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Training the Emotional Brain: Improving Affective Control
through Emotional Working Memory Training

Susanne Schweizer,' Jessica Grahn,> Adam Hampshire,> Dean Mobbs,' and Tim Dalgleish!
"Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, United Kingdom, and 2Western University, Brain Mind Institute and

Department of Psychology, Natural Sciences Centre, London, Ontario, N6A 5B7, Canada

Affective cognitive control capacity (e.g., the ability to regulate emotions or manipulate emotional material in the service of task goals) is
associated with professional and interpersonal success. Impoverished affective control, by contrast, characterizes many neuropsychiat-
ric disorders. Insights from neuroscience indicate that affective cognitive control relies on the same frontoparietal neural circuitry as
working memory (WM) tasks, which suggests that systematic WM training, performed in an emotional context, has the potential to
augment affective control. Here we show, using behavioral and fMRI measures, that 20 d of training on a novel emotional WM protocol
successfully enhanced the efficiency of this frontoparietal demand network. Critically, compared with placebo training, emotional WM
training also accrued transfer benefits to a “gold standard” measure of affective cognitive control- emotion regulation. These emotion
regulation gains were associated with greater activity in the targeted frontoparietal demand network along with other brain regions
implicated in affective control, notably the subgenual anterior cingulate cortex. The results have important implications for the utility of

WM training in clinical, prevention, and occupational settings.

Introduction
Humans vary enormously in their ability to keep a cool head in
emotionally charged situations. The capacity to remain goal-
focused when selecting and executing behavioral plans in the face
of affectively salient distraction is a marker of success across the
spectrum of human endeavor, from vocational and academic
achievement to well-being (Barrett et al., 2004; Gray, 2004). Fur-
thermore, deficits in this capacity for affective cognitive control
characterize a wide range of neuropsychiatric conditions (Beck,
2008). Hitherto, efforts to improve affective cognitive control
have been the preserve of extensive and costly psychotherapeutic,
psychopharmacological, and invasive neurosurgical interven-
tions (e.g., deep brain stimulation), usually restricted to neuro-
psychiatric samples (Harmer et al., 2003; Mayberg et al., 2005;
DeRubeis et al., 2008). However, recent advances in cognitive
neuroscience suggest that enhancement of affective cognitive
control may be achievable via targeted computerized training
that uses far fewer human and financial resources and that can be
made widely available to the broader population via the Internet.
The key to this potential stems from research indicating that
affective cognitive control relies to a great extent on the same
frontoparietal (compare with multiple-demand network; Dun-
can, 2010) neural circuitry, including the dorsolateral prefrontal
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cortex (PFC), the inferior parietal and the anterior cingulate cor-
tices (Banich et al., 2009), which is fundamentally involved in the
performance of well-established working memory (WM) tasks
(Miller, 2000; Brass et al., 2005; Owen et al., 2005). A primary role
of this affective control network, which includes classical emo-
tion regulation (ER) regions (e.g., BA25; Wager et al., 2008) in
addition to the traditional frontoparietal multiple demand net-
work, is to exert downregulatory effects on experienced emo-
tional distress through projections to the amygdala and midbrain
nuclei from the lateral and medial PFC components, including
the dorsal and subgenual anterior cingulate (sgACC) (Ochsner
and Gross, 2005; Wager et al., 2008; Etkin et al., 2011). Notably,
these control-related regions are hypoactivated in neuropsychi-
atric disorders characterized by impoverished affective cognitive
control (Price and Drevets, 2012). These insights from neurosci-
ence lead to a clear hypothesis that repetitive WM training
designed to augment the performance of this frontoparietal de-
mand network has the potential to generate transferable gains in
affective cognitive control, which are mediated by this shared
underlying neural circuitry, especially when the WM training
uses emotionally salient stimulus material.

In a preliminary behavioral test of this hypothesis (Schweizer
etal., 2011), we showed that only emotional WM training (eWM;
and not standard WM training) accrued transferable benefits to a
laboratory measure of affective attentional processing, the emo-
tional Stroop task. The specificity of these training gains to the
affective domain can be accounted for by evidence showing that
WM capacity and the capacity to use WM successfully in emo-
tional contexts are partly separable cognitive abilities (Joormann
et al., 2011; Schweizer and Dalgleish, 2011). We therefore pro-
pose that, while WM itself is a largely stable construct (Toga and
Thompson, 2005; Craik and Bialystok, 2006; Shipstead et al.,
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A, Task design of the eWM training (dual n-back) task for a sample training block where n-back = 1. Stimuli with a bold pink border represent target stimuli for the current block.

Participants respond with a button press if the target stimulus in either or both modalities matches the stimulus n positions back. In this n-back = 1 example, there is a match because, for the
visuospatial modality, the current face appears in the same location as the face 1-position back; and for the auditory target, the word (RAPE) is the same as the word one-back. B, C, Task-demand-
related BOLD activation that was observed comparing conditions of lower task-demand (n-back = 1) and higher task-demand (n-back = 3) at pre-training. All reported BOLD activation was
significantly different across these conditions at the whole-brain level, with significance levels corrected for false discovery rates at P, << 0.05. Activation increases (B) and activation decreases (C)
in condition n-back = 3 compared with n-back = 1. For a full overview of differential activation, see Table 1. Error bars indicate SEM.

2012), the ability to successfully deploy WM in emotional con-
texts (eWM) may be more plastic and amenable to training (how-
ever, for reviews on the promising effects of standard WM
training on cognitive performance augmentation, see
Buschkuehl et al., 2011; Morrison and Chein, 2011).

Here, we predicted that eWM would lead to transferable im-
provement on an ecologically valid measure of affective cognitive
control-ER (Gross, 2002). As successful ER is dependent on the
frontoparietal demand network outlined above, we hypothesized
that the predicted transferrable benefits in ER accruing from
eWM training would be mediated by training-related changes in
frontoparietal activity. It should be noted, however, that the cur-
rent study does not explicitly test whether eWM is more (or less)
effective in improving ER capacity compared with other nonaf-
fective types of WM training.

Materials and Methods

Participants

Thirty-four participants (20 women, age 23 * 2.4 years, mean * SD)
were recruited through a University of Cambridge student bulletin and
the Medical Research Council Cognition and Brain Sciences Unit com-
munity volunteer panel and randomly assigned to either placebo training
or eWM training. Two participants who were randomized to the placebo

training did not complete any training sessions after the pre-training
assessment and were therefore excluded from the study. The placebo
training (n = 15) and eWM training (n = 17) groups did not differ in age,
gender, or education (F < 1).

Procedure

At the start of the study, all participants completed an individual pre-
training assessment that comprised behavioral and neuroimaging assess-
ments. Participants first provided the experimenter with written
informed consent. They then completed the offline version of the eWM
and placebo training tasks in a quiet testing room. After these tasks,
participants completed the scan version of the eWM training and the ER
task (described below) in the fMRI scanner. Participants then left the
laboratory to complete their 20 d of training (for a detailed schedule, see
task descriptions below). All participants in both groups completed more
than the required 80% (16 d) of the training days. Indeed, all participants
in both training groups completed 90% (18 d) of the training, and 65%
and 47% of the eWM training group completed 19 and 20 d, respectively.
In the placebo training group, compliance was even higher, with 67%
completing 19 d and 53% completing 20 d of training. On the first or
second day after training had been completed, participants returned to
the laboratory for post-training behavioral and fMRI assessments, which
were identical to the pre-training assessments. Participants were com-
pensated with £10 per hour for the pre-training and post-training scan-
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tively neutral film footage (e.g., a weather
forecast) to which they were instructed to sim-
ply pay attention; (2) Attend: in this condition,
emotionally aversive films (e.g., documentary
footage of war scenes, accidents, terrorist
atrocities, famine) were presented during
which participants had to attend without at-
tempting to regulate their emotions; and (3)

Load 1 Load 2 Load 3 Load 5 Neutral

Figure 2.

ning sessions and £4.50 per training day. The two training groups
received the same amount of compensation.

Tasks

eWM training. The eWM training was based on the protocol described by
Schweizer et al. (2011) and comprised an affective dual n-back task con-
sisting of a series of trials each of which simultaneously presented a face
(for 500 ms) on a4 X 4 grid on a monitor and a word (for 500-950 ms)
over headphones (Fig. 1A). Each picture-word pair was followed by a
2500 ms interval during which participants responded via button press if
either/both stimuli from the pair matched the corresponding stimuli
presented n positions back; 60% of the words (e.g., evil, rape) and faces
(fearful, angry, sad, or disgusted expressions) were emotionally negative
with the others affectively neutral in tone. Trial presentation order was
randomized across training sessions.

The 20 daily 20-30 min (depending on level of n-back achieved) train-
ing sessions consisted of 20 blocks of 20+ 7 trials. Ten trials in each block
were “target trials” (six target trials per modality: visual; auditory, with
two trials presenting both a visual and auditory target) presenting stimuli
that matched the stimuli # positions back. If a target was detected cor-
rectly, a single, long, high-pitch tone was heard; incorrect (false hit or
missed target) trials were followed by two short, low-pitch tones. Train-
ing started at n = 1; if 3+ consecutive trials were completed accurately,
the level of n-back increased by one on the next block. Conversely, if five
or more successive trials were completed inaccurately, the level of n-back
decreased by 1 on the next block. Participants therefore continuously
operated at their maximum performance level.

The task was modified for presentation in the MRI scanner at pre-
training and post-training. In this scanner version there were 40 blocks
consisting of 10+ # trials. Blocks were divided across emotional and
neutral stimuli (alternated presentation from block to block) and varied
quasi-randomly (never two consecutive blocks at same n-back) across
levels of n-back, with n = 1, 2, 3, or 5. Each block was followed by a 20 s
rest period resulting from the highly demanding nature of the task. Fi-
nally, unlike the training version, there was no feedback on performance
during the scanner version of the task.

The performance-sensitive offline version of the task, which was ad-
ministered at the pre-training and post-training assessments, started at
n-back = 1 and presented two blocks of 20+ # trials at each consecutive
level of n-back until participants failed both blocks at a given level.

Placebo training task. The placebo training was identical to that de-
scribed by Schweizer et al. (2011). It comprised a feature match task
where each trial displayed two panels with 8—12 shapes in each panel.
Participants indicated whether the panels were identical. This task makes
minimal demands on WM resources. The training schedule was identical
to that of the eWM training (i.e., 20 d of 20 min training sessions).

ER task. The ER task was similar in format to tasks widely reported in
the literature on affective cognitive control (Goldin et al., 2005). The ER
task was presented in the MRI scanner at pre-training and post-training.
Participants watched sets of 30 s film footage in three experimental con-
ditions (10 films per condition): (1) Neutral: participants viewed affec-

Attend

A, The graph represents mean performance accuracy on target trials at the levels of n-back = 1, 2, 3, and 5 in the
emotional and neutral blocks during the eWM task in the scanner at pre-training. Error bars indicate SE. B, The graph reports
emotionality ratings across ER task conditions at pre-training. Emotionality (experienced distress) while viewing the film clips was
rated on a Likert scale ranging from 1 (extremely positive) to 10 (extremely negative), with 5 (neutral). The conditions were as
follows: Neutral, neutral film clips were presented with the instruction to attend to the films without effortful ER; Attend, aversive
film clips were presented with the instruction to attend to the films without effortful ER; Regulate, aversive film clips were
presented with the instruction to downregulate negative emotions elicited by the films. Error bars indicate SEM.

Regulate: in this condition, participants were
again presented with aversive film clips, but
this time instructed to cognitively downregu-
late (Gross, 2002) their emotional distress as
much as possible. The aversive films were all
matched on emotionality based on indepen-
dent ratings by assessors blind to experimental
condition. The aversive clips were then sepa-
rately randomized across the attend and regu-
late conditions and across pre-training and
post-training sessions for each participant. The
neutral films were all rated as emotionally neutral in tone and random-
ized across pre-and post-training for each participant. Each experimental
condition was presented twice in the scanner in a blocked design with five
trials in each block. A 45 s washout clip depicting emotionally calming
footage followed negative blocks to normalize affect in preparation for
the next trial. After each film clip, participants rated their experienced
distress while viewing the film on a Likert scale ranging from 1 (extremely
positive) to 10 (extremely negative), with 5 (neutral).

Regulate

Neuroimaging

Image acquisition. A 3T Siemens Tim Trio MRI scanner was used to
collect 1200 (scanner version of the dual n-back task) and 745 (ER task)
echoplanar imaging (EPI) volumes. All EPI data had 32 slices, matrix size
of 64 X 64, echo time (TE) of 30 ms, repetition time (TR) of 2 s, field of
view 0f 19.2X19.2 cm, flip angle of 78°, slice thickness of 3 mm, interslice
distance of 0.75 mm, and in-plane resolution of 3 X 3 mm. High-
resolution magnetization-prepared rapid-acquisition gradient echo an-
atomical images (TR of 2250 ms, TE of 2.99 ms, flip angle of 9°, inversion
time of 900 ms, 256 X240 192 isotropic 1 mm voxels) were collected for
anatomic localization and coregistration. The total time each participant
spent in the scanner was 79 min.

Imaging analyses. SPM5 was used for data analysis (SPM5; Wellcome
Department of Imaging Neuroscience, London, United Kingdom).
Images were sinc-interpolated in time to correct for acquisition time
differences and realigned spatially with respect to the first image using
trilinear interpolation. The coregistered magnetization-prepared rapid-
acquisition gradient echo image was segmented and normalized using
affine and smoothly nonlinear transformations to the T1 template in
Montreal Neurological Institute space. The normalization parame-
ters were then applied to the EPIs, and all normalized EPI images were
spatially smoothed with a Gaussian kernel of full-width half-
maximum 8 mm.

For each participant, each session (pre-training, post-training) and
each event type were modeled separately. Events modeled for the dual
n-back task were as follows: emotional block at load 1, emotional block at
load 2, emotional block at load 3, emotional block at load 5, neutral block
atload 1, neutral block atload 2, neutral block atload 3, and neutral block
atload 5. For the ER task, they were as follows: Neutral; Attend; Regulate;
washout trials and button press response. Each event was modeled by
using a regressor made from an on—off boxcar convolved with a canon-
ical hemodynamic response function. Six estimated parameters of move-
ment between scans (translation and rotation along x-, y-, and z-axes)
were entered as covariates of no interest. Before running the model, the
time course of the average brain signal was screened for spikes of high
variance. Short periods of high variance are usually associated with brief
subject movements as shown in the spatial realignment parameters. The
high-variance scans were removed from the model by using a modified
version ofthe SPM99 modelingroutines (www.mrc-cbu.cam.ac.uk/Imaging/
Common/missing_time.shtml). Low-frequency noise was removed with a
standard high-pass filter of 120 s. The results estimated from single subject
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models were entered into second-level random effects analyses for standard
SPM group inference (Penny et al., 2003).

All effects were investigated at the whole-brain level with a significance
level of P, orrecteq << 0.001, with a minimum cluster size of five voxels
(where cluster definition required a more stringent level of correction we
applied a significance level corrected for false detection rates Py, < 0.05,
this is reported where applicable). In addition to these whole-brain anal-
yses, we specified frontoparietal (for the eWM and ER task) and emotion
processing (for the ER task only) regions of interest (ROI) to enable
neural hypothesis-driven analyses. However, if the whole-brain analyses
revealed activation in regions congruent with our RO], for simplicity we
report only the whole-brain results.

Our a priori ROI for the eWM task were selected based on the literature
identifying regions implicated in WM, affective and cognitive control
(Miller, 2000; Owen et al., 2005; Banich et al., 2009; Duncan, 2010). The
following ROI were included for the eWM task: (1-3) bilateral lateral
PFC (inferior [L: —60:—30/10:48/—2:30; R: 30:66/12:50/—2:30], middle
[L: —54:—18/—14:66/—2:64; R: 20:58/—12:64/ —2:64], and superior [L:
—36:—4/—12:72/—2:80; R: 10:38/ —18:72/—2:76] frontal gyrus); (4) me-
dial PFC (medial frontal gyrus [—16:20/16:72/—2:64]); (5) inferior pa-
rietal cortex [L: —60:—22/—84:—20/36:60; R: 26:62/—70:—28/38:58];
and (6) ACC [—16:18/—4:54/—10:34]. For the ER task, we examined
blood oxygenated level-dependent (BOLD) activation in these same
frontoparietal ROI, which are also known to be implicated in the perfor-
mance of ER tasks within the literature, hence our predicted transfer
effects (Wager et al., 2008; Banich et al., 2009). In addition to the execu-
tive control regions, we were interested in regions associated with affec-
tive control specifically (Banich et al., 2009): (7) orbitofrontal cortex
(OFC) [—14:16/22:70/—16:—2]; (8) sgACC, and emotion processing
(Dalgleish, 2004; Drevets et al., 2008): (9) amygdala [L: —30:—12/—8:4/
—20:—12; R: 18:36/—8:6/—30:—12]; and (10) insula [L: —48:—24/—32:
32/—20:22; R: 26:50/—30:32/—20:22]. We extracted average BOLD
activation for ROI using MarsBAR AAL anatomical regions (Brett et al.,
2002; Tzourio-Mazoyer et al., 2002), with the exception of the sgACC for
which there is no anatomical MarsBAR ROI. The ROI for the sgACC was
derived from the parameters presented in the reviews by Drevets et al.
(2008) and Wager et al. (2008) [—3:3/21:32/—9:—2]. We examined ac-
tivation in these selected ROI using a conventional level of significance
rather than correcting for multiple comparisons. Our reasons for this
were twofold: (1) the ROI under consideration are clearly derived from
the literature a priori; and (2) averaging across all voxels within an ana-
tomically defined ROI is itself very conservative because included in the
average will likely be sizeable clusters of voxels not activated by the rele-
vant contrast. Such averaging already therefore biases toward the null
hypothesis, and additional correction for multiple tests would make the
significance threshold very stringent indeed (Poldrack, 2007).

Results

Pre-training eWM and ER task performance

At pre-training, mean eWM performance was n-back = 2.80 (SD,
0.09), as measured on the performance-sensitive version of the
eWM training task completed outside of the scanner. The task starts
at n-back = 1 and presents two blocks of 20+ # trials at each con-
secutive level of n-back until participants fail both blocks at a given
level. The groups differed significantly in pre-training eWM perfor-
mance with the placebo training (mean, 3.66; SD, 1.14) group per-
forming significantly better compared with the eWM training
(mean, 2.59; SD, 0.83) group (F; 55, = 9.51, p = 0.004).

During fMRI, participants completed the adapted version of
the eWM training task with fixed levels of n-back (1, 2, 3, and 5),
which appeared in random order. Behaviorally, participants
showed a linear effect of n-back level on eWM performance
(computed as percentage correct trials) in the scanner, with per-
formance deteriorating as a function of increasing levels of n
(F320) = 27.17, p < 0.001, m° = 0.78, Fig. 2A).

To examine neural activation associated with eWM task-
demands at pre-training (Table 1), we contrasted BOLD activa-
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Table 1. eWM training task-demand-related activation at pre-training”

Cluster size Maxima of cluster
Brain region L/R (voxels) Xly/z(mm)® 7
Activation increase®
Superior frontal gyrus R 55 24/57/03 3.56
Middle frontal gyrus L 125 —30/51/12 4.68
R 1216 27/15/51 4.80
R 1216 27/09/60 4.74

Inferior frontal gyrus L 43 —39/21/27 3.67

Supplementary motor area/ L 1216 —06/18/45 473
middle cingulate

Middle orbitofrontal gyrus R 55 27/51/—12 3.66

Inferior parietal lobe R 1671 42/—36/42 5.45

Precuneus R 1671 —09/—57/51 5.10

Inferior temporal gyrus R 64 51/—57/—09 433

Middle posterior insula R 18 30/24/—03 3.16

Globus pallidus L 13 —15/00/—03 3.10

(audate L 40 —12/06/12 2.96

Cerebellum L 266 —12/—54/—45 4.59

L 266 —36/—66/—48  3.90

R 224 36/—54/—36 453

R 224 33/—63/—51 3.89

R 14 12/—54/—48 3.58
Activation decrease?

Medial prefrontal cortex R 759 09/57/21 4.58
(medial superior frontal R 13 09/33/54 2.92
gyrus) R 1" 12/42/42 2.77

R n 06/45/48 2.53

Subgenual prefrontal cortex R 759 00/42/—18 432

Rolandic operculum L 3856 —48/—24/18 6.11

R 1988 51/—2118 5.47

Precentral gyrus R 45 21/-127/63 3.63

Superior temporal gyrus R 97 60/—57/24 3.35

Temporoparietal junction L 142 —45/—63/24 3.63

Middle temporal gyrus R 97 60/—60/09 3.87

R 97 54/—51/06 2.87

Fusiform gyrus R 19 39/—33/—18 3.64

Amygdala/hippocampus L 3856 —27/—06/—15 5.86

R 1988 27/—06/—15 499
Parahippocampal region R 88 12/—39/—06 3.04
Insula L 3856 —39/—06/—06  5.85
R 1988 39/—03/—09  4.84
Thalamus L 13 —12/—24/03 2.74
Cuneus L 17 —03/—84/30 2.66
R 8 09/—87/36 2.67
Lingual gyrus L 8 —12/—=51/—03 2.62
R 88 15/—48/—09  3.01
Cerebellum L 43 —30/—81/—-36  3.85
R 29 33/—78/—36 3.20
R 88 18/—54/—18 318

“Regions that showed differential activation at n-back = 3 compared with n-back = 1back on the scanner version
of the eWM training task at pre-training. Threshold for whole-brain correction at ppps << 0.05.

“Stereotaxic coordinates of peak voxels in MNI space.
‘ttest contrast: Load 3 > Load 1.
“ttest contrast: Load 3 < Load 1.

tion on n-back = 3 trials (in line with the mean peak performance
at pre-training of n-back = 2.80) with activation on n-back = 1
trials. Consistent with our first hypothesis, the eWM task reliably
activated the targeted frontoparietal circuitry and deactivated a
range of brain regions involved in emotion processing, including
the bilateral amygdalae, insular cortex and hippocampi, when
performing the task under greater eWM load (Fig. 1B,C).
Pre-training behavioral assessment showed reduced levels of re-
ported distress to negative films on the ER Task in the Regulation
condition compared with the Attend condition (F, 59y = 91.45, p <
0.001, n° = 0.86; Fig. 2B). Pre-training fMRI revealed that, as in-
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tended, downregulating negative emotions on the ER task (a con-
trast of the Regulate — Attend conditions) recruited regions from
the same frontoparietal demand network as the eWM task, includ-
ing the dorsolateral PFC and inferior parietal cortex. For a detailed
overview of all areas activated by the ER task, see Tables 2 and 3.

Finally, given our a priori assumption that the neural systems
engaged in ER and eWM are overlapping, we conducted a con-
junction analysis to confirm this hypothesis before further ana-
lyzing the training data. The analysis showed a significant overlap
of the frontoparietal regions activated by the ER task and the
eWM task at the whole-brain level (Table 4).

Training-related changes in eWM

Both training groups showed a linear improvement across train-
ing on their respective training tasks (Fig. 3A). However, only
participants in the eWM (but not placebo) training group
showed significant improvements in eWM performance (Fig.
3B). Post-training fMRI (contrasted with activation at pre-
training) while performing the eWM task revealed that these be-
havioral improvements in the eWM training group relative to the
placebo group were associated with reduced recruitment of the
left inferior parietal cortex (Z = 4.18; —57/—48/39; k = 182; Pppr =
0.049) of the task-demand-related network identified at pre-
training (Fig. 1B) and the middle temporal gyrus (Z = 4.37;
60/—45/0; k = 25; Prpr = 0.049). Examining pre-training to
post-training activation changes in this network for each training
group separately revealed no significant changes in the placebo
group but BOLD activation reductions in the ventral and dorsal
lateral PFC and the cingulate, inferior parietal and temporal cor-
tices in the eWM training group (Fig. 3C).

Table 2. Regions showing differential activation across ER task conditions at pre-
training: main effect of type”

Cluster size Maxima of

Brain region LR (voxels)  clusterx/y/z(mm)® Z  Differential activation

Superiormedial PFC R 34 6/60/30 3.98 Attend and Regulate >
Neutral

Middle temporalpole R 21 45/18/30 3.71 Attend > Neutral

—51/—39/—3  3.59 Attend > Neutral
—54/—27/—6  3.35 Attend > Neutral
—48/—21/—15 3.23 Attend > Neutral

Middle temporal gyrus L 46

Fusiform gyrus L 53 —30/—66/—6  4.23 Neutral > Attend
—24/—81/—6  4.17 Neutral > Attend

R 13 30/—66/—3  3.23 Neutral > Attend

Cuneus R 121 9/—93/18 4.45 Attend > Neutral
Vermis L o4 —3/—60/—36 4.11 Attend > Neutral

0/—72/—30 3.59 Attend > Neutral
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To investigate brain activation changes across levels of n-back
on the eWM task from pre-training to post-training, we first
analyzed n-back = 3 trials. At post-training, this level of n-back
was now comfortably within the eWM capacity for the eWM
training group because of their performance gains over training,
but on average continued to represent maximum capacity for the
placebo training group where performance had not improved
(Fig. 3B). eWM performance changes at this level (n-back = 3)
were associated with significantly greater pre-training to post-
training BOLD activation decreases in the eWM training group
compared with placebo training in the frontoparietal demand
network, including the dorsolateral PFC and middle temporal
and occipital regions (Table 5).

Breaking this interaction down to examine pre-training to
post-training activation changes in this network for each training
group separately revealed no significant changes in the placebo
group. In contrast, the eWM training showed a significant acti-
vation decrease at n-back = 3 in the temporal cortex and regions
of the frontoparietal demand network, including the dorsolateral
PFC and inferior parietal cortex, reflecting the now relatively
easier challenge posed by the n-back = 3 trials (Table 6).

We next examined training-related activation changes for
n-back = 5 trials (using a post-training — pre-training contrast).

Table 4. Regions conjointly activated by the eWM and ER tasks at pre-training”

Cluster size Maxima of cluster
Brain region L/R (voxels) Xlylz (mm)° z

Dorsolateral PFC L 82 —33/45/6 5.74
L 30 —42/12/39 5.36
—42/21/33 5.09
L 5 —39/39/18 4.92
R 12 36/45/18 571
33/36/27 532
39/33/36 5.00
R 75 30/12/54 5.62
Superior frontal gyrus 21/15/60 51
Middle cingulate cortex L 90 —9/24/33 498
R 6/21/36 5.37
Superior frontal medial gyrus 3/27/48 473
Inferior parietal L 378 —39/—57/45 7.53
—42/—48/39 7.26

R 3N 51/—39/45 >10
39/—54/42 7.06
Precuneus L 91 —9/—69/45 6.41
—9/—66/48 6.26
Insula L 8 —33/15/6 4.82
Rolandic opercelum R 45 45/15/6 5.72
Insula 39/18/-3 5.23

“Regions that showed differential activation across conditions (F contrast) at the whole-brain level with significance
level thresholded at pyncomectea << 0.001. Subsequent univariate analyses revealed the specific conditions that
showed a significant difference (reported in the last column).

bStereotaxic coordinates of peak voxels in MNI space.

Table 3. ROIs showing differential activation across ER task conditions at pre-training”

“Regions that emerged as being activated by both the eWM training task (Load 3 vs Load 1) and the ER task (Reg-
ulate vs Attend) in a conjunction analysis of the two tasks. Threshold for whole-brain correction was set at peye <
0.05.

YStereotaxic coordinates of peak voxels in MNI space.

Brain region L/R Neutral, mean (SD) Attend, mean (SD) Regulate Attend > Neutral, p (nz) Regulate > Attend, p (nz)
Medial PFC L 0.16 (0.35) 0.27 (0.39) 0.29 (0.30) <0.05(0.17)
R 0.11(0.30) 0.20 (0.25) 0.21(0.26) <<0.05 (0.18)
Lateral PFC (middle frontal) L 0.11(0.27) 0.17 (0.29) 0.27 (0.30) <<0.05(0.13)
R 0.12 (0.30) 0.22 (0.34) 0.38 (0.26) <0.01(0.23)
OFC L 0.03 (0.30) 0.11(0.31) 0.14 (0.24) <<0.05 (0.14)
R 0.10 (0.32) 0.16 (0.36) 0.25(0.31) <0.05(0.13)
Inferior parietal cortex L 0.18 (0.36) 0.25 (0.40) 0.38(0.35) <0.05 (0.15)
R 0.23(0.32) 0.28 (0.35) 0.35(0.31) <0.05 (0.14)

“BOLD activation in the a priori specified ROIs across the different ER conditions. None of the other ROIs showed a significant effect of condition.
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Figure3. A, The graphs represent the eWM training (top graph) and placebo training (bottom graph) groups’ performance on their respective tasks across training days. For the eWM training,
the graph reports average level of n-back achieved across 20 blocks per day; and for the placebo training, a composite score (including raw score, number of attempts, and reaction time) on the
feature match task is reported. Error bars indicate SD. B, The behavioral gains in eWM across training plotted as mean peak level of n-back achieved. A mixed-model ANOVA with time (pre-training
and post-training) as the within-subjects factor and training (placebo, eWM) as the between-subjects factor yielded a significant interaction, which showed that the augmentation of e WM observed
in the WM training group was significantly greater than the change in the placebo training group (F;; 35, = 16.61, p << 0.001, longer dotted line). Repeated-measures analyses with time
(pre-training, post-training) as the within-subjects factor were then conducted in the two groups separately. These revealed that the placebo training did not lead to any significant changes in eWM
performance (A mean, —0.59; SD, 1.6; p = 0.18). In contrast, eWM training led to a significant pre-training to post-training increase in eWM performance (A mean, 1.59; SD, 1.2; p < 0.001,
shorter dotted line). Moreover, eWM performance was significantly greater in the eWM training group compared with the placebo training group at post-training (t = —2.79 p = 0.009). ***p <
0.001, two-tailed significance level. Error bars indicate SDs. €, BOLD activation changes during the eWM task from pre-training to post-training conflated across all levels of n-back for the training
groups. Significant interactions of training (placebo, eWM) X time (pre-training, post-training) are described in the main text. The absence of behavioral change after placebo training was mirrored
by the absence of brain activation changes (left). In contrast, the behavioral gain in eWM after eWM training (right) was associated with decreased neural activation in the (1) left ventrolateral to
dorsolateral PFC (Z = 4.10, —42/42/6), (Il) bilateral inferior parietal cortex (Z = 4.87, —57/—48/39) and right precuneus (Z = 3.54, 12/ —63/36), (lll) inferior/middle temporal gyrus (Z = 5.76,
63/—33/—9), (IV) bilateral middle and posterior cingulum (Z = 3.74, —3/—24/33),and (V) left ACC (Z = 2.53, —1/10/25). All regions were significant at the whole brain with significance set
at Py, < 0.05.

As expected, this level of n-back was, on average, beyond the  ofthen-back = 5 trials was now attainable at post-training for the
capacity of the placebo training group at post-training (mean,  eWM training group.

3.08; SD, 1.13) but was closest to mean maximum capacity for the

eWM training group (mean, 7.00; SD, 1.97). At this level of = Changes in ER: behavioral effects and neural activation
n-back, the eWM training group showed a significant BOLD ac-  changes after training

tivation increase compared with the placebo training within the =~ Analyses of the ER task confirmed our key hypothesis of behav-
frontoparietal demand network, including the lateral PFC and  ioral transfer effects in the capacity for ER as a specific function of
inferior parietal cortex, and the OFC (Table 7). Breaking this =~ eWM training, which were associated with pre-training to post-
down for each group separately, there were no significant pre-  training changes in BOLD activation in the frontoparietal
training to post-training changes in the activation of this network ~ demand network. Behaviorally, there was a significant time (pre-
in the placebo group, but there were significant activation in-  training, post-training) X training (placebo, eWM) X condition
creases in the eWM training group in the lateral PFC and middle ~ (Regulate, Attend) interaction (covarying baseline differences in
cingulum (Table 6). These differential training effects reflect the ~ mood for the Neutral condition, although this did not alter the
fact that, with augmented executive effort, successful completion ~ pattern of findings), with significantly greater reduction in emo-
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tional distress to the negative films in the Regulate relative to the
Attend condition compared with the placebo training group
(F127) = 4.91,p = 0.035,° = 0.15; Fig. 4A). We deconstructed
this interaction by investigating the effects of training in each

Table 5. Regions showing a greater activation decrease from pre-training to post-
training after eWM training compared with placebo training for n-back = 3 trials”

Cluster size Maxima of cluster
Brain region L/R (voxels) xlylz (mm)° z
Dorsolateral PFC L 10 —48/39/18 3.77
Superior frontal gyrus R n 27/—6/63 3.40
Supramarginal gyrus L 8 —51/—30/33 3.46
R 31 63/—33/42 4.00
Middle temporal gyrus L 27 —51/—63/15 4.16
L 17 —60/—45/0 3.78
R 58 60/—48/0 391
Middle occipital lobe L 29 —45/—81/3 3.87
R 20 42/—81/9 3.77

“Regions that showed greater pre-training to post-training BOLD activation decreases at n-back = 3 in the
eWM training group compared with the placebo training group. Threshold for whole-brain correction is
Puncorrected < 0.001.

YStereotaxic coordinates of peak voxels in MNI space.

Table 6. Regions showing activation changes from pre-training to post-training
during the eWM task after eWM training”

Clustersize  Maxima of cluster
Brain region L/R  Cluster  (voxels) xlylz (mm)® 7

n-back =3

Dorsolateral to middle PFC L 6 182 —33/48/3 3.71

6 —30/54/21 3.52

R 2 1686 45/1218 4.95

2 27/48/18 439

Middle OFC L 6 —45/51/—3 3.49

Inferior parietal cortex L 3 260 —57/—48/39 4.56

3 —39/—=57/45 3.24

Middle temporal gyrus R 1 1095 60/—30/—9  5.06

Inferior temporal gyrus L 5 9% —57/—36/—15 3.85

Fusiform gyrus L 7 —42/—54/—18  3.07

Insula L 4 —36/15/—3 3.88

R 2 2/2/3 4.06

Thalamus L 4 556 9/—9/18 3.90

Inferior occipital gyrus L 7 80 —48/—69/—9 334

Cerebellum R 8 2 36/—57/—45 3.25
n-back =5

Lateral PFC R 2 121 51/27/-3 4.28

2 48/24/9 3.9

4 36 48/15/24 3.54

Supplementary motorarea R 3 23 12/21/60 3.74

Middle cingulate L 5 7 —6/—24/33 3.20

Angular gyrus L 1 211 —54/—57/36 4.67

“Regions that showed pre-training to post-training BOLD activation increases at n-back = 5 in the eWM training
group. Threshold for whole-brain correction was set at pgpp << 0.05.

bStereotaxic coordinates of peak voxels in MNI space.
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group separately. eWM training was associated with a signifi-
cantly greater pre-training to post-training decrease in emotional
distress for the Regulate relative to the Attend condition (F(, ;5, =
6.06, p = 0.029, > = 0.32). In contrast, the placebo training
group showed a nonsignificant pre-training to post-training in-
crease in reported distress in the Regulate relative to the Attend
condition (F; 5, = 4.22, p = 0.061, n*> = 0.25). There was no
effect of training on emotional reactivity (i.e., changes in reported
distress for Attend compared with Neutral trials); that is, the
interaction of time (pre-training, post-training) X training (pla-
cebo, eWM) X condition (Attend negative vs Attend neutral) was
not significant (F, ,;y < 1). Pre-training to post-training im-
provements in ER capacity (i.e., a reduction in reported distress
for Regulate compared with Attend trials) across all participants
were significantly correlated with improvement in eWM (r =
—0.43, p = 0.019; Fig. 4B). Pre-training to post-training changes
in reported emotional reactivity, however, were not significantly
associated with eWM changes (r = 0.14; p = 0.25). A mediation
analysis provided further support for the transfer of eWM train-
ing to changes in ER capacity. Our mediation approach used the
bootstrapping method devised by Preacher and Hayes (2004). A
total of 1000 resamples of the data (with replacement) were exe-
cuted using Hayes and Preacher’s SPSS macro (http://www.
athayes.com/spss-sas-and-mplus-macros-and-code.html). The
model revealed a significant indirect effect for eWM training
gains to mediate between training group (placebo, eWM) and
pre-training to post-training improvements in ER (Regulate, At-
tend), bootstrap index = 0.48, SE = 0.23, 95% bias-corrected
CI = 0.11-1.05 (statistical significance is indicated if the CI does
not cross 0) (Preacher and Hayes, 2004). This significant indirect
effect overlay significant associations between training group and
the mediator—eWM training gains (¢t = 3.98, p = 0.001) and
between eWM training gains and the outcome—improvement in
ER (t = 2.03, p = 0.025).

Turning to the brain imaging analyses, we first examined pre-
training to post-training BOLD activation changes across the ER
task as a whole because each separate condition of the ER task
required participants to exert some form of executive control
over their emotions (e.g., the Attend condition required them to
try not to downregulate their affective responses). Cognitive con-
trol was also exerted to keep current task-demands active and to
switch between the different conditions (i.e., Regulate, Attend,
and Neutral). These analyses revealed a pre-training to post-
training increase in neural activity when performing the ER task
in areas of the frontoparietal demand network implicated in both
the ER task and eWM training task at pre-training. Whole-brain
analyses showed that, compared with placebo training, eWM
training led to significant BOLD activation increases from pre-
training to post-training in sgACC (Z = 2.99, 3/18/—9), inferior
OFC (Z = 2.98, —24/33/—6), inferior frontotemporal, (Z = 3.02,
—39/6/—30), inferior parietal (Z = 2.99, 3/—42/57), and visuo-

Table 7. ROIs showing a greater activation increase from pre-training to post-training during the eWM task after eWM training compared with placebo training for

n-back = 5 trials’

Placebo training eWM training
Brain region L/R 5-back pre-training 5-back post-training 5-back pre-training 5-back post-training Fazn
OFC R —0.08(0.17) —0.11(0.26) —0.06 (0.26) 0.27 (0.25) 8.39%
Lateral PFC (inferior frontal gyrus) R 0.08 (0.19) 0.00 (0.35) —0.13(0.24) 0.02 (0.24) 5.07**
Inferior parietal cortex R 0.16 (0.35) 0.33(0.52) 0.00 (0.39) 0.30 (0.43) 4.91%*

“BOLD activation for the ROIs, which showed a significantly different pre-training to post-training activation change related to task difficulty in the eWM training group compared with the placebo training group at the level of n-back = 5.

*p < 0.01.
**p < 0.05.
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Figure 4. A, The graph reports mean changes (post-training — pre-training) in emotion ratings for each condition; lower change scores indicate reduced negative affect after training in that
condition. B, The graph represents the association between pre-training and post-training changes in ER capacity and changes in eWM. The association is negative because the ER measure represents
the pre-training to post-training reduction in reported emotional distress, whereas eWM reports increases in maximum level of n-back achieved at the offline post-training assessment. C, The figure
shows the differential effects of eWM training compared with placebo training across time for the Regulate versus Attend conditions in the left superior temporal gyrus. The figure is represented at
P incorrected < 0.001. Error bars indicate SEM. D, The graphs depict the effect of eWM training compared with placebo training across time (pre-training, post-training) for the Regulate versus Attend

conditions on BOLD activation in the ROI. Error bars indicate SEM.

temporal cortices (Z = 5.11, —9/—75/21). To support the
assumption that the observed differential pre-training to post-
training changes in BOLD activation during the ER task in the
eWM training group changed within the network that was
trained by the eWM training task, we ran a conjunction analysis
on the interaction between task (eWM task, ER task), time (pre-
training, post-training), and training (placebo, eWM). The anal-
ysis revealed a circumscribed (k = 11) cluster of shared activation
in the left lateral PFC (Z = 3.04, —30/36/42).

We next investigated whether the training had differential ef-
fects across ER task conditions. Confirming our a priori hypoth-
esis and in line with the behavioral findings, eWM training,
relative to placebo training, had selective effects on BOLD activa-
tion during the Regulate relative to the Attend condition. Whole-
brain analyses yielded a significant interactive effect of time
(pre-training, post-training) X training (placebo, eWM) X con-
dition (Attend, Regulate) on BOLD activation in the right supe-
rior temporal gyrus (bordering on the temporoparietal junction,
Z = 3.89, 69/—27/21). The eWM group showed a significant
activation increase compared with the Placebo group in the Reg-
ulate condition but not in the Attend condition (Fig. 4C). ROI
analyses (Fig. 4D) on the same contrast (Regulate, Attend) fur-
ther revealed greater pre-training to post-training increases after
eWM training compared with placebo training in the sgACC
(F(1.30) = 5.09, p = 0.032), medial PFC (F,, 5, = 4.40, p = 0.044),
and at a trend level in the lateral PFC (F(, 55, = 3.14, p = 0.086)
and OFC (F, 5, = 3.56, p = 0.069).

We deconstructed these interactions to investigate pre-
training to post-training activation changes in each training
group separately. For the eWM training group, at the whole-
brain level, these analyses showed a significant interaction of time
(pre-training, post-training) by condition (Attend, Regulate) in
the lateral (I) and medial (IT) PFC, extending into the OFC, mid-
dle temporal gyrus (IIT), and the cingulate cortex (IV, V; Fig.
5A, B; for alist of all regions showing a significant interaction, see
Table 8). ROI analyses in the eWM group confirmed that pre-
training to post-training activation increases for the Regulate rel-
ative to Attend trials in the lateral and medial PFC, OFC, and
ACC and showed additional effects in the sgACC, and the inferior
parietal cortex (Table 9).

As in the behavioral analyses, we tested whether pre-training
to post-training BOLD activation changes during the eWM task
mediated the effect of training type (placebo, eWM) on pre-
training to post-training changes in (behavioral) ER (Regulate,
Attend) capacity. As before, 1000 resamples of the data (with
replacement) were executed using Hayes and Preacher’s SPSS
macro  (http://www.athayes.com/spss-sas-and-mplus-macros-
and-code.html). The model revealed a significant indirect effect
for change in lateral PFC activation to mediate the association
between training group (placebo, eWM) and pre-training to
post-training improvements in ER (Regulate, Attend), bootstrap
index = —0.26, SE = 0.17, 95% bias-corrected CI = —0.71 to
—0.03 (statistical significance is indicated if the CI does not cross
0) (Preacher and Hayes, 2004). No other ROI showed a mediat-
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Figure5. A, The figure shows brain areas that showed greater BOLD activation increases (a contrast of post-training — pre-training) in the Regulate relative to the Attend condition for the eWM
training group only at the whole-brain level of analysis. The figure was thresholded at P, ¢qeq << 0.001. For a full list of activation details, see Table 8. B, The histograms depict mean BOLD
activation during the ER task at pre-training and post-training in the regions reported in Figure 54, which showed an interactive effect of time (pre-training, post-training) and condition (Regulate,

Attend) in the eWM training group. Error bars indicate SEM.

Table 8. Regions showing a pre-training to post-training greater increase in BOLD
activation during Regulate compared with Attend trials for the eWM training
group”

Table 9. ROIs showing a pre-training to post-training greater increase in BOLD
activation during Regulate compared with Attend trials for the eWM training
group”

Cluster  Clustersize  Maxima of cluster
Brain region L/R number  (voxels) xlylz (mm)° 7
Inferior OFC L 1 530 —42/33/-3 4.62
Medial PFC R 4 25 9/60/33 418
Lateral PFC L 1 530 —57/24/3 4.80
L 7 15 —27/54/27 4.07
R 2 207 60/24/15 430
Inferior frontal operculum L 1 530 —57/15/9 450
R 2 207 45/12/21 431
R 2 207 63/15/18 429
Lateral superior PFC L 6 Iy} —18/9/60 3.21
Supplementary motorarea L 6 42 —12/15/63 4.15
R 6 42 9/12/60 3.69
Anterior cingulate R N 7 9/42/30 3.52
Middle cingulate L 5 216 —6/—21/39 3.97
Precuneus L 5 216 —6/—51/39 3.66
Temporoparietal junction L 3 162 —54/—54/24 430
R 9 10 63/—51/30 3.90
Superior temporal gyrus R 10 12 63/0/—6 3.87
Middle temporal gyrus L 3 162 —66/—42/12 3.63
Middle occipital gyrus L 8 179 —30/—78/21 4.04
L 8 179 —42/=72/24 3.65
Cerebellum R 289 21/—78/—27 446

12/—75/—=30 445

“Regions that showed pre-training to post-training BOLD activation increases for the Regulate relative to the Attend
condition in the WM training group at the whole-brain level. Threshold for whole-brain correction is p,,corrected <<
0.001.

UStereotaxic coordinates of peak voxels in MNI space.

ing effect on ER capacity. This significant indirect effect overlay
significant associations between training group and the media-
tor—change in lateral PFC activation (t = 2.18, p = 0.025) and
between change in lateral PFC activation and the outcome—im-
provement in ER (¢ = 2.03, p = 0.026).

We also examined neural changes associated with emotional
reactivity on the ER task as a function of training by comparing
BOLD activation with Attend versus Neutral trials across groups
from pre-training to post-training. Mirroring the behavioral
data, whole-brain and ROI analyses yielded no significant inter-
active effects of time (pre-training, post-training) by condition
(Attend, Neutral) in the placebo training group.

Attend Regulate
Post- Post-

Brain region L/R Pre-training training  Pre-training ~ training  F; 4 7
Subgenual ACC L —0.03(0.22) 0.06(0.20) —0.01(0.21) 0.13(0.26) 4.65* 0.24
ACC L 0.27(0.27) 0.21(0.40)  0.09(0.36) 0.26 (0.38) 5.68* 0.28
OFC L 0.14(0.23) 0.12(0.26)  0.04(0.28) 0.23 (0.31) 8.21* 0.35
Medial PFC L 0.13(0.16) 0.11(0.22)  0.06 (0.19) 0.11(0.24) 4.60* 0.24
Lateral PFC L 0.14(0.26) 0.11(0.28)  0.01(0.32) 0.19(0.30) 7.62* 0.34

(middle frontal R 0.21(0.34) 0.16(0.40)  0.06 (0.33) 0.23 (0.41) 4.85* 0.24

gyrus)
Inferior parietal L 0.34(0.19) 0.29(0.26)  0.21(0.24) 0.34(0.28) 5.23* 0.26

cortex

“Significant ROIs for the same contrast.
*p < 0.05.

Discussion

The present findings show that 20 d of WM training on a dual
n-back task populated with emotional stimuli (eWM task)
(Schweizer et al., 2011) resulted in marked behavioral improve-
ments on the trained task. Placebo training on a feature match par-
adigm low in WM demands generated no such improvements in
eWM task performance. These behavioral gains, specific to the eWM
training, were associated with increased efficiency of the frontopari-
etal cognitive control network (Miller, 2000; Duncan, 2010) from
pre-training to post-training assessed with fMRI while participants
performed the eWM task in the scanner. Furthermore, eWM train-
ing, and not placebo training, accrued clear behavioral and neural
transfer effects across to a “gold standard” index of affective cogni-
tive control, ER. Improved ER, specific to the eWM training group,
was associated with increased recruitment of the same frontoparietal
demand network implicated in eWM performance; this notably in-
cluded the sgACC, a region crucially involved in mood regulation
(Davidson et al., 2002; Drevets et al., 2008).

Our first experimental aim was to use fMRI at pre-training to
confirm that the eWM task activated the extended frontoparietal
affective control network (Wager et al., 2008; Banich et al., 2009) and
deactivated limbic regions associated with emotion processing
(Dalgleish, 2004). In line with this, pre-training task-demand-
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related BOLD activation increases were observed in the dorso-
lateral PFC and inferior parietal cortex while participants performed
the eWM task. These regions overlap with those typically found dur-
ing the performance of n-back tasks (for a meta-analysis, see Owen et
al., 2005). We also found that task-demand-related decreased BOLD
activation in emotion processing regions, in line with previous stud-
ies on WM that show decreased activation of emotion processing
regions at higher levels of cognitive load (Kellermann et al., 2012).
Our prediction that augmented eWM capacity after training
would be specific to the eWM training group was supported by the
behavioral data. We anticipated that these specific behavioral gains
in eWM would be associated with changes in the activation profile of
the frontoparietal demand network from pre-training to post-
training while participants performed the eWM task, reflecting the
augmented efficiency of this network as a function of eWM training
(Poldrack, 2000). Theorists argue that training leads to either (1)
greater capacity to apply an initial strategy, which is associated with
increased neural efficiency, or (2) the development of a new skill,
which leads to functional reorganization (Kelly and Garavan, 2005).
The BOLD-signal changes after practice, as observed in the current
study, are an example of the former and proposed to indicate a
“sharpened” (i.e., more efficient) response of the trained neural net-
work (Poldrack, 2000). We anticipated that, after training, this
increased efficiency of the neural regions subserving eWM per-
formance in the eWM training group would manifest in different
ways as a function of eWM load. This was supported by the data. For
a lower level of load (n-back = 3) that represented eWM perfor-
mance maximum capacity at pre-training but was comfortably
within that capacity at post-training for the eWM training group,
there was decreased frontoparietal activation from pre-training to
post-training relative to the placebo training group. In contrast, fora
higher load (n-back = 5) that was beyond performance maximum
capacity (and was therefore unattainable) at pre-training for the
eWM training group but became attainable at post-training, there
was increased functional activation of the frontoparietal demand
network from pre-training to post-training relative to the placebo-
trained participants. These results (in combination with the previ-
ously discussed task-demands analyses at pre-training) suggest that
increasingly effortful eWM performance is associated with increased
activation in the task-demand-related frontoparietal demand net-
work, including the inferior parietal and lateral and middle PFC,
whereas improved eWM capacity is associated with decreased acti-
vation for a given task load in the same task-demand-related areas.
This finding of differential patterns of eWM-related activation in-
crease or decrease across the frontoparietal demand network from
pre-training to post-training as a function of different levels of eWM
load, and specific to eWM training relative to placebo training, po-
tentially reconciles discrepant results in the extant literature, which
have shown patterns of neural activation increase (Olesen et al.,
2004) and decrease (Schneiders et al., 2011) across different experi-
ments (for a recent review, see Buschkuehl et al., 2011). It should be
noted, however, that there were behavioral pre-training perfor-
mance differences on the eWM task with the placebo training group
performing significantly better at pre-training. The eWM training
group therefore had more room for performance improvement
from pre-training to post-training compared with the placebo train-
ing group, which may account for part of the training effects.
Although improvement on the trained task itself is a sine qua
non of cognitive training interventions, the fundamental aim of
such protocols is to generate far transfer to untrained tasks
(Subramaniam et al., 2012). Our central proposition was there-
fore to investigate, for the first time, putative cognitive and neural
transfer effects from eWM training to an ecologically valid mea-
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sure of affective cognitive control, ER capacity, which is depen-
dent on the same underlying neural circuitry in the frontoparietal
demand network as eWM, including the medial and lateral PFC
and inferior parietal cortex (Banich et al., 2009). In support of the
behavioral component of our core hypothesis, we showed that
eWM training (compared with placebo training) yielded signifi-
cantly improved ER capacity. Moreover, the greater the training
gains in eWM performance, the greater the improvement in ER
capacity from pre-training to post-training. Similarly, a formal
mediation analysis showed that training-related improvements
in eWM performance mediated the gains in ER capacity. This
finding is highly encouraging as ER capacity is associated with a
wide range of beneficial outcomes, such as better social relation-
ships and better health (Gross, 2002), and impoverished ER is
pervasive across psychopathology (Aldao et al., 2010). Augment-
ing ER capacity through a simple, easily administered eWM
training with the possibility for easy dissemination therefore pro-
vides an exciting novel avenue to improve ER across a wide range
of populations, including clinical and at risk groups.

The results also supported the neuroscientific component of
our transfer hypothesis, which posited that because eWM and ER
share underlying neural substrates, training in one context would
benefit performance in the other by augmenting the efficiency of
this common neural network. The data showed that the eWM
training-driven improvement in ER capacity was associated with
augmented BOLD activation during ER in the eWM training
group relative to the placebo training group in the frontoparietal
demand network that was targeted by the eWM training. This
network, especially the lateral and medial PFC, is thought to be
essential to successful ER by downregulating emotional activa-
tion in subcortical emotion processing areas, including the
amygdala (Wager et al., 2008). Moreover, compared with the
placebo training, the eWM training group showed increased ac-
tivation in the superior temporal cortex and lateral and medial
(sgACC and OFC) PFC, during Regulate compared with Attend
trials. A conjunction analysis revealed a cluster in the left lateral PFC,
which showed a significant BOLD activation for both the eWM and
ER tasks. Interestingly, however, we found no significant training-
specific changes in activation in the subcortical brain regions associ-
ated with emotion processing during the ER task from pre-training
to post-training. Perhaps the most important evidence of “neural
transfer” in the data were the increased BOLD activation in the
sgACC during ER at post-training that was recorded in the eWM
training group only. The sgACC has been reliably shown to be in-
volved in successful downregulation of emotional distress through
the use of various effortful cognitive control strategies (Wager et al.,
2008). The mechanism of action is likely to be sgACC’s coupling
with the amygdale, and the strength of this functional coupling is
predictive of ER success (Banks et al., 2007). It is also worth noting
that the inhibitory effect of the sgACC on amygdala activation is
reduced in those at genetic risk for depression (Pezawas et al., 2005)
and in currently depressed individuals, who are characterized by
poor ER capacity (Anand et al., 2005). Moreover, depressed individ-
uals show reduced gray matter volumes in the sgACC and resting-
state hypoactivation of the region compared with healthy controls
(Davidson et al., 2002). The role of the sgACC in mood regulation is
further evidenced by studies of deep brain stimulation in the sgACC
that report symptom alleviation in previously treatment-resistant
patients (Maybergetal., 2005). Our current finding that engagement
of the sgACC during ER can be augmented after an eWM training
that is dependent on affective cognitive control is encouraging for
the treatment and prevention of mood and other highly prevalent neu-
ropsychiatric disorders that are characterized by dysfunctional
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sgACC activation (Rauch et al., 2003). The reported imaging find-
ings based on ROI analyses, however, should be interpreted with a
degree of caution because they were based on a significance thresh-
old uncorrected for multiple comparisons. Finally, it is important to
note that, unlike our previous work (Schweizer et al., 2011), the
present study did not compare the eWM training with standard WM
training using affectively neutral material. It is therefore possible that
transferable ER gains may also be accrued through nonaffective WM
training paradigms.

In conclusion, the present study is the first to find support for
behavioral and neural transfer effects after eWM training to an
ecologically valid measure of affective cognitive control, ER ca-
pacity. The data significantly enhance our understanding of the
neural substrates underlying cognitive training transfer effects.
The findings also underscore the promise of cognitive training
protocols populated with affective stimuli as a means to boost
affective control in healthy populations where such control is
critical (e.g., professionals, such as physicians, pilots, and stock-
brokers required to make decisions in stressful situations). Fi-
nally, the results highlight the potential of eWM training for
clinical groups with impoverished affective cognitive control.
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