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Abstract

We present an empirical parameterization of the [N II] /Ha flux ratio as a function of stellar mass and redshift valid
at 0 < z < 2.7 and 8.5 < log(M/M,) < 11.0. This description can (i) easily be applied to simulations for
modeling [N II]A6584 line emission, (ii) deblend [N II] and Ha in current low-resolution grism and narrow-band
observations to derive intrinsic Ha fluxes, and (iii) reliably forecast the number counts of Ha emission-line
galaxies for future surveys, such as those planned for Euclid and the Wide Field Infrared Survey Telescope
(WFIRST). Our model combines the evolution of the locus on the Baldwin, Phillips & Terlevich (BPT) diagram
measured in spectroscopic data out to z ~ 2.5 with the strong dependence of [N1I]/Ha on stellar mass and
[O 1m1] /Hp observed in local galaxy samples. We find large variations in the [N II]/He flux ratio at a fixed redshift
due to its dependency on stellar mass; hence, the assumption of a constant [N II] flux contamination fraction can
lead to a significant under- or overestimate of Ha luminosities. Specifically, measurements of the intrinsic Ha
luminosity function derived from current low-resolution grism spectroscopy assuming a constant 29%
contamination of [NII] can be overestimated by factors of ~8 at log(L) > 43.0 for galaxies at redshifts
z ~ 1.5. This has implications for the prediction of Ha emitters for Euclid and WFIRST. We also study the impact

of blended Ha and [N II] on the accuracy of measured spectroscopic redshifts.
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1. Introduction

The Ha nebular emission line at rest frame 6563 A is the
most important feature that will be detected by the near-infrared
grisms of the upcoming space-based missions Euclid (Laureijs
et al. 2011; Vavrek et al. 2016) and the Wide Field Infrared
Survey Telescope (WFIRST;, Dressler et al. 2012; Green
et al. 2012; Spergel et al. 2015). By measuring redshifts to
tens of millions of Ho emitters at 1 < z < 2 with low-resolution
grism spectroscopy, these surveys will use baryon acoustic
oscillation (BAO; e.g., Blake & Glazebrook 2003; Seo &
Eisenstein 2003) and redshift space distortion (RSD; Kaiser
1987) analyses to constrain the expansion history of the
universe and the growth of structure. Together, these probes
will put strong constraints on the nature of dark energy (Guzzo
et al. 2008; Wang 2008).

The Ha emission of a galaxy depends principally on its star
formation rate (SFR), while the Ha equivalent width (EW) is
proportional to the specific SFR (sSFR = SFR/M, a proxy for
the rate of stellar mass increase). The Ha emission is, therefore,
not only an important tool to study cosmology but also a direct
probe of the statistics of cosmic star formation via the Ha
luminosity function (LF). The LF, in turn, informs predictions
of the number counts of galaxies that will be found in the grism
surveys of Euclid and WFIRST.

Current measurements of Ho across large redshift ranges up
to z ~ 2 and over large areas on the sky come from blind
searches in low-resolution Hubble Space Telescope (HST)
grism observations (Atek et al. 2010; Brammer et al. 2012; van
Dokkum et al. 2013). Specifically, the best current constraints

on the Ha LF over the redshifts of interest for Euclid and
WFIRST (0.4 < z < 2.5) come from the HST WFC3 Infrared
Spectroscopic Parallel Survey (WISPS; Atek et al. 2010).
However, these WFC3 grism spectra do not resolve Ha from
the neighboring [N II] lines at rest frame 6548 and 6584 A. The
resulting uncertainty in the [N II]/He ratio (in the following,
[NO]/Ha = [N1I] )\6584/Ha)5 for the sources measured by
WEFC3 translates into significant uncertainty in the derived
intrinsic Ho LF and therefore has a direct impact on shaping
future large surveys. Commonly, a constant [NII] flux
contamination fraction of 29% is assumed for such grism
surveys according to the average value measured in the local
universe for galaxies with Hoe EW less than 200 A (Colbert
et al. 2013; Mehta et al. 2015). However, such an assumption
can introduce luminosity-dependent biases because of the
dependence of the [NII]/Ha ratio on several galaxy para-
meters, including the redshift and stellar mass (see also
discussion in Pozzetti et al. 2016).

The dark energy figure of merit of both Euclid and WFIRST
is very sensitive to the number density of Ha-emitting galaxies.
Due to the sharp exponential falloff at the bright end of the Ha
LF that will be probed by these surveys, an uncertainty of a
factor of 3 in the [N1I]/Ha flux ratio—for example, due to
blending—could translate into an uncertainty of a factor of up
to 10 in the number counts of bright Ho-emitting galaxies in
the worst case. Furthermore, similar to the grism surveys, most

5 We assume [N Igs4g = %[N ]A6584 (Acker et al. 1989), and therefore
[N ]AN6548,6584/Ha = %[N 1] /Ho.
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of the Ha lines detected by FEuclid and some detected by
WFIRST will be blended with [N 1], degrading the accuracy of
the measured Ha LF. In addition, incorrect (or no) deblending
of these two lines can result in a systematic offset of the Ha
line centroid of up to 300kms~' (depending on the actual
[N 11]/He ratio) and therefore directly affect the accuracy of
redshift measurements (Section 4.3).

A significant variation (by factors of 3-5) in the [N 1] /Ha ratio
is expected from the large parameter space spanned by galaxies on
the Baldwin, Phillips & Terlevich (BPT; Baldwin et al. 1981)
diagram, which has [N1I]/Ho as the abscissa. This variation is
known to be linked to galaxy properties such as metallicity,
SFR, and nitrogren-to-oxygen (N/O) ratio, and, due to changing
galaxy demographics, the population-averaged [N 1] /Ho ratio is
expected to vary as a function of redshift (e.g., Kewley et al.
2013; Masters et al. 2014; Steidel et al. 2014; Shapley et al. 2015;
Masters et al. 2016; Kashino et al. 2017; Strom et al. 2017).
Simulations may be used to predict the [NII]/Ha ratio as a
function of galaxy parameter (e.g., Hirschmann et al. 2017);
however, large uncertainties can arise due to different ingredients
and assumptions. Other studies use the Hae EW in local galaxy
samples as a prior for the [N 1I]/Ha ratio (see, e.g., Villar et al.
2008; Sobral et al. 2009; Ly et al. 2011; Lee et al. 2012; Sobral
et al. 2013).

Here we outline an approach to constrain the expected
[N 11]/He ratios for upcoming surveys using empirical trends
in the BPT diagram. Our approach is motivated by the
correlations in this diagram illustrated by Masters et al. (2016)
and Faisst (2016; see also Brinchmann et al. 2008). Masters
et al. (2016) showed the strong correlation of both stellar mass
and SFR density with position on the BPT diagram. Galaxies
form a tight locus in the BPT diagram at z ~ 0; however, the
position of this locus is known to evolve with redshift (Erb
et al. 2006; Masters et al. 2014; Steidel et al. 2014; Shapley
et al. 2015), which is driven by the changing average sSFR
with cosmic time (Daddi et al. 2007; Elbaz et al. 2007; Noeske
et al. 2007; Lilly et al. 2013), metallicity (Ly et al. 2016a),
ionization parameter (e.g., Nakajima & Ouchi 2014), and
electron density of the galaxies.

Here we illustrate that stellar mass and redshift together put
strong constraints on the [N 1I]/Ha ratio. We parameterize the
evolution in the [N II]/Ha—mass relation with redshift, which
allows us to accurately predict the [N II]/Ha ratio for galaxies
with known stellar mass and redshift. The model we present
can be used to

1. accurately deblend [N1I] and Ha in low-resolution
spectroscopic surveys and narrow-band photometric
observations and

2. improve the fidelity of the forecasts for the number
counts of Ha emitters that will be detected by Euclid and
WFIRST.

First, we outline the idea and motivation of our approach in
Section 2. In Section 3, we describe our empirical model that
parameterizes the [N II]/Ha ratio as a function of stellar mass
and redshift. The observational data that is feeding our model is
presented in Section 3.1. In the following sections, we derive
our model, and we present the final parameterization in
Section 3.4. In Section 4, we study in detail the implications
of our model on (i) the data interpretation of current surveys
(Section 4.1), (ii) the [N1I] contamination for Euclid and
WFIRST (Section 4.2), (iii) the redshift measurement from
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blended Ha and [N 11] lines (Section 4.3), and (iv) the number
count predictions for future surveys based on current Ho LF
determinations (Section 4.4).

Throughout this paper, we assume a flat cosmology with
Qr0=0.7, ©,,0=0.3, and h=0.7. Furthermore, all stellar
masses and SFRs are scaled to a Chabrier (2003) initial mass
function (IMF), and all magnitudes are quoted in AB
(Oke 1974).

2. Background and Motivation

We model the [N 1I]/He ratio as a function of redshift and
stellar mass, two key observational quantities. While other
methods to constrain [NII] contamination using optical
emission lines could potentially be more accurate (e.g.,
involving [O II] and [O11]; de los Reyes et al. 2015), these
cannot be applied to, e.g., narrow-band observations (lacking
spectroscopic follow-up) and the large samples of future large-
area surveys, such as those with WFIRST or Euclid, due to their
relatively low spectroscopic line sensitivity. However, at
WFIRST and Euclid depths,6 stellar masses will be accurately
determined down to at least log(M /M) = 9.0-9.5 by cover-
ing the 4000 A break up to z=2 with Y-, J-, and H-band
imaging (Laureijs et al. 2011; Gehrels et al. 2015). This
justifies our approach of using redshift and stellar mass as the
main quantities to derive the [N 11]/Ha ratio. Moreover, stellar
mass and redshift are well constrained in the semi-analytical
models that are often used to estimate population statistics for
Ha emitters (e.g., Orsi et al. 2010; Merson et al. 2018). The
evolution of the [N II]/H ratio is empirically constrained both
by trends seen in the local Sloan Digital Sky Survey (SDSS)
sample and by measured [N IT]/Ha-stellar mass relations out to
z ~ 2 in the literature. Since the [N 1I]/He ratio is a gas-phase
metallicity indicator (e.g., Pettini & Pagel 2004), the [N I1] /Ha—
mass relation is effectively the galaxy mass—metallicity (MZ)
relation, which is known to evolve with redshift (e.g., Savaglio
et al. 2005; Erb et al. 2006; Maiolino et al. 2008; Lilly
et al. 2013; Maier et al. 2015; Salim et al. 2015).

Physical galaxy properties, such as stellar mass, sSFR, and
relative abundance ratios, are strongly correlated with nebular
emission-line ratios. This is shown in Figure 1, a three-
dimensional version of the BPT diagram connecting the line
ratios [N 1I]/Hc and [O 1] /HG with the more easily accessible
observable stellar mass (M) and sSFR (color-coded). Figure 2
shows projections of the three-dimensional figure to better
visualize the dependencies with stellar mass (top) and sSFR
(bottom). The fitted locus of local galaxies (Kewley &
Ellison 2008) is indicated with a blue line.

Trends in the local SDSS data with SFR and stellar mass
reflect changes seen in the galaxy population at high redshift.
The BPT locus systematically shifts with redshift, possibly
connected to the overall increase in the global SFR of galaxies.
The measured BPT loci of galaxies at z ~ 1.6 (Kashino
et al. 2017) and z ~ 2.3 (Steidel et al. 2014) are indicated in the
top and bottom panels of Figure 2, illustrating the pronounced
shift in the BPT locus. Indeed, the position on the BPT diagram
is very effective to select “high-redshift analogs,” which are a
rare subsample of local galaxies that resemble high-redshift
galaxies in photometric and spectroscopic properties (such as
high sSFR or Ha EW; e.g., Cardamone et al. 2009; Hu

®  Euclid will obtain Y-, J-, and H-band imaging down to 24 AB for a 5o point
source, and WFIRST will reach ~26.5 AB (e.g., Gehrels et al. 2015).
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Figure 1. Dependences between [N 11]/He, [O 111] /HS, stellar mass, and sSSFR
(indicated in color) based on the sample of local galaxies in SDSS. The data is
median-binned for visual purposes. An interactive three-dimensional version of
this plot built with plotly is available online (plotly: https://plotly/; a
version is also available on the author’s website: http://www.astro.caltech.
edu/afaisst/3dplot/plotly_3dplotl.html). The data used to create this figure are
available.

et al. 2009; Stanway et al. 2014; Ly et al. 2015; Erb et al. 2016;
Faisst 2016; Greis et al. 2016; Ly et al. 2016b).

The locus on the BPT diagram of (roughly) constant sSFR is
similar to the locus of the main sequence on the stellar mass—
versus—SFR plane. At different redshifts, galaxies populate
different distributions of sSFR (e.g., compilations by Lilly
et al. 2013; Speagle et al. 2014) and stellar mass ranges, which
let the slope and normalization of the main sequence change
across cosmic time. Similarly, galaxies on a “BPT main
sequence” run through a range in [N1I]/He, [O1II]/HQ, and
stellar masses (see top panel of Figure 2) at an sSFR
distribution most likely for their redshift. Masters et al.
(2016) identified stellar mass and its link to the N/O abundance
ratio as the main driver for these dependencies, as these
quantities strongly vary approximately perpendicular to lines of
constant sSFR, i.e., the BPT main sequence. Once the BPT
main sequence is identified, the [N 1I]/He (and [O 111] /HS) can
therefore be uniquely determined from the stellar mass of a
galaxy.

The steps for creating our model are therefore as follows:

1. parameterize the BPT main sequence as a function of
redshift as O3(N2, z);

2. parameterize the mass dependence on the BPT diagram,
i.e., M(O3, N2); and

3. parameterize the [NII]/Ha ratio as a function of stellar
mass and redshift, i.e., N2(M, z), by reversing M(N2, z).

Faisst et al.
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Figure 2. Slices through Figure 1 showing the dependence in stellar mass (top)
and sSFR (bottom) in the local BPT diagram (fit indicated by blue line). High-
redshift galaxies occupy subregions of the local BPT diagram at higher sSFR
(perpendicular to the local BPT locus), as shown by the measured BPT main-
sequence loci at z ~ 1.6 (extrapolated to log([N 11]/Ha) = —1.6; Kashino
et al. 2017) and z ~ 2.3 (Steidel et al. 2014; Strom et al. 2017). Stellar mass
runs nearly perpendicular to the loci, indicating a strong mass dependence. This
allows a unique description of emission-line ratios as a function of redshift and
stellar mass, which is the cornerstone of our model described in the text.

Here and in the following, we adopt the definitions N2 =
log(IN1]/Hey) and O3 = log([O11]/HP). Note that a para-
meterization of N2(M, z) can also be derived by directly
reversing the observed relation between stellar mass and
[N ]/Ha (which is proportional to the stellar mass—gas-phase
metallicity relation). It leads indeed to similar results, however,
with a larger uncertainty and ambiguity caused by the
[OmI]/HG dependence of the [NI]/Ha versus stellar mass
relation (see Figure 1). With our approach of parameterizing
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the entire mass dependence of the BPT diagram, we take this
secondary dependence into account, which results in a more
accurate and comprehensive model. Moreover, this would
also allow us to predict the [O11]/HQ ratios in addition to
[N 1] /He for a given stellar mass and redshift.

3. Empirical Model for the Evolution of Line Ratios
3.1. Local and High-redshift Data

Our model is based on the data of 191,409 local galaxies
selected from the SDSS (York et al. 2000) using the web-based
DR 12 (Alam et al. 2015) query tool,” combined with the
observed BPT locus evolution at 0 < z < 2.5 (Masters et al.
2014; Steidel et al. 2014; Shapley et al. 2015; Kashino
et al. 2017).

The stellar masses and emission-line measurements in the
SDSS catalog are taken from the Galspec products provided in
the MPA-JHU value-added catalog based on the methods of
Kauffmann et al. (2003), Brinchmann et al. (2004), and
Tremonti et al. (2004). Specifically, the stellar masses are
derived from fits to the SDSS ugriz total galaxy photometry
assuming an exponentially declining star formation history and
bursts. In addition, the photometry is corrected for the small
contribution of nebular emission using the spectra. The model
grids for the fitting are described in Kauffmann et al. (2003),
and a Kroupa (2001) IMF is assumed, which has been
converted to a Chabrier (2003) IMF. The local galaxies are
selected to have a signal-to-noise ratio (S/N) > 5 in the Ho
emission line. We note that different S/N thresholds do not
have an impact on the subsequent analysis and result. Also, we
do not impose an S/N limit on other optical emission lines in
order to prevent our sample from any selection bias (e.g., Salim
et al. 2014). Galaxies with a significant contribution of an
active galactic nucleus (AGN), as suggested by the line ratios
on the BPT diagram, are removed (about 15%; Kewley
et al. 2001; Kauffmann et al. 2003; Brinchmann et al. 2004).
The latter introduces an artificial upper boundary on galaxies
on the BPT diagram at high [N 1I]/Ha and [O 111]/H/ values,
but the underlying trends in the distribution are not affected. In
addition, we restrict our SDSS sample to z > 0.05 in order to
minimize the effect of the finite fiber aperture (3" for the SDSS
spectra), such that the 3” fiber covers at least the central
~1.5 kpc of the galaxy. The SQL commands for this selection
are provided in Appendix A.

In order to test the redshift dependence of our model, we
make use of measurements of [N II]/He, [O 1] /HS, and stellar
mass at higher redshifts as presented in the literature. These
include galaxies at z ~ 1.6 (208 galaxies; Kashino et al. 2017)
and z ~ 2.3 (360 galaxies; Erb et al. 2006; Genzel et al. 2014;
Steidel et al. 2014; Shapley et al. 2015; Strom et al. 2017).8
Similar to the SDSS samples, the stellar masses for these
samples have been derived from a fit to the total galaxy
photometry assuming constant and exponentially declining star
formation histories. The photometry includes Spitzer imaging
at >2 pm, which covers a similar rest-frame wavelength range
as for the local galaxies. In the case of Kashino et al., stellar
masses have been converted from a Salpeter (1955) to a
Chabrier IMF.

" http: / /skyserver.sdss.org/dr12 /en /tools /search /sql.aspx

8 Split into 155 galaxies from Steidel et al. (2014), 130 galaxies from Shapley
et al. (2015), and 75 galaxies from Genzel et al. (2014).
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3.2. Parameterization of the BPT
Main-sequence Locus: O3(N2, z)

As outlined in Section 2 and indicated in Figure 2, galaxies
at a given redshift occupy a defined locus on the BPT diagram
(the BPT main sequence), similar to the M-SFR main
sequence. This locus shifts toward higher [O 111]/HQ ratios at
fixed [NII]/Ha (or, alternatively, higher [NII]/Ha at fixed
[O 1] /HQ) at high redshifts, as shown by many spectroscopic
studies (Erb et al. 2006; Masters et al. 2014; Steidel et al. 2014;
Shapley et al. 2015; Kashino et al. 2017; Strom et al. 2017).
This shift is attributed by Masters et al. (2016) to an increasing
ionization parameter and lower metallicity at a fixed mass (and
thus N/O ratio, which is mostly set by stellar mass, as shown
by the same study) of the average high-redshift galaxy. The
evolution is also captured in compilations of the stellar mass—
versus—metallicity relation, the latter commonly estimated from
these emission-line ratios.

In the following, we use the spectroscopic measurements at
z ~ 1.6 (Kashino et al. 2017)9 and z ~ 2.3 (Steidel et al. 2014,
Strom et al. 2017) to parameterize the BPT main sequence as a
function of redshift (similar to Kewley et al. 2013). We find
that a simple shift in [N1I]/Ha starting from the local locus
(Kewley & Ellison 2008) is a good fit to the data (see also
Figure 2). We parameterize this shift proportional to cosmic
time to obtain the following relation for the redshift depend-
ence of the BPT main sequence by a least-squares fit:

0.61
N2+ 68—~ + z)?

with 6 =0.138 & 0.005 and = 0.042 = 0.005. Note that this
parameterization might not be valid beyond z ~ 2.7, as it
cannot be tested with the current data at higher redshifts.
Finally, we note that the z ~ 2.3 sample by Steidel et al. (2014)
is the most comprehensive, as it includes published stellar
masses, [N1I]/Ha, and [O1I]/HQ for all individual galaxies,
which is crucial for our analysis. The BPT main sequence has,
however, been determined by other studies as well. In
particular, we note here the sample at z ~ 2.3 by Shapley
et al. (2015) based on the MOSFIRE Deep Evolution Field
(MOSDEEF) survey, in which the BPT main sequence is offset
by ~—0.2 dex from the Steidel locus. Using their relation, we
obtain for the redshift evolution (Equation (1)) parameters
6=0.110 + 0.005 and v=0.032 £ 0.005. This defines an
uncertainty due to sample biases and measurement differences
of 0.028 and 0.010 in 4 and ~, respectively. In Section 3.5, we
discuss in detail the impact of sample biases on the
parameterization of the BPT main sequence and our final
model.

O3(N2, z) = + 1.08, 1)

3.3. Parameterization of M(O3, N2)

Second, we parameterize the stellar mass distribution on a
given BPT main-sequence locus. As argued in Masters et al.
(2016) and Section 2, galaxies at high redshifts occupy a

®  Note that the data from this study only cover the range —1.2 < log(IN 11]/Hc)

< —0.1, in contrast to the other samples used here. We therefore extrapolate
the relation between [OII]/HS and [N I]/Ha given by that study to
reach log([N 11]/Ha) = —1.6. This extrapolation is well defined, as the BPT
relation narrows toward high [O1]/HB3 and low [N 1]/Ha. Furthermore,
uncertainties in this extrapolation would only affect galaxies with stellar masses
log(M /M) < 8.5, which is below what is considered in the following model.


http://skyserver.sdss.org/dr12/en/tools/search/sql.aspx

THE ASTROPHYSICAL JOURNAL, 855:132 (15pp), 2018 March 10

Faisst et al.

0.7 - 4 L

0.5

log ([OIII] /H)

&

3

T
log(M/M,)
log(M/M,)

Model Data — Model

| Residual in log(M/My)

-16 -14 -12 -10 -08 -06 -04 -1.6 -14 -12

log ([NTI]/Ho)

‘ -1.0 ‘ -08 -06 -04 -1.6
log (INII]/Ho)

-1.2 ‘ -1.0 -0.8 -0.6 —0.4‘
log ([NII]/Hoy)

|
—_
-~

Figure 3. Results of the multidimensional fit of M(O3, N2) (Equation (2)) to the local galaxy sample from SDSS (left: data; middle: best-fit model; right: residual). For
the most part, our model is able to recover stellar masses to better than 0.1 dex. The best-fit parameters are given in Section 3.3.

distinct region of the local BPT diagram, namely, at higher
[O11]/Hp for fixed [N 11]/Ha. Importantly, they can still be
described by the relations found in the SDSS data, although
these data become sparse at the location of the high-redshift
galaxies, and therefore an extrapolation becomes necessary.
In the following, we therefore parameterize the relation
M(0O3, N2) observed in the local SDSS data to derive the stellar
mass distribution by a cut through this plane along a given BPT
locus. We find that the following functional form best describes
the parabolic-shaped (in O3) stellar mass isochrones that are
displaced in N2:

M(O3,N2) =A+B(N2 + a) + C (03 + 5?2,  (2)

where A, B, C, «, and 3 are determined by a Levenberg—
Marquardt algorithm, as part of the R/minpack.lm
package'® (Elzhov et al. 2016). The fitting to the SDSS
data is performed on medians derived from a binning in
[N11]/Ha and [O1]/HQ to increase the S/N in the data
(e.g., top panel in Figure 2). We set the weights for the fitting
proportional to the number of galaxies per bin (chosen to be
15 or more). We do not fit galaxies below log([O 111]/H3) =
—0.6 that correspond to the most massive galaxies in SDSS
and might include post-starburst and almost-quiescent
galaxies that could bias our fit. Figure 3 shows the data
(left), together with the best-fit model (middle) and residual
(right). The best-fit parameters for Equation (2) are A=
7.689 + 0.450, B=3.696 £ 0.005, C=1.960 £+ 0.015,
a=1.126 + 0.060, and (=0.273 + 0.005. Our best fit
describes the stellar masses to better than 0.1 dex for most
values of [OI]/HG and [NII]/Ha. It underpredicts the
stellar mass for galaxies on the lower crest of the local BPT
main sequence by up to 0.3 dex. This is mostly an effect of
the weighting, which is chosen to minimize the residual at
the local BPT main sequence and on the upper crest of the
BPT locus, where galaxies with higher sSFR (or redshift) are
located.

In Figure 4, we show the BPT main-sequence loci at
z~ 0, 1.6, and 2.3 from Equation (1) with indicated stellar

10 https: / /cran.r-project.org /web /packages /minpack.lm/index.html
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Figure 4. Stellar mass tracks on the BPT diagram for fixed BPT loci at
redshifts of z ~ 0 (Kewley & Ellison 2008), z ~ 1.6 (Kashino et al. 2017), and
z ~ 2.3 (Steidel et al. 2014). These three data sets are used to derive the shift of
the BPT locus as a function of redshift (solid lines; Equation (1)). The observed
loci at z ~ 0, 1.6, and 2.3 are shown as dashed lines for comparison. The stellar
mass tracks, M(N2, z), are parameterized in the final Equation (3), with stellar
masses given as log(M/M).

masses from Equation (2). Note that at a fixed stellar mass,
the [NI]/Ha ratio decreases and the [OII]/HS ratio
increases with redshift, which is essentially the stellar
mass—versus—metallicity relation changing across cosmic
time as quoted by many studies in the literature
(e.g., Maiolino et al. 2008; Lilly et al. 2013)."" In this
sense, the above equations also give an empirical parameter-
ization of the evolution of the mass—metallicity relation with
redshift.

1 Recall that the gas-phase metallicity, 12 + log(O/H), is inversely
proportional to [OI]/HS and proportional to [N1]/Ha (e.g., Maiolino
et al. 2008).
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Table 1
Lookup Table for [N 1] /([N I]+Ha), Flux Ratios (Including Both [N 11] Emission Lines) Given in Linear Scale
from 8.5 < log(M /M) < 11.1 and 0 < z < 2.6 Derived by Equation (3)*

log(M/M.) Redshift

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 22 24 2.6
8.5 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04
8.7 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05
8.9 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.06
9.1 0.12 0.12 0.11 0.11 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07
9.3 0.16 0.15 0.14 0.13 0.13 0.12 0.11 0.11 0.10 0.10 0.09 0.09 0.08 0.08
9.5 0.21 0.20 0.19 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.11 0.10 0.10 0.09
9.7 0.26 0.25 0.24 0.23 0.21 0.19 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.11
9.9 0.28 0.28 0.28 0.28 0.26 0.24 0.22 0.20 0.18 0.16 0.15 0.14 0.13 0.13
10.1 0.30 0.30 0.31 0.31 0.31 0.30 0.28 0.25 0.22 0.20 0.18 0.17 0.16 0.15
10.3 0.31 0.32 0.32 0.33 0.33 0.34 0.33 0.32 0.29 0.25 0.22 0.20 0.19 0.17
10.5 0.32 0.33 0.34 0.34 0.35 0.36 0.36 0.36 0.35 0.32 0.28 0.25 0.22 0.21
10.7 0.33 0.34 0.35 0.36 0.36 0.37 0.38 0.39 0.39 0.38 0.35 0.31 0.27 0.24
10.9 0.34 0.35 0.35 0.36 0.37 0.39 0.40 041 0.42 0.42 0.42 0.38 0.33 0.29
11.1 0.34 0.35 0.36 0.37 0.38 0.40 0.41 0.42 0.44 0.45 0.46 0.45 0.41 0.36

Note. These values can be used for the conversion of the observed ([N II]4+Ha),o flux to the intrinsic Ho flux.
# Note that Equation (3) is basically a parameterization of the stellar mass—versus—gas-phase metallicity relation as a function of redshift.

3.4. Final N2(M, z) Parameterization

The combination of Equations (1) and (2) allows us to
parameterize the [N 1I]/Ha ratio as a function of stellar mass
and redshift,

M(N2, 7) =3.696 £ + 3236 ¢! + 0.729 £ 2
+ 14.928 4+ 0.156(1 + 2)2,

with

E(N2, 7) = N2 + 0.138 — 0.042(1 + 7). 3)

This equation can be reversed numerically to obtain N2(M, z).
For visual clarity, we do not reverse this equation algebraically,
but we provide Table 1 for a convenient lookup of N2(M, z).

In the following, we test our model on data at z ~ 0, 1.6, and
2.3. Figure 5 shows the relation between stellar mass and
[N 1] /He at the three different redshifts. For z ~ 0 and 2.3, the
symbols show the medians in stellar mass and [N II]/Ha with
1o scatter from SDSS and Steidel et al. (2014). For z ~ 1.6, we
use the median stacks in stellar mass provided by Kashino et al.
(2017); thus, the errors represent the error on the median and
not the actual scatter. We also show the medians at z ~ 1 and
2.3 from Genzel et al. (2014) covering the massive end of the
galaxy mass function. Our parameterization at z =0, 1.6, and
2.3 using Equation (3) is shown with lines. The hatched regions
show the range of our model values for the redshift distribution
of the observed samples. Our model predicts the [N11]/He
ratio in general within ~0.1 dex of the observed data, which is
well within the scatter of the data at all redshifts 0 <z <2.3
and stellar masses 9.5 < log(M /M) < 11.0. This is remark-
able, since the relation between [N1I]/Ho and stellar mass is
solely based on the local SDSS data without information from
higher redshifts. However, we note that our parameterization
systematically underpredicts the [N 1] /He ratios at very low
masses (log(M /M) < 9.5) and low redshifts (z ~ 0) by up to
0.2 dex. Furthermore, we notice that our model overpredicts the
[N 1] /He ratios of the most massive galaxies (log(M /M) ~
11.0) in the Steidel et al. (2014) sample systematically by
~0.1 dex. The former is likely due to the generally larger
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Figure 5. Relation between stellar mass and [N IT]/Ho ratio from observed
data at z ~ 0 (blue squares), 1.6 (black points), and 2.3 (red diamonds) from
SDSS, Kashino et al. (2017), and Steidel et al. (2014), respectively. We also
show data from Genzel et al. (2014) at z ~ 1 and 2.3 with open symbols for
reference (see Section 3.5 for discussion). Our model predictions (Equation (3))
at the median redshift of the samples are shown as lines, and the hatched
regions show the range in model [N 1] /Ha values for the redshift distribution
of the observations. Our parameterization reproduces the data within ~0.1 dex,
well within its scatter. The dashed red line indicates the z ~ 2.3 relation from
MOSDEEF (Shapley et al. 2015) with slightly larger [N 1] /He ratios at a given
mass compared to the Steidel et al. (2014) relation at the same redshift. This
difference can be explained by different selections of the two samples (see
Section 3.5).

residuals in the parameterization of M(O3, N2) for local low-
mass galaxies (right panel of Figure 3). The latter can be
explained twofold. First, Equation (2) is an extrapolation at
log(M /M) 2 11.0, as there are very few star-forming
galaxies that are massive and have low metallicity in the local
SDSS sample. Specifically, there are only 191 star-forming
galaxies at log(M /M) > 10.8 with [O 11T]/HB > 1 (the region
on the BPT diagram that is occupied by the high-redshift
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Figure 6. Quantification of scatter in the predicted [N I]/He ratios based on
the Steidel et al. (2014; circles), Shapley et al. (2015; triangles), and Genzel
et al. (2014; squares) samples at z ~ 2.3. The individual measurements are
shown in gray, and the medians with 1o scatter from the data and model are
shown as large filled symbols in green, purple, and orange, respectively. The
1-to-1 relation is indicated by the dotted line. For our model predictions of
[N 1] /Ha, we expect a scatter of ~0.22 dex (see inset), which we find to be
constant with stellar mass.

samples), which represents less than 0.1% of the total sample.
At log(M /M) > 11, this amount reduces to 73 galaxies.
Second, the statistics of massive high-redshift galaxies in
current spectroscopic samples is poor and dominated by sample
selection and cosmic variance. Especially, we note that our
model almost perfectly predicts the [N 1I]/Ha flux ratios of the
sample by Genzel et al. (2014), who specifically targeted
massive galaxies at z ~ 2 (confirmed AGNs removed).

3.5. Scatter in [N II/Ho Line Ratios

Our model provides median [N 1I]/He ratios for a given
redshift and stellar mass. This median is mainly defined by the
BPT main-sequence locus that we parameterized in Section 3.2.
Deviations from this locus will lead to a physical scatter around
the median [N II]/Ha ratios provided by our model. Here we
study the origin and amplitude of this scatter in more detail, as
well as the impact of measurement uncertainties.

Figure 6 compares the true [NII]/Ha values to the ones
obtained from our model at z ~ 2.3 based on the Steidel et al.
(2014), Genzel et al. (2014), and Shapley et al. (2015)"
samples, for which these measurements ([N II]/Ho and stellar
mass) are published for individual galaxies. Apart from
the good agreement, on average, between model and true
[N 1] /He values, we measure a (log-symmetric) 1o scatter of
0.22 dex (inset in Figure 6), which we find to be constant with
[N 1] /He ratio (hence stellar mass). This scatter is identical for
the individual samples at z ~ 2.3. The same computation for
7z~ 1.6 and local galaxies reveals a scatter of 0.21 and
0.13 dex, respectively (Appendix B). This scatter is introduced

12 Stellar masses and [N II]/Ha measurements are taken from Sanders et al.
(2017). No redshifts are published for individual galaxies; therefore, we assume
z = 2.3 for all galaxies.
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by differences in the physical properties of the galaxies, as well
as measurement uncertainties, as discussed below.

3.5.1. Physical Scatter Due to sSFR

The top panel in Figure 2 shows that mainly stellar mass
determines the position of galaxies on the BPT diagram for a
given BPT main sequence, as parameterized in Section 3.2 as a
function of redshift. On the other hand (as shown in the bottom
panel of Figure 2), the sSFR varies mostly perpendicular to the
BPT main-sequence loci. We therefore argue that sSFR acts as
a secondary parameter defining the location of galaxies on the
BPT diagram at a fixed stellar mass and redshift. By fixing a
BPT main sequence for our model, we indirectly assume a
median sSFR given by the sample that is used to anchor our
model (in our case, the average sSFR of the Steidel et al. 2014
sample, which represents well the stellar mass—versus—SFR
main sequence at z ~ 2.3). Because of the remarkably constant
~0.3 dex scatter of the stellar mass—versus—SFR relation (e.g.,
Daddi et al. 2007; Noeske et al. 2007; Schreiber et al. 2015;
Tomczak et al. 2016), galaxies at a fixed stellar mass and
redshift show a range in sSFR, hence inducing a scatter
perpendicular to the average BPT main-sequence locus. This
(physical) scatter directly translates into the scatter seen in our
comparison of true and model [N 11]/He ratios.

The effect of selection biases on the BPT main sequence can
be seen by comparing the results of the MOSDEF (Shapley
et al. 2015) and Steidel et al. (2014) studies. The BPT main-
sequence locus at z ~ 2.3 derived from the MOSDEF survey is
offset by up to ~—0.2 dex in [N 1I]/Ha from the Steidel et al.
(2014) locus, although both samples have almost identical
distribution in stellar mass and redshift. Using the MOSDEF
locus for our model would therefore result in up to 0.1-0.2 dex
larger [N 1] /Ha flux ratios at a fixed stellar mass (dashed line
in Figure 5). The physical reason for the seeming discrepancy
is likely a slight excess of high-sSFR galaxies in the Steidel
et al. (2014) sample compared to the MOSDEF sample (as also
pointed out by Shapley et al. 2015), in agreement with our
identification of sSFR as a secondary parameter. This excess in
sSFR could be caused by the UV color selection in the case of
the Steidel et al. (2014) sample, which favors higher star
formation compared to a continuum- or stellar-mass-selected
sample as in the case of MOSDEF.

An “emission-line complete” sample would allow us to
derive the correct average BPT main-sequence locus at a given
redshift and hence anchor our model at high redshifts; however,
selecting such a sample is almost impossible at these redshifts,
since there will always be certain selection biases. At z ~ 2.3,
the likely average locus would be somewhere between the
MOSDEF and Steidel et al. (2014) derivations and therefore
not far from our model predictions (see Figure 5).

3.5.2. Scatter Due to Measurement Uncertainties

In addition to differences in stellar mass and sSFR,
measurement uncertainties can contribute to the scatter on the
BPT diagram for a given sample at a given redshift. This is
becoming increasingly more valid at higher redshift, where the
measurements become lower S/N. These concerns can dilute a
clear BPT main-sequence locus.

Steidel et al. (2014) quoted an intrinsic scatter (i.e., corrected
for measurement uncertainties) of 0.12 dex on the BPT main-
sequence locus (in [N 1]/Ha and [O11]/HQ) at z ~ 2.3. This
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is consistent with the measurements by Shapley et al. (2015) at
the same redshift, by Kashino et al. (2017) at z ~ 1.6, and for
local galaxy samples (~0.11 dex; Kewley & Ellison 2008).

We measure an observed scatter of 0.22, 0.21, and 0.13 dex
between true and model [N 11] /He ratios at z ~ 2.3, 1.6, and 0,
respectively (see also Appendix B). Comparing this to the
intrinsic scatter in the BPT main-sequence loci given above
suggests that roughly half of the uncertainties in the model-
derived [NII]/He ratios at z ~ 1.6 and 2.3 are due to the
combined uncertainties in the individual measurements and our
model.

3.6. Large N li[/Ho Ratios in Massive High-z Galaxies

Our model predicts larger [NII]J/Ha ratios in massive
(log(M /M) ~ 11.0) high-redshift galaxies compared to
similar massive galaxies at z ~ O (Figure 5). This is also
suggested by the shifted high-redshift BPT loci to higher
[Ou1]/HB and [N1]/Ha ratios (Figure 4). This could be
caused by an increasing amount of galaxies with broad-line
emission at such high stellar masses. In fact, Genzel et al.
(2014) studied the statistics of broad Ha and [N II] emission in
samples of star-forming galaxies at 1 < z < 3 and suggested
broad nuclear components due to a combination of shocks and
photoionization, as well as AGNs, in more than half of these
galaxies at log(M/M;) ~ 11.0. Specifically, they suggested
that the contribution of such galaxies to high-mass samples is at
least as large as AGN samples selected with X-ray, optical,
infrared, or radio indicators. The median [N II]/Ha ratio per
stellar mass bin from the Genzel et al. (2014) sample is higher
than that of the Steidel et al. (2014) sample and in good
agreement with our model (Figure 5). Along the same lines,
Kewley et al. (2013) motivated a shift of the separation line
between normal star-forming galaxies and AGNs to higher
[NI]/Ha and [O1I]/HB ratios by means of increased
photoionization at higher redshifts.

4. Implications

In the previous section, we derived an empirical parameter-
ization to predict the [N1I]/Ha flux ratios for galaxies up to
z~ 3 and log(M/M;) = 11.0. Here we study in detail the
implications of our model on

1. data interpretation of current low spectral resolution
surveys (Section 4.1),

2. the [N1I] contamination of future flux-limited surveys
(Section 4.2),

3. spectroscopic redshift measurements from the blended
Ha and [N 1] lines (Section 4.3), and

4. expected Ha emitter number counts of future surveys
derived from current Ha LFs (Section 4.4).

For surveys with low spectral resolution, Ha is commonly
blended with both [N1I] emission lines (at rest frame 6548
and 6584 A). Hence, a more useful quantity to quote is
the total [N 1I] flux contamination fraction, which we define
as ([NI]AN6548,6584)/(IN II]AN6548,6584+Ha), in short
[N 11]/(IN 1]+ Ha),. In the following, we assume for the flux
of the second [N1I] line, blueward of Ha, [NIIJA6548 =
%[N MA6584 (Acker et al. 1989). In Table 1, we provide
[N 1] /([N 1]+ He),o, flux ratios in linear scale as a function of
stellar mass and redshift derived from our Equation (3). This
table can be used as a convenient tool to convert observed
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Figure 7. Total [N 1I] flux contamination fraction as a function of redshift for
four different stellar masses from our model (lines). Medians of the
observations are shown with large symbols of the same colors, and individual
measurements are shown with small symbols. The WISPS assumption (Colbert
et al. 2013) of a constant 29% [N II] contamination is shown as a dashed line
for reference. Note that this assumption is only justified for log(M /M) ~ 10.0
galaxies at z < 1 and log(M /M) ~ 10.5 galaxies at z ~ 2 and otherwise
over- or underestimates the true contamination by a significant factor.

(IN I4+-Ha), fluxes and luminosities (including both [N 11])
into intrinsic Ha fluxes and luminosities.

4.1. Data Interpretation of Current Surveys
at Low Spectral Resolution

In current grism surveys with low spectral resolution where
[N 1I] and Hev are not resolved, such as WISPS, a constant total
[N 11] flux contamination fraction is commonly used to obtain
intrinsic Ha values from which SFRs or Ha LFs are measured
(Colbert et al. 2013; Mehta et al. 2015). The value generally
applied is 0.29 (i.e., 29%, or Fu, =2.5 X Fixmu, that follows
from [NII]/([N O]4+Ha) = 0.29), according to the average
population of galaxies at z ~ 0 with an Hae EW of less than
200 A. However, such an assumption can be misleading, since
the true [N 1] /Ho flux ratio can vary by an order of magnitude
across samples depending on redshift and stellar mass
(Figure 5). Other studies apply a variable [N 1I] contamination
correction using the relation between [NII]/Ha and the Ho
EW (xsSFR), resulting in a slightly lower median [N II]
contamination of ~24% (e.g., Villar et al. 2008; Sobral et al.
2009; Lee et al. 2012; Sobral et al. 2012, 2013). While this
approach is more accurate, it could still miss the dependency
with stellar mass.

To study the accuracy of a constant correction, we show in
Figure 7 the total [N II] flux contamination fraction on linear
scaling as a function of redshift at four different stellar masses.
Our model is shown as lines, with the hatched region
corresponding to the approximate redshift-dependent scatter
(see Section 3.5). Observed data at 0 < z < 2.3 binned in
redshift and stellar mass (Alog(M /M) = 0.5 around stellar
masses shown) are shown with symbols, and, for reference, a
constant total [NII] flux contamination fraction of 29% is
indicated by the horizontal dashed line. We find that the
assumption of a constant contamination of 29% is only justified
for galaxies at z < 1 and log(M /M) ~ 10.0 and at z ~ 2 and
log(M /M) ~ 10.5. Otherwise, our model shows that such an
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assumption generally overestimates the true contamination,
which can be as severe as a factor of 3 for log(M /M) ~ 9
galaxies at all redshifts. But the [N II] contamination of high-
mass (log(M/Mz) > 10.0) galaxies at z ~ 1.5-2 is also
overestimated by factors of 1.5-2.

This has important consequences for the intrinsic Ha
measurements by WISPS. Specifically, since this sample spans
a range in stellar mass of 8.5 < log(M/M;) < 10 at
0.5 < z < 1.5 (Atek et al. 2010; Henry et al. 2013), we expect
the Ha luminosities to be systematically underestimated by
20%-30% or more, on average. Furthermore, since [N 1I]/Ha
is a function of stellar mass and therefore (via the SFR) also a
function of Ho luminosity, the shape of the Ha LF is affected,
which has an impact on number counts for future surveys (see
Section 4.4).

4.2. Total [N 1] Flux Contamination Fraction Distribution for
Future Flux-limited Surveys

Future large-area surveys at low spectral resolution, such as
Euclid, will suffer from [NII] and Ha blending. A proper
deblending of these lines is important for measuring physical
quantities from He, such as SFR, galaxy kinematics, or dark
matter properties, but also for an accurate spectroscopic redshift
used for cosmology. Here we present realistic zeroth-order
predictions for the total [N II] flux contamination fraction as a
function of redshift for flux-limited surveys at 0.5 < z < 2.5.
In the following, we assume observed line flux limits of
1 x 10710 and2 x 107 '¢erg s~! cm~2, similar to expectations
for WFIRST (50 for a source of radius 073;” see also Spergel
et al. 2015) and Euclid (3.50 for a source with diameter 076;
Vavrek et al. 2016), around the observed wavelength of Ha.

From the observed redshift-dependent stellar mass functions
(Ilbert et al. 2013; Davidzon et al. 2017), we draw 10,000
galaxies, to which we assign an SFR via the observed relation
between stellar mass and SFR (main sequence of star-forming
galaxies) as parameterized by Schreiber et al. (2015), including
a scatter of 0.3 dex. We then select galaxies above an SFR
threshold derived from the line flux limits, which we converted
to limiting Ha luminosities (at given redshift) and then SFRs
using the Kennicutt (1998) description. The resulting stellar
mass distributions for the two flux limits as a function of
redshift are shown on the left (orange) and right (blue) side,
respectively, of the “Violin diagram” in panel (A) of Figure 8.
Note that the distributions extend across the sharp stellar mass
limit derived from the observed line flux limits (dashed lines)
because of the scatter of the star-forming main sequence.

Panel (B) shows the corresponding distributions of the total
[N 1I] flux contamination fraction as a function of redshift. The
expected range in [N I1]/([N I]+Ha),, is large because of the
wide distribution in the stellar masses. Furthermore, it is
important to note that the distribution is double-peaked out to
z ~ L.5. The first peak is due to the dominant number of low-
mass galaxies (with low [NII]/Ha ratios), while the second
peak arises due to the flattening of the stellar mass—versus—
[NI]/He ratio relation at large stellar masses. This can be
seen clearly in Figure 5 where the [NII]/Ha—M relation at
z=0 flattens for stellar masses above approximately
log(M/M;) ~ 10. Toward higher redshifts, the stellar mass
distribution becomes tighter and the [N II] contamination becomes
single-peaked because of the increasing luminosity limit.

13 WEFIRST Formulation Science Working Group (2017, private communication).
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Figure 8. Expected stellar mass (A) and total [N II] flux contamination fraction
(B) distributions as a function of redshift for flux-limited surveys at
1 x 107"%ergs~'em=2 (orange) and 2 x 10~ ergs~!ecm=2 (blue), similar
to expectations for WFIRST and Euclid, respectively. The medians of the
distributions (points with error bars) are slightly displaced in redshift for clarity.
Our prediction is based on the empirical stellar mass—vs.—SFR relation (see text
for details on derivation). For a survey like Euclid (0.9 < z < 1.8) or WFIRST
(1 <z < 2), we expect a large variation in the total [N II] flux contamination
fraction of 5%-40% (z = 1) and 10%—45% (z = 1.8).

For a Euclid-like survey (0.9 < z < 1.8), we expect a large
variation in the total [N II] flux contamination fraction of 10%—
40% (z=1) and 15%—45% (z=1.8). For a WFIRST-like
survey (1.0 < z < 1.9), these numbers are lower (5%—40% and
10%-45%, respectively) due to the higher line sensitivity
allowing us to probe more galaxies at lower stellar masses,
hence lower [N 11] /Ho ratios.

4.3. Spectroscopic Redshift Measurements
from Blended Ho and [N 11]

The blending of the Ha and [N 1] lines can result in biases in
the determination of spectroscopic redshifts. Here we study this
bias as a function of stellar mass and redshift via a simple
preliminary simulation based on the predictions from our
model.

We approximate each of the three emission lines by a
Gaussian and assign fluxes relative to the Ha, namely,
F(IN1]A6584) = [N1I]/HaxF(Ha) and F(INIA6548) =
%F([N ] A6584). The flux ratio [N1I]/Ha is computed from
our Equation (3), and we use vacuum wavelengths for the
emission lines (6549.86, 6564.61, and 6585.27 A for [N 1I]
A6548, Ha, and [N II] A\6584, respectively). For the full width
at half-maximum (FWHM) of the lines, we assume 250 km sfl,
as commonly measured, on average, by spectroscopic surveys
at log(M /M) = 10. Our final results do not significantly
depend on the exact values for the FWHMs, mainly because of
the somewhat low spectral resolution of Euclid.

We then convolve and bin this input spectrum to the Euclid
resolution and pixel size, assuming a spectral dispersion of
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13.4 A pixel ' and a plate scale of 0”3 pixel ' (Vavrek
et al. 2016). The spectral dispersion results in an R = A/ A\ of
490-735 for Ha at 1 < z < 2 in a 2 pixel resolution element
for a source of 0”3 diameter. In the following, we assume a
more realistic source diameter of 0”5 and a point-spread
function (PSF) FWHM of 074 (Vavrek et al. 2016), which
decreases the resolution by a factor of ~2, and bin the final
observed spectrum to a 2 pixel resolution element. Note that
Euclid’s resolution element decreases proportional to 1 +2
for increasing redshift, i.e., 13.4/(1 + 2) A pixel ™", as the
observed spectrum stretches in wavelength. This results in an
increase in resolution of 33% from z =1 to z =2 for a galaxy
of fixed apparent size. We also add noise to the output
spectrum according to the required 3.5¢ flux limit of
2 x 107" erg s~' cm™2, which we assume is the integrated
flux over the blended Ha and [N II] emission lines. In the
following, we assume a source detected at 100 in integrated
line flux. This is a good approximation for most of Euclid’s
detected sources according to predictions of the Ha LF (see
Section 4.4).

Our preliminary results indicate that Euclid will generally
not resolve Ha and [N 1I] for most of the assumed [N 1I]/Ha
values (and thus stellar masses) for a source of 0”5 and an S/N
of 10; however, an asymmetry of the blended line caused by
the [N IT] redward of Ha is identifiable. We therefore compute
the Ho centroid on the final convolved and binned spectrum by
fitting a Gaussian at 6500- 6600 A in the rest frame. This
wavelength width encompasses both [NII] and Ha and
corresponds to 7-11 Euclid pixel pairs (26.8 A pair™)
at 1 <z <2

Figure 9 shows the resulting centroid shifts in velocity and
redshift with respect to the true Ha wavelength as a function of
stellar mass at z = 1.0, 1.5, and 2.0. The hatched area combines
the errors from the noise and the finite pixel size of Euclid. The
latter is obtained by shifting the binning of the final spectrum
by up to half a resolution element. The redshift bias increases
toward higher stellar masses due to the larger [N 11]/Ha flux
ratio."* Furthermore, the bias decreases slightly with increasing
redshift at a fixed stellar mass due to the increasing resolution
with increasing redshift. While this effect is only small for a
source of S/N = 10, we would expect a much larger reduction
of the bias at higher S/N, where [N1I] and Ho will likely be
resolved at the highest redshifts. However, the amount of
detected sources at S/N > 10 and high redshift is likely small
(see Section 4.4).

In general, we find velocity shifts that are better than
the error requirement for Euclid, which is Av =300 km s !
or Az/(1 + z)= 0.1% (Vavrek et al. 2016). For a galaxy
at log(M /M) < 10, we expect negligible biases (|Av| <
50 km s~!); however, the biases increase sharply at
log(M /M) > 10 due to the increasing [NII]/Ha ratio.
For a galaxy of log(M/My) = 11, we expect significant
biases around 100-300kms~ ', or Az/(1 + z) ~ 0.04%—
0.10%. If uncorrected, such a shift will introduce a bias in
the BAO measurements in the radial direction. Specifically,
at z=1 (z=1.5), a shift of Az/(1 + 2)=0.04%-0.10%
corresponds to 1.0-2.4 Mpc (0.7-1.8 Mpc), or roughly 0.6%—
1.6% (0.5%—1.2%)
of the BAO scale at ~150 Mpc. This is significant, since the

4 The [N 1] /He flux ratio is 0.05 (0.03) and 0.40 (0.63) in linear scaling for a
galaxy with log(M /M) = 8.5 and log(M/M.) = 11.0, respectively, for
z=1(z=2).
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Figure 9. Velocity shifts and redshift biases in the determination of the Ho
wavelength centroid due to blending with [N 1] for a source size of 0”5 and
S/N = 10 on the line. Shown are simulations for a range of stellar masses at
z=1 (green), 1.5 (orange), and 2.0 (blue). The Ho centroid is measured by a
Gaussian fit to the observed (i.e., resolution-adjusted) spectrum at
6500-6600 A in the rest frame (corresponding to 7-11 Euclid pixel pairs at
1 < z < 2). The hatched area shows the uncertainty due to Euclid’s finite
spectral resolution and measurement noise. Our simple simulation suggests that
the velocity shifts are less than the error requirement for Euclid and WFIRST
(Av=300km s ' or Az/(1 4+ z) = 0.1%). The bias is increasing steeply with
stellar mass at log(M /M) 2, 10 due to an increasing [N II]/Ha ratio.

BAO peak itself is a few-percent-level signal in the galaxy
correlation function that needs to be measured at the precision of a
few percent or better. Finally, we note that the [N II] /Ha blending
may lead to additional systematic effects for BAO/RSD
measurements if metallicity evolution is correlated with density.
This will be examined further in future studies.

Our preliminary simulation is very basic, and we will use
more realistic grism simulations in the future for more detailed
investigations. Furthermore, the evolution and distribution of
the angular sizes of the galaxies should be taken into account
(the combined effect of the increasing cosmological angular
diameter distance and the decreasing physical size of the
galaxies with redshift).

Finally, we note that Ha and [N 1] emission lines will likely
be resolved for many galaxies detected by WFIRST at its
spectral resolution of R ~ 600 900 for Ha at 1 < z < 2 (with
a dispersion of 10.85 A pixel™; Spergel et al. 2015); therefore,
much smaller biases are expected.

4.4. Impact on Hoo LF and Number Count Predictions for
Euclid and WFIRST

The dark energy figure of merit for both WFIRST and Euclid
is very sensitive to the number density of Ha-emitting galaxies.

Measurements of the observed blended Ha LF of low-
resolution HST grism surveys are used to predict the observed
number counts for future large surveys, such as WFIRST or
Euclid (Colbert et al. 2013; Mehta et al. 2015). While these
number counts are accurate for the redshift, stellar mass, and
sSFR distribution of the grism surveys, any extrapolation
beyond that to match WFIRST s and Euclid’s parameter space
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requires knowledge of the intrinsic Ha LF and therefore an
accurate assessment of the total [NII] flux contamination
fraction (see also discussion in Pozzetti et al. 2016).

Importantly, future large-area galaxy surveys will be
predominantly probing the bright end of the LF at its
exponential decline, and therefore any uncertainty in the
brightest Ha luminosities will have a significant impact on the
Ha number counts. Furthermore, the derivation of the intrinsic
Ha LF will be important for studying many physical properties
of the galaxies, such as their SFRs. This applies not only to
future studies but also to current grism spectroscopy and
narrow-band photometric observations that do not resolve
[N1I] and Ha. Here we investigate the relative change in the
intrinsic Ha emitter number counts when using different
corrections for [N IT] contamination. Specifically, we study (i) a
constant 29% contamination and (ii) the stellar mass and
redshift-dependent [N1]/Ha flux ratios predicted by our
model (Equation (3)).

To derive the intrinsic Ha LF using our model [N 1]
contamination (®,,qe1), We start with the observed ([N II]4+Ha),
LF (Pyps(L)) measured by Colbert et al. (2013) at 0.9 < z < L.5.
We obtain this LF from their published Ha LF (log 4 = —2.70,
log Ly = 42.18, and o = —1.43) by dividing the luminosities by a
factor of (1-0.29) to undo the constant total [NII] flux
contamination fraction correction of 29%, which the authors
applied. In the following, we treat ®,, as the true observed LF.
Importantly, this LF is not corrected for [N II] contamination and
dust. Because of the evolution of the star-forming main sequence,
®.,s is redshift-dependent, but here we do not model this
dependence across z = 1-2, as we are only interested in the effects
of [N 1] contamination and not the absolute number of galaxies.
On the other hand, the stellar mass and redshift-dependent [N II]
contamination correction will change the intrinsic Ho LF across
the redshift range studied here. To obtain ®,,,qe, We choose an
approach that only uses the measured ([N I]4+Ha),, luminosities
as input and assumes the most likely underlying stellar mass
distribution (robustly determined from other studies), from which
we obtain the [N II] contamination from our model. This approach
has the advantage that it enables an easy implementation and
propagation of a variety of uncertainties into the final results.
Furthermore, this method results in reliable intrinsic Hoe LFs even
if the mass distribution is poorly measured due to the lack of
sufficient multiwavelength data, as long as the selection function of
the galaxy sample is known. Here we make use of the Schreiber
et al. (2015) parameterization of the star-forming main sequence to
derive the underlying stellar mass distribution (we comment below
on possible shortcomings). We note that the choice of different
parameterizations (e.g., Tomczak et al. 2016) should not change
the following results. We start with a distribution of ([N II]+Ha/),
which we sample from ®,,;. To obtain stellar masses for these
galaxies, we use a “backward-engineering” technique. First, we
convert the SFRs of the Schreiber et al. (2015) parameterization
into Ha luminosities using the Kennicutt (1998) prescription.
Thereby, we include a dispersion of 0.3 dex measured on the
SFR—versus—stellar mass main sequence. Second, we redden the
Ha luminosities according to the relation between Ay, (Ha
extinction) and stellar mass robustly derived from the spectra of
local galaxy samples in SDSS (Garn & Best 2010). This relation
holds for the WISPS sample at 0.8 < z < 1.5, as shown in
Dominguez et al. (2013). Third, we add the contribution of [N1I]
to the Ha: luminosity by using our model. Finally, this translation
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between dust-reddened ([N II]4+Ha),; luminosities and stellar
masses allows us to obtain the underlying stellar mass distribution
and intrinsic Ho luminosities for the galaxy sample describing
D1, from which we are now able to recompute the intrinsic Ho
LF (Dmodel'

Figure 10 shows the three LFs: (i) the total ([N I]4+Ha),o LF
(®ops); (1) the Ha LF corrected with constant 29% [N 1I]
correction, as published in Colbert et al. (2013) (P,9); and (iii)
the Ha LF with redshift- and stellar-mass-dependent [N II]
correction from our model (®,,0qc1). The LFs are shown in
absolute values (top panels) and relative to ®,,qe (bottom
panels) at redshifts z=1, 1.5, and 2. The luminosity limits for
WFIRST and Euclid (redshift-dependent) are shown as arrows
for reference. Note that only ®,,,,4. changes with redshift due
to the redshift-dependent [N 11]/Ha flux ratio, while the other
LFs are unchanged.

First of all, it is evident that an accurate [N II] correction is
crucial at the bright end of the LF, where the number counts
exponentially drop and the LF is dominated by massive
galaxies with large [N II] corrections (see Figure 7). Similarly,
the difference between ®,9 and ®,,,qo increases toward the
bright end of the LF due to its steepness and the mass
dependence of the [N II] correction. While at log(Ly,) < 42.4,
a constant [NII] contamination correction generally under-
estimates the Haw number counts by <0.1 dex with respect to
our model, at higher luminosities, the deviation is more severe.
For example, at z=1.5, the number counts of galaxies at
log(Ly,) = 43.0 (log(M/M;) ~ 10.6) would be overesti-
mated by approximately a factor of 8 (0.9 dex) with respect
to using a mass- and redshift-dependent [N II] contamination.
This factor is expected to be less (factor of 5, 0.7 dex) at z=1
and more (factor of 15, 1.2dex) at z=2 at the same Ha
luminosity. Such biases are not to be neglected, as Euclid will
probe the high-luminosity part of the Ha LF, as indicated by
the purple arrows in Figure 10.

Our Equation (3) was also used in Merson et al. (2018) to
transform the [N II] blended Hoy flux in the WISPS data into true
Ha fluxes for calibrating the semi-analytical galaxy formation
code GALACTICUS (Benson 2012), so that reliable forecasts of
galaxy number counts can be obtained for the galaxy redshift
surveys planned for Euclid and WFIRST.

To conclude, we briefly discuss possible caveats of our
approach. First, we note that the emission-line-selected WISPS
galaxies may probe a different stellar mass distribution than in
the Schreiber et al. (2015) study (which is based on H- and
K-band continuum-selected galaxies). Specifically, we would
expect the average stellar mass at a given SFR to be lower in
the case of emission-line-selected galaxies (e.g., Ly et al.
2012); hence, our stellar masses would be overestimated.
Assuming conservatively a factor of two lower average stellar
masses per SFR would lead to <30% lower [N II] contamina-
tion over the mass range 9.5 < log(M /M) < 11.0 (approxi-
mately 41.9 < log(Ly,) < 43.5) at z = 1.5. This translates into
<0.15 dex less overestimation of the Ha emitter counts if using
no or a constant 29% [N II] contamination correction compared
to our model. This is negligible compared to the large
corrections needed at the bright end of the LF. Second, we
note that the Kennicutt (1998) relation to obtain SFRs from Ha
luminosities was derived from galaxies with solar metallicity
and an electron temperature of the ionized gas of 10* K. These
assumptions may not be valid at high redshifts. Using the
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Figure 10. Differential effects of redshift- and stellar-mass-dependent total [N II] flux contamination corrections on the number counts of Ha emitters displayed on the
example of the Colbert et al. (2013) LF at 0.9 < z < 1.5 ((z) = 1.2). Top panels: The black solid line shows the total ([N II]4+-Ha),,; LF observed by Colbert et al.
(2013) at 0.9 < z < 1.5 (Pyps), and the blue dot-dashed line is the Ha LF derived from a correction assuming a constant total [N II] flux contamination fraction of 29%
(®,9) by the same authors. The red dashed line shows the Ho LF derived from the ([N I1]4+Ha), LF using our model for [N II] contamination (®,;04c1)- The luminosity
limits for WFIRST and Euclid are shown as green and purple arrows, respectively. Bottom panels: three LFs relative to our [N II] corrected Hoe LF @04 With the
same color code as in the top panels. A redshift- and stellar-mass-dependent total [N 1I] flux contamination fraction is important to obtain accurate Ha emitter number

counts.

metallicity-dependent parameterization of the Kennicutt rela-
tion by Ly et al. (2016a), we estimate that the SFR for a given
Hoa luminosity is ~0.2 dex lower for galaxies at one-fifth of
solar metallicity. As above, this would lead to similar or less
overestimation of stellar mass and [NII] contamination,
respectively, and therefore mostly negligible modifications to
our results.

Finally, it should be mentioned that the unknown contrib-
ution of AGNs at high stellar masses and redshift (see also
Section 3.6) adds an additional uncertainty to the Hao LF that
can have similar impacts as inadequate [N II] contamination
corrections. Specifically, Genzel et al. (2014) found that two-
thirds of their sample of z ~ 1-3 galaxies above log(M /M) =
10.9 shows broad nuclear emission that could potentially be
explained by the occurrence of an AGN. In this case, this
would add almost a factor of three (~0.5 dex) uncertainty on
the number counts at log(M/Ms) > 10.9 (approximately
log(Ly,) > 43.0 at z=1.5). Hence, this will clearly dominate
the uncertainties of the Ha LF at high stellar masses (in
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comparison, the uncertainties from our model add up to about
10%—-20%). However, compared to the difference in the Hoa LF
between a constant and our model-based [N 1I] correction, the
uncertainty due to AGN contamination is a factor of two lower
(0.5 dex compared to ~0.9 dex at log(Ly,) = 43.0 at z=1.5;
see Figure 10).

5. Summary and Outlook
5.1. Summary

We present a parameterization of the [N 1] /Hc flux ratio as
a function of stellar mass and redshift from 0 < z < 2.7 for
stellar masses of 8.5 < log(M/My) < 11.0. Our model
encompasses the shift in the BPT locus defined by observed
high-redshift data and the dependence of stellar mass on the
BPT diagram on the [N 11]/Ha and [O11]/HS emission-line
ratios from local galaxies. Our description is easily applicable
to simulations for modeling [N II] emission and current low-
resolution grism and narrow-band observations to derive
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intrinsic Har fluxes, as well as to forecast the Ha emission-line
galaxy number counts of future surveys.

We find large variations in the total [N IT] flux contamination
fraction at a fixed redshift due to its dependency on stellar
mass. Hence, we emphasize three main implications for current
data, as well as future surveys.

1. The use of a constant [N II] flux contamination fraction
over- and underpredicts the true [NII] contamination,
mainly as a function of stellar mass and redshift. This can
lead to severe mass- and redshift-dependent biases in the
determination of the intrinsic Ho LF, as well as other
physical parameters computed from it. For example, a
constant [N II] contamination of 29% overestimates the
true value for galaxies at log(M /M) < 10 at z > 0.5 by
a factor of up to 3.

2. Intrinsic Ha emitter number counts based on current HST
grism surveys assuming a constant [N II] flux contamina-
tion fraction of 29% are likely overestimated by 0.9 dex
(factors of 8) and more at observed log(L) > 43.0 at
z=1.5. Hence, the extrapolation of the observed
(IN 11]4+Ha) number counts from these studies to match
future surveys such as WFIRST and Euclid, which probe
different redshift and stellar mass distributions, requires a
redshift- and stellar-mass-dependent modeling of the
[N 1] flux contamination fraction as presented here.

3. The blending of Ha and [NTI] leads to a mass- and
redshift-dependent systematic bias in the redshift mea-
surement for Euclid. Our preliminary simulations indicate
a redshift bias Az/(1 + z) ~ 0.04%-0.10% for the most
massive galaxies. This leads to a systematic bias of
0.5%—1.6%, depending on redshift, in the BAO scale
measurement in the radial direction at 150 Mpc.

5.2. Outlook

To examine our results in the context of current galaxy
formation theory, we plan to compare our model predictions to
the predictions from a semi-analytical galaxy formation model
(for example, the GALACTICUS model). Such a comparison
would allow us to further investigate the dependence of the
[NI]/Ha ratio on additional intrinsic galaxy properties,
including the sSFR, as well as help test the validity of our
model for redshifts z 2> 3.

We will deepen our study on the spectroscopic redshift
measurement biases by using realistic grism simulations,
applying more accurate noise levels expected for Euclid, and
including statistically more detailed properties of the galaxies
(such as varying physical size). In addition, the application of
our model to large-area mock catalogs would allow further
examination of how a redshift bias will impact determination of
the BAO peak position, as well as subsequent cosmological
parameter estimation. In particular, we will study techniques
for correcting this redshift bias.

Finally, we stress that further observational follow-up is
needed to tighten our model, especially at the massive end.
Specifically, a WFC3 grism filler program targeting massive
(log(M/M_) > 11) star-forming galaxies at z>2 would be
useful to understand the line ratios of massive galaxies, as well
as the contribution of broad-line emission and AGNs.
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Appendix A
SQL Commands for SDSS Galaxy Selection

In the following, we list the SQL commands that were used
to retrieve our SDSS sample from http://skyserver.sdss.org/
dr12/en/tools/search/sql.aspx.

SELECT top 200000
p.0bjID, s.fiberID,
.ra, p.dec, s.z,
.modelMag_u, p.modelMag_g,
.modelMag_r, p.modelMag_i,
.modelMag_z,
.expRad_r, p.expRad_i,
.sfr_tot_p50,
.lgm_tot_p50,
.h_alpha_eqw,
.0ii_3726_flux,
.01i_3726_flux_err,
.011_3729_flux,
.0ii_3729_flux_err,
.neiii_3869_flux,
.neiii_3869_flux_err,
.h_beta_flux,
.h_beta_flux_err,
.0iii_5007_flux,
.01ii_5007_flux_err,
.01i_6300_flux,
.01_6300_flux_err,
.h_alpha_flux,
.h_alpha_flux_err,
.nii_6584_flux,
.nii_6584_flux_err,
.sii_6717_flux,
.sii_6717_flux_err,
.sii_6731_flux,
.s1i_6731_flux_err
FROM photoObj p
JOIN specObj s ON s.bestObjID=p.objID
JOIN galSpecLine g ON g.specObjID =s.specObjID
JOIN galSpecExtra e ON e.specObjID=g.specObjID
WHERE
s.class = ‘‘galaxy’’
and e.bptclass=1
and s.zWarning =10
and g.h_alpha_flux/nullif (g.h_alpha_flux_err,0) > 5

QU OUuuUuuuuuuuuuuououuouuououuouuouauwuawuauwauy o 0T T T T T

Q

Appendix B
Scatter in [N II[/Ho Ratios at z ~ 1.6 and 0

Figure 6 compares the true (i.e., measured) [N II]/Ha ratios
to the ones provided by our model at z ~ 2.3. In Figure 11, we
show the same figure for z ~ 1.6 and O for reference. The
scatter between true and model [N II]/He ratios is 0.21 dex for
z ~ 1.6 (similar to z ~ 2.3) and 0.13 dex for z ~ 0.


http://skyserver.sdss.org/dr12/en/tools/search/sql.aspx
http://skyserver.sdss.org/dr12/en/tools/search/sql.aspx
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