a) – we assume that all edges are undirected.
The dynamics of each subsystem is given by the discretized
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(b) Interaction between neighboring
subsystems

Fig. 3. Simulation example interaction graph.

swing equations. Consider the swing dynamics

miθ̈i + diθ̇i = −
∑
j∈Ni

kij(θi − θj) + wi + ui (42)
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where θi, θ̇i, mi, di, wi, ui are the phase angle deviation,
frequency deviation, inertia, damping, external disturbance,
and control action of the controllable load of bus i. The
coefficient kij is the coupling term between buses i and
j. We let xi := [θi θ̇i]

> be the state of bus i and use
eA∆t ≈ I + A∆t to discretize the swing dynamics. Equation
(42) can then be expressed in the form of (3) with

Aii =

[
1 ∆t

− ki
mi

∆t 1− di
mi

∆t

]
, Aij =

[
0 0

kij
mi

∆t 0

]
,

and Bii =
[
0 1

]>
. We set ∆t = 0.2 and ki =

∑
j∈Ni kij .

In addition, the parameters kij , di, and m−1
i are randomly

generated and uniformly distributed between [0.5, 1], [1, 1.5],
and [0, 2], respectively. The A matrix is then normalized to
be marginally stable, i.e., such that the spectral radius of the
matrix A is 1. The interaction between neighboring subsystems
of the discretized model is illustrated in Figure 3(b). We
initially assume that each subsystem in the power network
has a phase measurement unit (PMU), a frequency sensor,
and a controllable load that generates ui – later in this section
we explore the tradeoff between actuation/sensing density and
closed loop performance.

From (42), the external disturbance wi only directly affects
the frequency deviation θ̇i. To make the objective functional
strongly convex, we introduce a small artificial disturbance on
the phase deviation θi as well. We assume that the process
noise on frequency and phase are uncorrelated AWGNs with
covariance matrices given by I and 10−4I , respectively. In
addition, we assume that both the phase deviation and the
frequency deviation are measured with some sensor noise.
The sensor noise of phase and frequency measurements are
uncorrelated AWGNs with covariance matrix given by 10−2I .
We choose equal penalty on the state deviation and control
effort, i.e.,

[
C1 D12

]
= I .

Based on the above setting, we formulate a H2 optimal
control problem that minimizes the H2 norm of the transfer
matrix from the process and sensor noises to the regulated
output. The H2 norm of the closed loop is given by 13.3169
when a proper centralized H2 optimal controller is applied,
and 16.5441 when a strictly proper centralized H2 optimal
controller is applied. In the rest of this section, we normalized
the H2 norm with respect to the proper centralized H2 optimal
controller.

B. Localized H2 Optimal Control

The underlying assumption of the centralized optimal con-
trol scheme is that the measurement can be transmitted in-
stantaneously with every subsystem in the network. To incor-
porate realistic communication delay constraint and facilitate
the scalability of controller design, we impose additional
communication delay constraint, locality constraint, and FIR
constraint on the system response.

For the communication delay constraint C, we assume that
each subsystem takes one time step to transmit the information
to its neighboring subsystems. Therefore, if subsystems i and j
are k-hops apart (as defined by the interaction graph illustrated
in Figure 3(a)), then the control action ui[t] at subsystem i can

only use the measurements yj [τ ] and internal controller state
βj [τ ] of subsystem j if τ ≤ t− k.

The interaction between subsystems illustrated in Fig. 3(b)
implies that it takes two discrete time steps for a disturbance
at subsystem j to propagate to its neighboring subsystems,
and hence the communication speed between sub-controllers is
twice as fast as the propagation speed of disturbances through
the plant. For the given communication delay constraint C, we
use the method in [4] to design the tightest feasible locality
constraint L. In this example, we can localize the joint effect
of the process and sensor noise at subsystem j to a region
defined by its two-hop neighbors (where one hop is as defined
in terms of the interaction graph of the system). This implies
that the sub-controller at node j only needs to transmit its
measurements yj and controller states βj within this localized
region, and further only a restricted plant model (as defined by
this localized region) is needed to synthesize its corresponding
local control policy.

Assuming a fixed communication delay constraint C and
locality constraint L, we first explore tradeoff between the
length T of the FIR constraint FT and the transient per-
formance. Figure 4 shows the tradeoff curve between the
transient performance of the localized H2 controller and the
length T of the FIR constraint. For the given communication
delay constraint C and the locality constraint L, the localized
H2 controller is feasible for FIR constraints FT whenever
T ≥ 3. When the length of the FIR constraint increases,
the H2 norm of the closed loop converges quickly to the
unconstrained optimal value. For instance, for FIR lengths of
T = 7, 10, and 20, the performance degradation with respect
to the unconstrained H2 optimal controller are given by 3.8%,
1.0%, and 0.1%, respectively. This further means that the
performance degradation due to the additional communication
delay constraint C and the locality constraint L is less than
0.1%. From Figure 4, we see that the localized H2 controller,
with its additional communication delay, locality and FIR
constraints can achieve similar transient performance to that
of an unconstrained centralized (unimplementable) optimalH2

controller.
To further illustrate the advantages of the localized control

scheme, we choose T = 20 and compare the localized optimal
controller, distributed optimal controller, and the centralized
optimal controller in terms of the closed loop performance,
the complexity of controller synthesis, and the complexity of
controller implementation in Table I. The distributed optimal
controller is computed using the method described in [10], in
which we assume the same communication constraint C as the
localized optimal controller. It can be seen that the localized
controller is vastly preferable in all aspects, except for a slight
degradation in the closed-loop performance.

We now allow the size of the problem to vary and compare
the computation time needed to synthesize a centralized,
distributed, and localized H2 optimal controller. We choose
T = 7 for the localized controller. The empirical relationship
obtained between computation time and problem size for dif-
ferent control schemes is illustrated in Figure 5. As can be seen
in Figure 5, the computation time needed for the distributed
controller grows rapidly when the size of problem increases.
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Fig. 4. The vertical axis is the normalized H2 norm of the closed loop when
the localized H2 controller is applied. The localized H2 controller is subject
to the constraint C ∩ L ∩ FT . The horizontal axis is the horizon T of the
FIR constraint FT , which is also the settling time of an impulse disturbance.
We plot the normalized H2 norm for the centralized unconstrained optimal
controller (proper and strictly proper) in the same figure.

TABLE I
COMPARISON BETWEEN CENTRALIZED, DISTRIBUTED, AND LOCALIZED

CONTROL

Cent. Dist. Local.
Affected region Global Global 2-hop

Closed Loop Affected time Long Long 20 steps
Normalized H2 1 1.001 1.001

Complexity O(n3) ≥ O(n3) O(n)
Synthesis Plant model Global Global 2-hop

Redesign Offline Offline Real-time
Implement. Comm. Speed ∞ 2 2

Comm. Range Global Global 2-hop

The slope of the line describing the computation time of the
centralized controller in the log-log plot of Figure 5 is 3, which
matches the theoretical complexity O(n3). The slope for the
localized H2 controller is about 1.4, which is larger than the
theoretical value of 1. We believe this overhead may caused
by other computational issue such as memory management.
We note that the computational bottleneck faced in computing
our large-scale example arises from using a single laptop to
compute the controller (and hence the localized subproblems
were solved in serial) – in practice, if each local subsystem is
capable of solving its corresponding localized subproblem, our
approach scales to systems of arbitrary size as all computations
can be done in parallel. For the largest example that we have,
we can compute the optimal localized H2 controller for a
system with 12800 states in 22 minutes using a standard
laptop. If the computation is parallelized across all 6400 sub-
systems, the synthesis algorithm can be completed within
0.2 seconds. In contrast, the theoretical time to compute the
centralized H2 optimal controller for the same example is
more than a week.

C. Localized H2 Optimal Control with Joint Sensor and
Actuator Regularization

We now move back to the 10 × 10 mesh example shown
in Figure 3(a). In the previous subsection, we assume that

102 103 104
10-1

100

101

102

103

104

Localized
Centralized
Distributed

Fig. 5. The horizontal axis denotes the number of states of the system, and
the vertical axis is the computation time in seconds.

each subsystem in the power network had a phase sensor,
a frequency sensor, and a controllable load. In practice, the
installation of these sensors and actuators is expensive, and
we instead like to explore the tradeoff between the closed
loop performance of the system and the number of sensors
and actuators being used in a principled and tractable manner.
A challenging problem is to determine the optimal locations of
these sensors and actuators due to its combinatorial complex-
ity. In this subsection, we apply the regularization for design
(RFD) [24] framework to jointly design the localized optimal
controller and the optimal locations of sensors and actuators in
the power network. This is achieved by solving the localized
H2 optimal control problem with joint sensor and actuator
regularization (40).

In order to allow more flexibility on sensor actuator place-
ment, we increase the localized region of each process and
sensor noise from its two-hop neighbors to its four-hop neigh-
bors. This implies that each subsystem j needs to exchange the
information up to its four-hop neighbors, and use the restricted
plant model within its four-hop neighbors to synthesize the
localized H2 controller. The length of the FIR constraint FT

is increased to T = 30. The initial localized H2 cost is given
by 13.3210, which is 0.03% degradation compared to the
idealized centralizedH2 controller. We assume that the relative
price between each frequency sensor, PMU, and controllable
load are 1, 100, and 300, respectively. This is to model the
fact that actuators are typically more expensive than sensors,
and that PMUs are typically more expensive than frequency
sensors. The price for the same type of sensors and actuators
at different locations remains constant.

We begin with a dense controller architecture composed
of 100 controllable loads, 100 PMUs, and 100 frequency
sensors, i.e., one of each type of sensor and actuator at
each node. Using optimization problem (40) to identify the
sparsest possible architecture that still satisfies the locality,
FIR and communication delay constraints, we are able to
remove 43 controllable loads and 46 PMUs from the system
(no frequency sensors were removed due to the chosen relative
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Fig. 6. The upward-pointing triangles represent the subsystems in which the
PMU is removed. The downward-pointing triangles represent the subsystems
in which the controllable load (actuator) is removed.

pricing). The locations of the removed sensors and actuators
are shown in Figure 6. We argue that this sensing and
actuation interface is very sparse. In particular, we only use 57
controllable loads to control process noise from 200 states and
sensor noise from 154 states, while ensuring that the system
response to all process and sensor disturbances remains both
localized and FIR.

The localized H2 cost for the system with reduced number
of sensors and actuators is given by 17.8620. In comparison,
the cost achieved by a proper centralized optimal controller is
16.2280, and the cost achieved by a strictly proper centralized
optimal controller is 18.4707. Note that as the sensing and
actuation interface becomes sparser, the performance gap
between the centralized and the localized controller becomes
larger. Nevertheless, we note that the performance degradation
is only 10% compared to the proper centralized optimal
scheme implemented using the same sparse controller archi-
tecture.

D. Localized Mixed H2/L1 Optimal Control

Finally, we solve the localized mixed H2/L1 optimal con-
trol problem in (41) on the 10 × 10 mesh example shown in
Figure 3(a). We progressively reduce the allowable L1 gain
γ, as shown in equation (41), to explore the tradeoff between
average and worst-case performance of a system. We plot the
normalized H2 norm and the normalized L1 norm in Figure
7.4 The left-top point in Figure 7 is the localized H2 solution.
When we start reducing the L1 sublevel set, the H2 norm of
the closed loop response gradually increases, thus tracing out
a tradeoff curve.

VI. CONCLUSION

In this paper, we proposed a localized and scalable algo-
rithm to solve a class of constrained optimal control problems
for large-scale systems using the system level synthesis (SLS)
framework [22]. Specifically, we defined suitable notions of
separability for SLS problems, and showed that this allowed
for them to be solved via parallel (and local) computation.
We then argued that the resulting synthesis algorithms can

4We normalize the H2 performance with respect to that achieved by the
optimal localized H2 controller, and likewise normalize the L1 performance
with respect to that achieved by the optimal localized L1 controller.
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1
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1.25

1.3

Fig. 7. The vertical axis represents the normalized L1 norm of the closed
loop, and the horizontal axis represents the normalizedH2 norm of the closed
loop.

scale to arbitrarily large systems if suitable parallel computa-
tion is available. We further showed that many constrained
optimal control problems of interest satisfy these separa-
bility conditions; these include for instance the (localized)
mixed H2/L1 optimal control problem and the (localized)
H2 optimal control problem with joint sensor and actuator
regularization. We further demonstrated the scalability of our
algorithm by synthesizing a localizedH2 optimal controller on
a randomized heterogeneous power system with 12800 states,
a system for which neither the centralized nort the distributed
optimal controllers can be computed in a reasonable amount of
time. Finally, through the use of several simulation examples,
we demonstrated that the localized SLS framework provides
a useful tool to explore the various tradeoffs that arise in
designing large-scale distributed controllers.

APPENDIX A
DIMENSION REDUCTION ALGORITHM

Consider problem (19) for a specific j. Recall from equation
(5) that the number of rows of the transfer matrix Φ(:, cj)
is given by (nx + nu). Let s̄j be the largest subset of
{1, . . . , nx + nu} such that the locality constraint L(s̄j , cj)
in (19c) is exactly a zero matrix. When the locality constraint
is imposed, we must have Φ(s̄j , cj) = 0. This component of
Φ can be eliminated from the objective function (19a) and the
constraints (19b) - (19c). Let sj = {1, . . . , nx + nu} − s̄j be
the complement set of s̄j . When the above sparsity constraints
are imposed on the optimization variable, problem (19) can be
simplified to

minimize
Φ(sj ,cj)

ḡj(Φ(sj , cj)) (43a)

subject to ZAB(:, sj)Φ(sj , cj) = I(:, cj) (43b)
Φ(sj , cj) ∈ L(sj , cj) ∩ FT ∩ X̄j (43c)

where ḡj(·) and X̄j are the restrictions of the column-wise
objective function gj(·) and constraint Xj , respectively, to the
subspace satisfying Φ(s̄j , cj) = 0. From the definition of the
set sj , it is straightforward to see that (43) is equivalent to
(19).

Next, if the system matrices (A,B2) are sparse, then
the transfer matrix ZAB is also sparse. Recall that the
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number of rows of ZAB is given by nx. Let t̄j be the
largest subset of {1, . . . , nx} such that the augmented ma-
trix

[
ZAB(t̄j , sj) I(t̄j , cj)

]
is a zero matrix. Let tj =

{1, . . . , nx} − t̄j be the complement set of t̄j . We can further
reduce optimization problem (43) to optimization problem
(21). From the definition of the sets tj , it follows that (21)
is equivalent to (43) and therefore equivalent to (19).

Remark 8: The dimension reduction algorithm proposed
here is a generalization of the algorithms proposed in our
prior works [1], [3]. Specifically, the algorithms in [1], [3]
only work for a particular type of locality constraint (called
the d-localized constraint), while the algorithm proposed here
can handle arbitrary sparsity constraints.

APPENDIX B
CONVERGENCE AND STOPPING CRITERIA FOR

ALGORITHM (32)

Assumption 1 - 3 imply feasibility and strong duality of op-
timization problem (27) (or its equivalent formulation specified
in equation (31)). From Assumptions 2 and 3, we know that
the extended-real-value functionals h(r)(·) and h(c)(·) defined
in equation (30) are closed, proper, and convex. Under these
assumptions, problem (31) satisfies the convergence conditions
stated in [23]. From [23], we have objective convergence, dual
variable convergence (Λk → Λ∗ as k → ∞), and residual
convergence (Φk − Ψk → 0 as k → ∞). Note that (31)
may not have a unique optimal point, so that the optimization
variables Φk and Ψk do not necessarily converge. If we further
assume that the functional objective g(·) is strongly convex
with respect to Φ, then problem (31) has a unique optimal
solution Φ∗. In this case, objective convergence implies primal
variable convergence, and hence we have that Φk → Φ∗ and
Ψk → Φ∗ as k →∞.

The stopping criteria is designed using the methods sug-
gested in [23], wherein we use ||Φk −Ψk||H2

as a measure
of primal infeasibility and ||Ψk −Ψk−1||H2

as a measure of
dual infeasibility. We further note that under the separability
and locality conditions described in this paper, the square
of these two functions can be computed in a localized and
parallel way. The algorithm (32a) - (32c) terminates when
||Φk − Ψk||H2

< εpri and ||Ψk − Ψk−1||H2
< εdual are

satisfied for some feasibility tolerances εpri and εdual.
In practice, we may not know a priori whether optimization

problem (27) is feasible. In other words, we may not know
whether Assumption 1 holds. Consider the case that the
ADMM subroutines (32a) - (32c) are solvable, but problem
(31) is infeasible. In this situation, the stopping criteria on
primal infeasibility ||Φk−Ψk||H2 < εpri may not be satisfied.
To avoid an infinite number of iterations, we set a limit on
the number of iterations in the ADMM algorithm. In this
way, whether the ADMM algorithm as a scalable algorithm to
check the feasibility of the SLS problem (33). If the ADMM
algorithm does not converge, then we know that SLS problem
is not feasible with respect to the specified SLCs. A general
method for designing feasible SLCs is beyond the scope of
this paper. As an example of such an algorithm howeve,
we refer the reader to our recent paper [4], in which we

present a method that allows for the joint design of an actuator
architecture and a corresponding pair of feasible locality and
FIR SLCs.

APPENDIX C
EXPRESSING ADMM UPDATES USING PROXIMAL

OPERATORS

Here we explain how to express the solutions of to the
iterate update subproblems (32a) and (32b) using proximal
operators. We focus our discussion on subproblem (32b), or
its equivalent formulation described in equation (34), as an
analogous argument holds for subproblem (32a). Recall that
the set S(c) in problem (34b) is given by S(c) = L∩FT ∩X (c).
We use the column-wise partition and the dimension reduction
techniques described in Appendix A to simplify subproblem
(34) to

minimize
Ψ(sj ,cj)

g
(c)
j (Ψ(sj , cj))

+
ρ

2
||Ψ(sj , cj)−Φk+1(sj , cj)−Λk(sj , cj)||2H2

(44a)
subject to ZAB(tj , sj)Ψ(sj , cj) = JB(tj , cj) (44b)

Ψ(sj , cj) ∈ L(sj , cj) ∩ FT ∩ X (c)
j (44c)

for j = 1, . . . p. In the simplified problem (44), the transfer
matrices Ψ(sj , cj), Φk+1(sj , cj), and Λk(sj , cj) all have a
FIR with a horizon of T . We can therefore represent the
optimization variables of problem (44) as column vectors, i.e.,
as

Ψv(j) = vec(
[
Ψ(sj , cj)[0] · · · Ψ(sj , cj)[T ]

]
)

where Ψv(j) is the vectorization of all the spectral components
of Ψ(sj , cj). Similarly, we define Φk+1

v(j) and Λk
v(j) as the

vectorization of all of the spectral components of Φk+1(sj , cj)
and Λk(sj , cj), respectively. The optimization problem (44)
can then be written as

minimize
Ψv(j)

gv(j)(Ψv(j)) +
ρ

2
||Ψv(j) − Φk+1

v(j) − Λk
v(j)||

2
2

(45a)
subject to Ψv(j) ∈ Sv(j) (45b)

where gv(j)(·) is the vectorized form of g(c)
j (·), and Sv(j) is the

set constraint imposed by (44b) - (44c). Define the indicator
function as

ID(x) =

{
0 x ∈ D
∞ x 6∈ D.

This allows us to rewrite (45) as the following unconstrained
problem

minimize
Ψv(j)

ISv(j)(Ψv(j)) + gv(j)(Ψv(j))

+
ρ

2
||Ψv(j) − Φk+1

v(j) − Λk
v(j)||

2
2. (46)

The solution of the unconstrained problem (46) can then be
expressed using the proximal operator as

Ψk+1
v(j) = proxISv(j)+ 1

ρ gv(j)
( Φk+1

v(j) + Λk
v(j) ). (47)

Equation (47) is a solution of (44). Therefore, the ADMM
update (32b) can be carried out by evaluating the proximal
operators (47) for j = 1, . . . p, all in the reduced dimension.
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