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Materials and Methods. 

The type material of ice-VII, a roughly triangular fragment from a diamond macle 

(sample GRR1521, Table S1) with dimensions 350×420 µm2 and 50-70 µm thickness is 

deposited in the collections of the Royal Ontario Museum, Toronto, Canada, with 

registration number M57666.  An image of the specimen is shown in Fig. S1a. Weight 

and properties of the other specimens are given in Table S1. 

Diffraction data were collected at the undulator beamline 13-IDD (GSECARS, 

APS, Argonne National Laboratory (34)) with hard X-rays (0.03344 nm) focused to 2×3 

µm2. Two patterns (Fig S4h and S5b) were collected at 16-IDB (HPCAT). A PILATUS 

3X CdTe 1M pixel array detector was used for collecting diffraction data (PILATUS 1M 

at 16-IDB). Diffraction data were collected in forward scattering geometry with an 

acquisition time of 3 s per step, and for 10s per mapping increment for selected regions. 

Calibration was conducted with GSE-ADA (35) and DIOPTAS (36). Integration and 

correction for geometric distortion was conducted with DIOPTAS (36). X-ray micro-

fluorescence maps were collected on beamline 13-IDE, GSECARS, APS, Chicago with a 

2×3 µm2 focused beam in 90º backscatter geometry using a Vortex detector. Rietveld 

refinement of the powder diffraction data (Fig. 1) showed the presence of preferred 

orientation along [211] in type ice-VII. The surrounding diamond matrix generates single 

crystal diffraction and diffuse elastic and inelastic scattering. A diffraction frame of pure 

diamond from nearby the ice inclusion was used for image background subtraction 

(whence, no diamond reflections appear in the integrated diffraction pattern in Fig. 1). 

For the type material we obtained for the Rietveld refinement an Rwp of 5.72% with an Rp 

of 4.57% with χ2 = 1.71 for 1398 observations. The LeBail-extraction converged to Rp = 
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4.0% using Powdercell (37). RF was 4.0% (see Table S3), which shows that the 

assessment of the preferred orientation was correct and did not compromise the 

refinement of the structure. Other occurrences of ice-VII converge to Rwp between 3 and 

7%. The pattern of type ice-VII contains a contribution from 0.7 – 0.8 vol. % of an 

adjacent inclusions of iron which had been refined along with ice-VII. Pseudovoigt peak 

profiles were used with Gaussian terms U = 0.489, V = 0.018, W = 0.08 and Lorentzian 

terms Lx = 0.344 and Ly = 0 (in Powdercell, ref. 37).  

 Presence of K and Cl was detected by micro-XRF mapping at beamline 13-IDE, 

APS. Na is not measurable because its X-ray fluorescence is absorbed by the host 

diamond crystal. Subsequently we constrain the amount of NaCl and KCl through 

Rietveld refinement of site occupancy. The phase contrast between O, Na, and K + Cl is 

quite pronounced and permits reliable convergence for data of present quality. 

Furthermore, the Na/K ratio is constraint by charge balance with Cl-. We modelled Na 

and Cl occupancies for various sites in ice-VII. Earlier studies (26, 38) have indicated 

that Li-, K-, Na- and Cl-ions reside in ice-VII on the same site as oxygen and that no 

structural correlation occurs between dissolved ionic species (38). We confirm this 

observation for natural ice-VII (Table 1). Occupancies for any other site converged to 

zero.  

Kuhs et al. (39) observed that oxygen in ice-VII at ambient pressure and low 

temperature does not strictly reside on site 2a but is better modelled by a partially 

occupied site 8e. We examined this O-sublattice disorder and find that it also occurs in 

natural ice-VII but the difference in refinement quality between O on site 8e and 2a is 

small with slight favour for 8e (Table S2).  
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In order to quantify absorption and to check possible extinction effects from the 

surrounding diamond single crystal host, we conducted a LeBail extraction and compared 

calculated and observed |F(hkl)|. No extinction and only insignificant absorption was 

found (see Table S1, we note that the diamond host crystal M57666 is only 50-80 

micrometer thick). We conducted a reversed Monte Carlo (rMC) optimization (40) 

without bias by atomic potentials and Rietveld refinement to check possible constraints 

on the proton position. rMC has been found to be useful for assignment of proton 

positions from X-ray diffraction data even those obtained in high pressure diamond cells 

(41). The resulting proton position from rMC agrees with the result of the Rietveld 

refinement within 5% but we note that the profile-weighted Rwp for modelled pattern with 

and without protons differs by only 2.6% (Rwp = 5.72 versus 5.87%). Thus, the 

contribution of protons to the observed pattern is marginally significant (as expected). 

Our finding of protons residing on site 8e is consistent with high pressure neutron 

diffraction studies on D2O at ~ 10 GPa (42). Figure S3 shows observed and modelled 

refined pattern of ice-VII from all examined specimens. 

(Na,K)Cl.5H2O is a clathrate similar to ice-VII but with volume expanded to 88.1 

Å3 (43) and part of the alkali-halide residing on site 6d. 

 

Characterization by infrared spectroscopy 

IR-spectra were obtained in transmission mode with a Thermo-Nicolet iS50 spectrometer 

at the Division of Geology and Planetary Sciences at Caltech with 2 cm-1 resolution at 

room temperature (23°C), with a CaF2 beam splitter, a quartz-halogen tungsten source, 

and an HgCdTe LN2-cooled detector, and at ALS bending magnet beamline 1.4.with a 
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Nicolet Magna 760 FTIR bench and a Nic-Plan IR microscope with 32× magnification 

Schwarzschild objective, with 1 cm-1 resolution and a HgCdTe detector with a KBr beam 

splitter. Figure S3 shows spectra over the rage from 600 to 4000 cm-1 (Fig. S2a), O-H 

bending- and symmetric stretching bands in background subtracted spectra (Fig. S2b), 

and the combination band (Fig. S2c). In addition, absorption bands of free water around 

3400 cm-1 are visible in the spectra of specimens GRR1521 and 1507 (Fig. S2a). These 

spectra also show carbonate absorption bands around 1640 cm-1 and bear typical spectral 

features of fibrous diamonds. Both diamonds have rims of fibrous diamond around clear 

kernels whereas SM458 has a clear rim around an inclusion-rich kernel (Fig. S1b). With 

the spatial resolution of our IR spectral analysis these different regions in the specimens 

could not be well separated. Our X-ray fluorescence maps show the transition between 

rim and kernel clearly while inclusions of carbonate, halide, and ice occur separately in 

the kernels of the specimens (Fig. S1b). The fluorescence maps were used to define 

regions of interest in the X-ray diffraction maps.  All of our specimens exhibit low levels 

of nitrogen-aggregation, compared to known ultra-deep diamonds (16). This suggests that 

our samples are rather young (implying very fast ascent) or have remained at 

temperatures that are low compared to the average TZ. We suggest that this apparent low 

nitrogen-aggregation is a consequence of the heterogeneity of the host diamonds rather 

than unusually fast ascent or temperature. We observe mosaicity of the diamond lattices 

through X-ray diffraction and we see zoning and domains through XRF mappings (Fig. 

S1b). We suggest that the IR transmission spectra average over younger zones and elder 

kernels of the same diamond specimen whereas the X-ray probe samples these domains 

with much higher spatial resolution than IR-spectroscopy. Some domains of the 
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diamonds can be much older than others. One may argue that the diamonds should have 

equilibrated in the mantle, but this assumes the whole diamond specimen has grown in 

greater depth. If elder kernels are merged through continued diamond growth in the 

lithosphere, there is no discrepancy. 

 

 

Estimation of the current inclusion pressures 

Current residual pressures were determined through a third order Birch-

Murnaghan equations of state of ice-VII. We use V0, B0, and B0’ of pure ice-VII from 

Frank et al. (26). The effect of dissolved ionic species such as NaCl, KCl, and LiCl on the 

volume of ice-VII has been studied but different groups come to contrary conclusions 

whether alkali halides induce positive (27, 37, 43) or negative (26) excess volume. 

Therefore, we calculate current residual pressure based on the equation of state of pure 

ice-VII and use the difference to the equation of state of ice-VII with 1.8 mol% NaCl (26) 

to define uncertainty. Thereby, a possible positive or negative excess volume is 

accounted for as uncertainty of pressure.  Pressure estimate for GRR1518 is based on the 

volume of NaCl (46) but without assessing the excess volume of the minor KCl 

component. Thus, pressure is a lower estimate. 

Pressures of inclusions of ilmenite, halite, and magnesian calcite were determined 

based on experimentally established equations of state (46, 47, 48. 49). Tronche et al. 

(47) have examined a natural ilmenite-geikielite solid solution with composition similar 

to present one (Table 1) and their equation of state was directly used in our computation. 

Magnesian calcite of the present composition has not been examined but it has been 
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established that the product of bulk modulus and volume of Ca- and Mg-carbonates in the 

calcite- and dolomite-series are constant within uncertainties (48, 49). Thus, we used the 

mixing volume at ambient pressure (50) as reference volume and the interpolated bulk 

modulus and it’s pressure derivative of the solid solution (49) to determine the pressure 

of magnesian calcite. We used an ambient pressure volume of 246 Å3, K = 85 GPa and 

K0’ of 3 (49) 

 

Estimation of entrapment pressures 

We explored two independent methods for constraining the pressure of 

entrapment of ice-VII in diamond. One method is based on the low compressibility and 

thermal expansion of diamond and assumes that the current residual pressure of the 

inclusion and the pressure and temperature of its entrapment are connected through a path 

that is close to an isochore (19, 20).The other method is based on isomekes (33). 

Ultimately the accuracy of the results from both methods are limited by the rather large 

uncertainties of the thermoelastic properties and equations of state of diamond, ice-VII, 

and, particularly, of fluid dense H2O. 

We discuss the isochoric approach first. We note that diamond is not strictly 

incompressible over the relevant pressure-temperature range although compressibility 

and thermal expansion partially compensate each other. We use a Murnaghan-type 

equation of state for diamond because the compression of diamond over the relevant 

pressure range is nearly linear (51, 52) while error propagation is reduced by using this 

simpler equation of state rather than the more complex functionals of the Birch-

Murnaghan- or Vinet-type. The bulk modulus of diamond ranges from 430 to 447 GPa 
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(51-53). We use the experimentally assessed linear temperature dependence of thermal 

expansion of diamond that had been measured between 500 – 900 K (54) in order to 

determine the thermoelastic contribution to the equation of state. Since the pressure 

derivative of the thermal expansivity of diamond is poorly known and since we are 

interested in a pressure interval where this pressure-dependence is negligible we assume 

thermal expansivity to be pressure-independent over the examined range of densities. We 

find that at 15 GPa, 1700 K a volume expansion of diamond of 0.6 – 1.0% and at 25 GPa, 

2000 K 0.8-1.2%. We add these excess volumes to the volume of ice-VII and fluid H2O 

at given pressures and temperatures and calculate the effective pressure-reduction that 

results from the excess volume. For instance for 15 GPa, 1700 K and 25 GPa, 2000 K, we 

find pressure reductions of 0.5 – 0.8 and 0.8 – 1.2 GPa, respectively. As we will show, 

markedly larger uncertainties arise from the equations of state themselves (see also Fig. 

2). Therefore, we consider the deviation from the isochoric path for the relevant pressure-

temperature range and for fluid or solid ice inclusions in diamond as negligible within 

given uncertainties.  We note that this approximation is acceptable for comparatively soft 

inclusions in diamond but it fails for softer host minerals.  

In a next step we determine the pressures of the inclusions after correction for the 

local deformation of diamond around the inclusions (33). In principle we can constrain 

this local deformation of host diamond because our diffraction data were collected with a 

micro-focused beam in mapping mode. Hence, the difference between the diffraction 

signal of diamond reflections at the locations of the inclusions and 40-60 µm afar gives 

an estimate of local deformation of diamond around the inclusion relative to the 

unstrained lattice. That, in turn, allows for determining the average stress (pressure) of 
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diamond surrounding the inclusion within the 3-4 µm radius of the beam focus. However, 

the host diamond lattice is not entirely unstrained in most of our samples and in fact, 

varies over inclusion-free regions of several ten to a few hundred µm in length. Thus, we 

can only give a maximal local host stress of ~0.3 GPa. Because of this uncertainty it is 

also futile to attempt a more sophisticated modelling of the local stress field.  

After correction of residual pressures for elastic relaxation (Table 1) we determine 

entrapment pressures as the intersection points of isochores of ice-VII and fluid H2O with 

the three adiabates that are shown in Fig. 2b, similar to the approach in references 

(19,20). Right away it is clear that these pressure-temperature paths have rather steep 

slopes ∆T/∆P and that any possible intersection occurs within the stability field of fluid 

H2O rather than ice-VII (Fig. 2). The melting curve of ice-VII remains a matter of active 

debate (55-57). In Fig. 2 we bracket the range of published data using the melting curves 

reported in references 56 and 57. We do not further consider the isochores of ice-VII and 

focus on the isochores of fluid H2O.  The steep overall ∆T/∆P is result of changes in 

slope of the isochores over the relevant pressure-temperature range (see below). 

Two experimental studies have examined the density of fluid H2O in the pressure-

temperature range of 1-7 GPa and 100-700 K (58, 59). In addition there are shock-

compression studies at substantially higher pressures and temperatures whose results we 

do not use here directly, which, however, are implemented in the equation of state of 

fluid H2O by Abrahmson and Brown (58). We calculate isochores of H2O based on both 

studies (58, 59) and use their discrepancies as measure of 1-σ uncertainty and the 1-σ 

uncertainties given in (56). The resulting range of pressure-temperature paths is shown as 

hashured regions in Fig.2. The same procedure was applied to an inclusion of ilmenite in 
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specimen GRR1507 (Table 1, Fig. S4a) using the equation of state for natural ilmenite of 

similar composition (47). The results give entrapment conditions in the same pressure-

temperature interval as ice-VII from the same host diamond GRR1507 (Fig. 2). 

We ignore the possible effect of dissolved alkali halides on the equation of state 

of fluid H2O because it is unknown. For some of the observed inclusions of ice-VII this 

effect can be assumed to be small because the amount of alkali halide is small (Table 1).  

We note that the isochores based on (59) exhibit noticeable curvature in the 10-30 

GPa regime. This non-linear slope can be artifactual and result of the extrapolation of the 

equation of state quite beyond its experimental basis. However, we note that the 

isochores from both independent studies (58, 59) agree within uncertainties. This 

curvature is the main reason for the overall small thermal pressure effect that related 

current residual to entrapment pressure. 

Angel et al. (33) have presented a more general approach for obtaining 

entrapment conditions from equations of state and residual pressures of inclusions and 

hosts. This approach is based on isomekes (33). We use the method outlined by Angel et 

al. (33) to obtain residual pressures corrected for elastic relaxation (see above and Table 

1) and for constructing isomekes. For a residual pressure of 11 GPa, corrected for 

relaxation, we obtain Pfoot (33) of 12 GPa for a pressure of 23 GPa we obtain Pfoot of 24 

GPa. By error propagation these pressures have uncertainties of 1.2 and 3 GPa, 

respectively. The incremental slope of the isomeke is given by the difference of thermal 

expansivity over the difference of the compressibility of the inclusions and their host 

phases (33). Since ice-VII and fluid H2O are about 20-times more compressible than 

diamond and since ice-VII and fluid H2O have more than ten times higher thermal 
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expansivity than diamond the isomeke is within good approximation an isochore of ice-

VII or fluid H2O, respectively, and the isomekes are within the hachured regions in 

Fig.2b. The isomekes will provide more accurate estimations than the isochoric 

approximation once significantly more accurate thermoelastic properties of the involved 

phases become available. 

 
Encapsulation of fluid 

Water-bearing saline (22, 23) or carbonaceous (19) inclusions in diamonds have 

been described earlier. The aqueous inclusions described in these studies were found to 

be very silicate-rich, rather being hydrous saline melts than fluids (22). They occur in the 

fibrous rims of diamonds. In our study ice-VII as well as other fluid-derived inclusions 

like halite and carbonates were found in separate inclusions rather than as phase 

assemblies (Table 1, Fig. S1b). A possible explanation is based on the dimensions of 

these inclusions: On the small spatial scale of the inclusions encapsulation of multiple 

phases in single cavities is not favourable because of the relatively high contribution of 

interfacial energy to the free energy of such small phase assemblies. This may be 

different for the larger fluid inclusions observed in fibrous diamonds in earlier studies 

(21,22). 

We note that specimens GRR1507, 1518, and 1521 are diamonds with fibrous 

rims around optically clear kernels. SM458 has a clear rim around an inclusion-rich 

kernel (Fig. S1b), and Balas is a polycrystalline diamond with inclusions throughout, but 

an outer zone much richer in inclusions than the interior. The different zones in our 

specimens are not well separated by IR-spectroscopy (Fig S2). However, X-ray 

fluorescence maps clearly show the rim-kernel boundaries through differences in trace-
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element concentrations in the diamond matrix (Fig S1b). We note that fluid-derived 

inclusions like carbonates and halides occur in both the rims and the kernels of the 

specimens (Fig. S1b). Ice-VII and other high-pressure inclusions (Table 1, Fig. S3 and 

S4) are found in the kernels. They are rather fine grained polycrystalline whereas 

inclusions in the rims are much coarser with crystallite sizes > ½ µm to several µm, 

giving arrays of diffraction spots rather than Debye fringes.  In GRR1518 we examined 

the fibrous rim of the diamond and found hydrous halite instead of ice-VII at a pressure 

typical for inclusions in fibrous rims (Table 1, 21).  

 

 
 
Table S1: General properties of the ice-VII hosting diamonds. 
 
 

Specimen Type Colour Habit, appearance Weight 
GRR1518 IaAB Green, no 

fluorescence 
Cubic, hexagonal 
pits and channels 

31.1*, cut and 
polished piece 

GRR1507  IaAB, platelets 
prominent 

Green rim rich in 
inclusions1, clear 
kernel, no 
fluorescence  

Octahedron, faces 
frost and with 
trigons 

85.6*,  piece 
cut polished || 
(001) 

GRR1521 IaAB Green, no 
fluorescence 

Macle with many 
trigons and some 
pits 

49.8, crushed, 
some pieces 
clear, some 
green 

M57666 IaAB Clear Clear fragment 
from GRR1521 

<1mg 

SM458 IaAB Clear, cloudy 
kernel 

Octahedron 5mg, cut and 
polished 

Balas IaAB, platelets 
pronounced 

Translucent. 
Polycrystalline 
rim, kernel with 
cloudy regions 

Polycrystals are 
trisoctahedral, 
spherical shape 

1g*, small 
piece 
mechanically 
removed (lost) 

 
*Original weight in mg 
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Table S2: Fractional atom coordinates, site fraction occupancies, and isotropic 
thermal displacement factors of ice-VII and 1-σ uncertainties in brackets. 
 
Atomic coordinates and isotropic displacement parameters (in Å2) 
Atom SFO Wyck. x y z Biso 
O 0.241(2) 8e 0.011(7) 0.011(7) 0.011(7) 0.13(6)  
Na+Cla 0.014(2) 8e 0.011(7) 0.011(7) 0.011(7) 0.13(6) 
K+Cla 0.008(2) 8e 0.011(7) 0.011(7) 0.011(7) 0.13(6) 
H 0.482b 8e 0.32(2) 0.32(2) 0.32(2) 0.13c  
 
aNa, K, and Cl all reside on the same Wyckoff site (in agreement with  ref.s 26, 38). 
Thus, we cannot discriminate NaCl from KCl via diffraction-based analysis and the 
relative proportion of both species is strictly correlated: Therefore, we only give the 
upper limits for both species noting that the amounts of KCl and NaCl are correlated as 
(11+17)/(19+17)·XKCl = XNaCl. 
bFixed, based on refined O-occupancy. 
cFixed 
 

 
Table S3. List of observed and calculated factor moduli of ice VII (M = multiplicity). 
--------------------------------------------------------------------------------------------------------- 
h k l M d(Å) |Fcalc| |Fobs| ∆|F| 
1 1 0 12 2.237 1000.5 1000.0  0.5 
1 1 1 8 1.826  80.8  76.9   3.9 
2 0 0 6 1.582 686.1 709.4 -23.3 
2 1 1 24 1.291 615.4 581.2  34.2 
2 2 0 12 1.118 560.3 564.1  -3.8 
2 2 1 24 1.054  12.6  17.1  -4.5 
3 1 0 24 1.000 456.7 495.7 -39.0 
3 1 1 24 0.954  15.3  17.1  -1.8 
2 2 2 8 0.913 399.8 350.4  49.4 
3 2 1 48 0.845 369.1 384.6 -15.5 
4 0 0 6 0.791 324.9 324.8   0.1 
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Fig. S1. Visible light and X-ray fluorescence images of samples. a: Visible light microscope image of the 

holotype ice-VII bearing diamond sample M57666 (a fragment of GRR1521, Table S1) mounted at the 
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diffractometer at beamline 13IDD, APS. The inclusions are not resolved by light microscopy. A diffraction 

imaging map of ice-VII type material is superimposed on the microscope image: The integrated area of the 

111 diffraction peak was used as measure of abundance of ice-VII (36). Each pixel corresponds to one 

diffraction frame collected over a 5×5 µm2 grid. Various smaller inclusions of ice-VII were observed in the 

holotype specimen. Since attenuation over the thickness of the diamond host crystal is negligible, the 

intensity distribution corresponds directly to the volume of ice-VII per pixel. In the present case it suggests 

a wedge-like, sphenoidal (that is: with hexakisoctahedral faces) or tilted trigon-like shape of the inclusion 

as it is also found as pitchmarks on diamond faces, for instance, at the original surface of the original 

diamond crystal GRR1521 (see Table S1).  

b: X-ray fluorescence map of a region in specimen SM458 (Table1). The map is RGB-color coded for K, 

Ca, and Ti. Each pixel is defined by the X-ray beamsize of 2×4 µm2. An equivalent map was obtained for 

Cl, Ca, Ti. The border between the outer rim and the kernel of the diamond is visible by a marked change 

in Ti-trace concentration in the diamond matrix. K (and Cl) mark halite inclusions, Ca marks carbonate and 

silicate inclusions. The inclusions are examined by X-ray diffraction. We note that halite and carbonate 

inclusions occur not only in the rim but also in the kernel of the diamond (and partially appear to intersect 

the rim because of the octahedral shape of the kernel). Ice-VII is not visible in the fluorescence map but 

occurs also in the kernel of the specimen. The ice-VII holotype sample M57666 is a small fragment from 

the kernel of a diamond with fibrous rim (Table S1). Same as the kernel of SM458 it shows an elevated Ti-

concentration. 
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Fig S2a 
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b. 

 

c. 

 

 
 
 
Fig. S2: IR transmission spectra of ice-VII bearing diamonds.  a) Full spectral range. The host diamonds 

exhibit A-, B-, and D-type defects.. b) The observed ice-related absorption bands are located between  3000 

-3200 cm-1 with shoulder at slightly higher energy are from the ν1 and ν3 symmetric OH-stretching modes 

in ice VII (44,45). Based on the experimentally determined pressure dependence of these modes (44,45) the 

energy of these modes corresponds to pressures above 5 and below 23 GPa pressure. The spectrum from 

GRR1521 in (a) was obtained from a larger and thicker piece of GRR1521 than the type materials M57666 

(GRR1521 had been crushed in an earlier analytical study many decades ago and M57666 is one piece of it, 

see Table S1).  C.) Combination band of ice-VII in Balas-1. The combination band has been proposed to be 

a better indicator of residual pressure of ice-phases in diamond than the O-H stretching bands (24) but is 

quite weak. Extrapolating the correlation reported in (24) from ≤ 8 GPa we obtain an approximate pressure 

of 18±4 GPa for this sample (24 ±2 GPa from diffraction). 
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Fig. S3b 
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Fig. S3c 
 

 
 
 
Fig. S3d 
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Fig. S3e 
 

 
 
Fig. S3f 
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Fig. S3g 
 

 
 
 
Fig. S3h 
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Fig. S3: Observed and modeled refined powder diffraction pattern of ice-VII. Black 
crosses = observed pattern, blue line: modeled, refined pattern of ice-VII, bright green: 
residuum of fit, other colors: other phases observed in the pattern a: diamond, (Fe,Ni,C), 
b: (Fe,Ni,C), c: diamond, d: diamond, e: (Fe,Ni,C), f: ilmenite, calcite, h: halite-sylvite. 
(Fe,Ni,C) assumes a tetragonally distorted bcc-structure.  For each host specimen one 
pattern is shown. We also show additional patterns of ice-VII from the holotype diamond. 
Most patterns were obtained at wavelength 0.03344 nm, if different, wavelength is 
indicated in the abscissa.  
 
 
 
Fig. S4a 
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Fig. S4b 
 

 
 
Fig. S4: Diffraction patterns of other inclusions which reside at high residual pressures: a) 
Ilmenite plus ice-VII in GRR1507 (see Fig. 2 and Table 1). Black crosses = observed 
pattern, red line: modeled pattern of ilmenite, blue line: modeled pattern of ice-VII, bright 
green: residuum of fit. b) magnesian calcite in SM458 (see Table 1). Black crosses = 
observed pattern, red line: modeled, refined pattern, bright green: residuum of fit. The 
volume and composition of magnesian calcite correspond to 8-9 GPa pressure. 
Composition and volume of ilmenite correspond to 11-12 GPa. 
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