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Abstract. We studied the chromospheric Evershed flow from filtergrams obtained at nine wavelengths along the Hα profile.
We computed line-of-sight velocities based on Becker’s cloud model and we determined the components of the flow velocity
vector as a function of distance from the center of the sunspot, assuming an axial symmetry of both the spot and the flow. We
found that the flow velocity decreases with decreasing height and that the maximum of the velocity shifts towards the inner
penumbral boundary. The flow related to some fibrils deviates significantly from the average Evershed flow. The profile of the
magnitude of the flow velocity as a function of distance from the spot center, indicates that the velocity attains its maximum
value in the downstream part of the flow channels (assumed to have the form of a loop). This behavior can be understood
in terms of a critical flow that pass from subsonic to supersonic near the apex of the loop, attains its higher velocity at the
downstream part of the loop and finally relaxes to subsonic through a tube shock. We computed the average flow vector from
segmented line-of-sight velocity maps, excluding bright or dark fibrils alternatively. We found that the radial component of the
velocity does not show a significant difference, but the magnitude of the vertical component of the velocity related to dark fibrils
is higher than that related to bright fibrils.
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1. Introduction

An important property of sunspot penumbrae at the photo-
spheric level is the well-known Evershed effect, a predomi-
nantly radial horizontal outflow from the sunspot to the sur-
roundings (see Muller 1992; Thomas 1994; Maltby 1997, for
recent reviews). At the chromospheric level around most ma-
ture sunspots a superpenumbra is usually present. It consists of
roughly radial elongated fibrils that begin within the penumbra
and extend a few spot radii beyond the penumbra (Loughhead
1968; Moore 1981). Inherent to the superpenumbra is a mate-
rial flow directed towards the sunspot umbra that is called the
inverse Evershed flow. It is believed to be a material flow along
the superpenumbral fibrils, assumed to form individual mag-
netic flux tubes. A siphon flow mechanism has been proposed
as an explanation; the driving force of the motion is the gas
pressure difference between the two foot points of a flux tube
(Meyer & Schmidt 1968; Maltby 1997; Thomas 1994).

Several authors studied the inverse Evershed flow, trying to
determine the basic characteristics of the flow. Beckers (1964),
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using Hα filtergrams, concluded that the chromospheric mate-
rial appears to flow into the spot along dark “channels” with
a velocity of about 40–50 km s−1. Haugen (1969), based on
Doppler velocities determined from Hα spectra, computed the
radial and vertical components of the flow. He found that the
average velocity vector shows a maximum of 6.8± 1.2 km s−1

just outside the penumbral rim and decreases quickly with in-
creasing distance from the spot. He found rms deviations of the
order of 7 km s−1 from the average velocity field.

Maltby (1975) studied the flow using high-resolution filter-
grams of a sunspot region observed at seven wavelengths in Hα
and applying the photographic subtraction method, in order to
compute Dopplergrams. He concluded that the gas is moving
in flow channels that have the form of loops with cross section
changing with height and distance from the sunspot; the gas
first moves with a subsonic speed, obtains a supersonic speed
close to the summit of the loop and remains supersonic until it
passes to subsonic through a shock. Moore (1981) comparing
Hα filtergrams concluded that the flow is concentrated along
those fibrils which are darkest in the line center and estimated
the flow velocity to be about 20 km s−1.

Dialetis et al. (1985) and Dere et al. (1990) used medium
resolution filtergrams at 9 wavelengths along the Hα line in or-
der to study the phenomenon. They computed the components
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Fig. 1. Image of a large isolated sunspot observed near disk center on August 15 1997 in Hα centera) and line-of-sight Doppler velocity maps
computed from filtergrams in Hα ± 0.35 Å b), Hα ± 0.5 Å c), and Hα ± 0.75 Å d). Tick marks in both axis correspond to 2.6′′. The gray scale
bar in the upper left image corresponds to normalized intensities and the other gray scale bars correspond to velocities in km s−1.

of the velocity vector as a function of distance from the center
of the spot under the assumption of axial symmetry. They found
radial inflows of up to 2.6 km s−1 in the Hα ± 0.35 Å chromo-
sphere (Mach numbers of about 0.25) and that the maximum of
the velocity is well outside the penumbra. They proposed that
the velocity remains subsonic along the flux tubes.

As it is clear from the previous short review there is a dis-
crepancy concerning the magnitude of the velocity and whether

the flow can be described as a critical or subcritical siphon
flow. In this work we study the chromospheric Evershed phe-
nomenon, using high resolution filtergrams at nine wavelengths
along the Hα profile. We compute the velocity components of
the average flow, trying to resolve the above discrepancies and
better understand the nature of the flow. We further investi-
gate the properties of the flow for different categories of fibrils
(bright/dark).
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Fig. 2. Azimuthal slice of the Hα ± 0.5 Å line-of-sight velocity map,
measured near the penumbra-superpenumbra boundary. The solid line
corresponds to the line-of-sight velocity computed from the fitted flow
velocity components.

2. Observations and data processing

2.1. Observations and basic image processing

Observations were obtained at the R.B. Dunn telescope of
the Sacramento Peak Observatory with a 512 by 512 pixel
CCD camera and the UBF filter. The pixel spatial resolution
was 0.26′′. A large isolated sunspot was observed at N14.7,
E26.0 on August 15, 1997. The observations are described in
detail in Christopoulou et al. (2001). In this paper we focus our
analysis on a sequence of filtergrams obtained at 9 wavelengths
along the Hα profile (0,±0.35,±0.5,±0.75,±1.0 Å). The du-
ration of the observations was about 10 min. The time interval
between successive images of the same wavelength was 36 s
and the time difference between opposite Hα wings was 4 s.
The precision of the UBF filter is of the order of 1 mÅ, while
the FWHM is about 240 mÅ near Hα. Raw images were cor-
rected for dark current and flat field and carefully aligned. In or-
der to align the images we first computed spatially “enhanced”
images applying an image enhancement method based on the
“ à trous” wavelet transform (see Sect. 3.3 and Christopoulou
et al. 2002). Subsequently we used a cross correlation algo-
rithm in order to compute the offset between two images, based
on the area of the superpenumbra. The displacements com-
puted this way were then applied to the original images.

2.2. Computation of line-of-sight velocities

Bray (1973b) introduced a method based on Becker’s cloud
model (e.g. Beckers 1964) for the computation of reliable line-
of-sight velocities from opposite Hα line wing filtergrams.
Becker’s cloud model assumes that the chromospheric fea-
tures are cloud structures overlying a uniform stationary at-
mosphere. The model takes into account four parameters:
the source functionS, the optical depth at line centerτo,
the Doppler width∆λD which depends on the temperature
and the micro-turbulent motions, and the Doppler shift∆λ

Fig. 3.Comparison of the velocities computed at Hα±0.35 Å (x-axis)
versus the velocities computed at Hα ± 0.5 Å (y-axis) a) and of the
velocities computed at Hα ± 0.5 Å (x-axis) versus the velocities com-
puted at Hα ± 0.75 Å (y-axis)b), for the area of the superpenumbra.

corresponding to the line-of-sight component of the velocity.
All parameters are assumed to be constant along the line-of-
sight through the structure. Furthermore, the source function is
considered wavelength-independent and the profile of the opti-
cal depth Gaussian. According to the cloud model approxima-
tion the intensity profileI (∆λ) of a chromospheric absorption
line (e.g. Hα) can be written as follows:

I (∆λ) = Ib(∆λ) exp(−τ(∆λ)) + S(1− exp(−τ(∆λ)) (1)

where Ib is the background intensity,τ is the optical depth,
andS is the source function. The optical depth under the as-
sumption of a Gaussian profile can be written:

τ = τo exp
(
−
((
∆λ + λυ/c

)
/∆λD

)2)
(2)

whereυ is the flow velocity (positive towards the observer).
Assuming that the intensity profile of the background is sym-
metric with respect to the line center and using Eqs. (1) and (2)
we obtain the relation:

∆I/ (ΣI − 2IB) =
(
e−τ

+ − e−τ
−) / (

2− e−τ
+ − e−τ

−)
(3)
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Fig. 4.Plots of the average components of the flow velocity vector as a
function of distance from the center of the sunspot for Hα±0.35 Å a),
Hα ± 0.5 Å b) and Hα ± 0.75 Å c). The solid line represents the
radial, the dotted the azimuthal and the dashed the vertical compo-
nent. The two vertical lines mark the inner and outer boundaries of the
penumbra.

where∆I = I (−∆λ) − I (∆λ), ΣI = I (−∆λ) + I (∆λ), and
τ± = τ(±∆λ).

Fig. 5. Comparison of the radiala) and the verticalb) components
of the line-of-sight velocity computed at Hα ± 0.35 Å (solid line),
Hα ± 0.5 Å (dotted line) and Hα ± 0.75 Å (dashed line).

The variables on the left-hand side of the above equation
can be determined from opposite Hα line wing filtergrams,
while the right-hand side depends onτo, ∆λD and υ. In Hα
images of the quiet chromosphere the fine structures appear
on top of a uniform background assumed to have a zero ve-
locity; moreover they occupy a small percent of the area of
the image. Thus in order to normalize the intensity images
and determine the background intensity we first computed
the histogram of the intensity values over a large area of the
quiet chromosphere away from the immediate vicinity of the
sunspot. We further computed the average of the values con-
tained within 0.67 sigma around the most probable value. We
should note that based on extended experiments Georgakilas
(1992) found that this method gives more accurate results than
averaging the intensity over unstructured regions where one ex-
pects the velocity to be very near zero. In order to compute
the line-of-sight velocity from only two opposite Hα wing fil-
tergrams, estimations of the optical depth at line center and
the Doppler width are further needed (see Georgakilas et al.
1990). Bray and others authors successfully applied the method
for studying the physical properties of various chromospheric
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Fig. 6.Comparison of the magnitude of the flow velocity at Hα±0.5 Å
(solid line), with the angle between the velocity vector and the hori-
zontal plane (dotted line).

features (Bray 1973a, 1974; Georgakilas et al. 1990; Suematsu
et al. 1995; Malherbe et al. 1997; Georgakilas et al. 2001). We
applied the above method in order to compute line-of-sight ve-
locities from the Hα ± 0.35 Å, Hα ± 0.5 Å and Hα ± 0.75 Å
filtergrams. We usedτo = 1.3 and∆λD = 0.5 for the optical
depth at line center and Doppler width respectively, which are
the average values for fibrils obtained by Alissandrakis et al.
(1990) with the application of the cloud model to spectral ob-
servations. Estimation of deviations from these values can be
computed from Fig. 2 of Georgakilas et al. (1990). We further
rejected a few points where the application of the cloud model
was not meaningful (see Georgakilas et al. 1990; Georgakilas
1992). Since the cloud model is obviously not applicable in
the umbra, we computed the velocities there, assuming a pure
Doppler shift model. We do not consider the velocities com-
puted in this way as accurate absolute values, but as reliable
first order approximations (see also comments made by Maltby
1975).

2.3. Reconstruction of the flow velocity vector

Following a method based on equations first published by
Kinman (1953) and Plaskett (1952) and assuming an axial sym-
metry of the sunspot and of the velocity field and that the line is
formed at the same height over the entire region, we computed
the components of the flow velocity vector as a function of dis-
tance from the center of the spot. We define a coordinate system
centered at the spot with theZ axis along the vertical and the
line-of-sight on theXZ plane with theX axis towards the limb
(see Fig. 1 of Dialetis et al. 1985). We further defineu,υ, and
w to be the radial (positive inwards), the azimuthal (positive
in the clockwise direction) and the vertical (positive upwards)
component of the velocity at a point with coordinatesr, andϑ
on theXY plane. Then the projection of the velocity on the
line-of-sight is given by the equation:

Vl = ucosϑ sinω − υ sinϑ sinω + w cosω (4)

whereω is the heliocentric distance of the spot. Initially we
used a procedure analytically described in Alissandrakis et al.
(1988) and in Dere et al. (1990) in order to compute the flow
velocity components. The procedure was selected because it
does not require measurements over the entire field of view
and allows to reject localized flows that deviate from the av-
erage Evershed flow. An alternative method is to use multiple
linear regression in order to solve Eq. (4); the two methods
gave the same results. Similar methods, were used by Schroter
(1967), Maltby (1975), Haugen (1969), Dialetis et al. (1985),
and Schlichenmaier & Schmidt (2000) in order to analyze the
Evershed flow geometry. Although it would be desirable to
study the flow field of each individual fibril, the method is an
acceptable compromise in order to determine the basic charac-
teristics of the flow velocity components.

Figure 1 shows images of the sunspot in Hα center im-
age (a), and line-of-sight Doppler velocity maps in Hα ±
0.35 Å (b), Hα ± 0.5 Å (c), and Hα ± 0.75 Å (d). The almost
circular shape of our spot and the large scale line-of-sight ve-
locity field reasonably satisfy the axial symmetry hypothesis
(see Dialetis et al. 1985, for criteria). In Fig. 2 we show an az-
imuthal slice of the Hα±0.5 Å line-of-sight velocity map, mea-
sured near the penumbra-superpenumbra boundary. The solid
line corresponds to the line-of-sight velocity computed from
the fitted flow velocity components.

3. Results

3.1. Inverse Evershed flow in different chromospheric
layers

In this section we discuss the morphology of the line-of-sight
velocity maps in the three chromospheric layers (defined by
Hα±0.35 Å, Hα±0.5 Å, and Hα±0.75 Å). We further examine
the general characteristics of the average flow velocity com-
ponents of the inverse Evershed flow and compare how they
change in the three layers. The results are similar for all the
images we processed. Although we cannot give an exact height
formation of the different Hα wavelengths, measurements at
larger∆λ values correspond to lower chromospheric heights.
For a hydrostatic homogeneous atmospheric model, Hα center
is formed near the 2 Mm height over several hundreds of km.
The intensities in the wings will come from deeper layers; the
line wing at±0.35 Å is still close to the layers producing the
center of the line,±0.5 Å is coming from significantly deeper
layers near 1.3 Mm and finally the line wing at±0.75 Å is
formed in very deep layers. However the high chromosphere
is inhomogeneous and contributions that form the line profile
probably come from more extended layers.

From Fig. 1 we observe that there is a close similarity be-
tween the chromospheric velocity maps in Hα ± 0.35 Å and in
Hα ± 0.5 Å, in particular for the more prominent features. The
velocity pattern is slightly more visible in Hα± 0.35 Å and the
absolute values of the velocity are systematically higher than
in Hα ± 0.5 Å. At Hα ± 0.75 Å the apparent length of the flow
channels is shorter than in Hα ± 0.35 Å and in Hα ± 0.5 Å, but
we do not observe any reversals in the line-of-sight velocities.
In some cases we observe velocity “channels” that have length
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Fig. 7. Panela) shows an intensity image computed adding opposite wing images at Hα ± 0.35 Å and panelb) a simultaneous residual line-of-
sight Doppler map. The residual map was calculated subtracting from the original velocity map a line-of-sight map computed from the results
of the reconstruction of the velocity vector. Panelsc) andd) show an intensity image and residual velocity map respectively, computed in the
same way at Hα ± 0.5 Å. Tick marks in both axis correspond to 2.6′′. The gray scale bars in the left column images corresponds to normalized
intensities and the gray scale bars in the right column images correspond to velocities in km s−1.

similar to that in Hα± 0.5 Å, indicating flow velocities that de-
viate from the average (we have marked one such channel with
a white arrow, in the upper right part of Fig. 1d).

In Fig. 3 we compare the line-of-sight velocities related to
the three atmospheric layers for the area of the superpenum-
bra. It is verified that the velocity decreases as we move to

lower atmospheric layers, i.e. towards the wings of Hα. The
scatter plots (Fig. 3) indicate that the velocities computed at
∆λ = ±0.35 Å are 1.6 times higher than the ones computed
at ∆λ = ±0.5 Å. The velocities computed at∆λ = ±0.5 Å
are about 5.5 times higher than the ones computed at∆λ =
±0.75 Å. Finally, the velocities computed at∆λ = ±0.35 Å are
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Fig. 8. Scatter plots of the residual line-of-sight velocity computed at
Hα ± 0.35 Å versus the intensity (sum of Hα ± 0.35 Å) a) and of
the residual line-of-sight velocity computed at Hα ± 0.5 Å versus the
intensity (sum of Hα ± 0.5 Å) for the area of the superpenumbra.

about 9 times higher than the ones computed at∆λ = ±0.75 Å.
The velocity values at∆λ = ±0.75 Å are of the same order as
in the photosphere but reversed.

In Fig. 4a we present the average flow velocity components
for Hα ± 0.35 Å. The velocity vector was reconstructed using
the method presented in the previous section. Further Figs. 4b,c
present the average velocity components for Hα ± 0.5 Å and
Hα±0.75 Å. We observe that in all three chromospheric layers
the dominant component of the velocity field is the radial and
there is a significant vertical component. The azimuthal com-
ponent of the velocity does not show a consistent behavior in
the three chromospheric layers.

The magnitude of the radial and the vertical components
for ∆λ = ±0.35 Å show a maximum value just outside the pe-
numbral rim. Our results are consistent with that of Haugen
(1969), who found that the vertical velocity component shows
a sharp maximum just outside the penumbral rim. In Figs. 5a,b
we compare the radial and the vertical components of the flow
velocity in the three atmospheric layers. We observe that the
absolute value of the velocity components gradually decrease

as we move lower. We further observe that the maximum of the
magnitude of the velocity shifts towards the inner penumbral
boundary as we move at lower heights within the formation
layer of the Hα line. The maximum of the magnitude is almost
at the penumbral rim for∆λ = ±0.5 Å and just inside the pe-
numbral rim for∆λ = ±0.75 Å.

Using the computed values of the components of the
velocity vector of the inverse Evershed flow, it is possible
to obtain information about the angleβ between the veloc-
ity vector and the horizontal plane. More specificβ can be
determined from the values of the vertical (w) and the hori-
zontal components of the velocity (u,υ), through the relation:
β = tan−1(w/(u2 + υ2)1/2). In Fig. 6 we compare the magni-
tude of the flow velocity at Hα ± 0.5 Å (solid line), with an-
gle β (dotted line). From the values of angleβ it is clear that
the flow loops are relative flat and probably a fraction, of the
ascending part of the loops, is beyond the velocity field we re-
constructed. Our results indicate that the maximum of the flow
velocity coincides with the region of almost maximum angle
between the flow vector and the horizontal plane and thus with
the downstream part of the loop. Similar results were found by
Dialetis et al. (1985); careful examination of their Figs. 5 and 6
show that for the chromospheric Evershed flow the maximum
of the velocity flow coincides with the region of almost max-
imum angle between the flow vector and the horizontal plane.
Also Haugen (1969) found that the vertical velocity component
shows a sharp maximum at the same place where the inclina-
tion of the average velocity vectors with respect to the horizon-
tal takes its maximum value.

Important conclusions about the nature of the flow can be
derived comparing the magnitude of the flow velocity with the
angle between the flow vector and the horizontal plane. If the
velocity remains subsonic along the loop, then a symmetric
flow around the apex of the loop is expected. The flow speed
will increase in the upstream part of the loop, attain a maxi-
mum value near the region where the flow is horizontal and de-
crease in the downstream part of the loop (see Figs. 3a and 5a
of Thomas 1988). The other possibility is an asymmetric flow
with a smooth transition from subsonic to supersonic at the
top of the arch. In that case the flow continues to accelerate in
the downstream part of the loop, up to a point where it passes
from supersonic to subsonic through a compression shock (see
Figs. 3c and 5a of Thomas 1988). As we saw from Fig. 6 the
flow velocity attains its maximum value at some point in the
downstream part of the loop, near the region where the flow
shows maximum inclination. This is consistent with a critical
flow that attains sonic velocity near the top of the loop and con-
tinues to accelerate up to a point in the downstream part of the
loop.

3.2. Residual velocities

In this section we initially present and comment residual line-
of-sight velocity maps so that to evaluate deviations from the
average flow field. Moreover we examine the possible associa-
tion between Evershed channels and dark fibrils. Maltby (1997)
suggested that (assuming a siphon flow mechanism) different
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loops will not have exactly the same pressure difference be-
tween their footpoints and will not have identical shapes. Hence
different flow speeds are expected in different loops. Averaging
over different position angles in deducing the flow speed will
result in computing an average velocity not necessary repre-
sentative for all of the individual Evershed channels. In order
to evaluate the deviations from the average Evershed flow, we
computed the residual line-of-sight velocities, subtracting from
the original line-of-sight velocity maps the large scale line-of-
sight velocity pattern computed from the reconstructed flow
velocity components, using Eq. (4). We present the results for
∆λ = ±0.35 Å and∆λ = ±0.5 Å in Fig. 7, along with simulta-
neous intensity images computed adding opposite wing filter-
grams formed at almost the same height with the velocities. We
observe that in both chromospheric levels in some channels the
magnitude of the residual velocities is considerable, indicating
that the flow velocity in these channels deviates from the aver-
age Evershed flow. The deviations are higher in Hα ± 0.35 Å
than in Hα ± 0.5 Å.

Maltby (1975) further suggested that the chromospheric
Evershed channels coincide most frequently to dark fibrils.
From Fig. 7 we observe that the channels where the residual
velocity deviates significantly from the average flow velocity,
coincide with dark fibrils. As, due to perspective effects, the
sign of the line-of-sight velocity varies around the sunspot, the
deviations can be either due to higher than the average absolute
velocity values (stronger flow), or due to lower absolute veloc-
ity values (weaker flow) along the dark fibrils. Comparison of
the residual line-of-sight velocity maps (Figs. 7b,d) with the
original line-of-sight velocity maps (Figs. 1b,c), show that the
residual velocities along locations corresponding to dark fibrils
have the same sign with the original line-of-sight velocities.
Thus the velocity deviations related to dark fibrils are due to
higher than the average absolute velocity values along these
fibrils.

In order to quantitatively verify the relation of higher devia-
tions with dark fibrils, we computed scatter plots of the residual
line-of-sight velocity maps versus the intensity (sum of oppo-
site wings) (Fig. 8). The results verify the indication of the vi-
sual inspection, since the deviation from zero increases towards
lower intensities. For a limited number of pixels and for low in-
tensities the residual line-of-sight velocities appear to deviate
significantly from zero; these pixels are related with a number
of dark fibrils. For the vast majority of pixels the deviation is
less than 5 km s−1 at∆λ = ±0.35 Å and less than 4 km s−1 at
∆λ = ±0.5 Å. Taking into consideration that the deviation is re-
ferred to line of sight velocities, one can plausibly assume that
the azimuthally averaged flow velocity is representative for the
majority of flow channels.

3.3. Inverse Evershed flow in dark and bright fibrils

The results of the previous section indicate different properties
of the Evershed flow in bright and dark fibrils. Taking advan-
tage of the fact that the method we used for the computation of
the components of the flow velocity allows to reject localized
flows, we computed the vector of the average flow for mainly

bright or dark fibrils alternatively. In order to do that we pro-
duced segmented line-of-sight velocity maps in which we have
rejected the pixels that correspond to the dark or bright fibrils
and then computed the components of the flow velocity based
on these images. We should note that we haven’t split the im-
ages in two segments one with bright fibrils and the other with
the remaining fibrils considered dark, but based on the original
image we rejected the pixels corresponding to prominent bright
or dark fibrils. Thus, each segment contains a number of fibrils
that cannot be considered that belong to the one or the other
category.

We computed the segmented images from the sum of
opposite wing images for each atmospheric level using the
“ à trous” wavelet transform, a discrete approach to the clas-
sical continuous wavelet transform (Starck & Murtagh 1994;
Starck et al. 1998). In order to implement the transform the in-
put signal is analyzed by convolving it with a properly chosen
low-pass filter, and without following a decimation step. The
application of this algorithm on an image results in a set of
wavelet coefficients at each level of decomposition, also called
wavelet plane, that consists of the same number of pixels as the
original image.

Considering a 1D set of sampled data,{c0(k)}, then
the smoothed dataci(k) at a given resolutioni and at a
position k can be obtained by the convolution:ci(k) =∑
l

h(l)ci−1(k+ 2i−1l), whereh is the low-pass filter. The dif-

ference between two consecutive resolution levels:wi(k) =
ci−1(k) − ci(k), represents the wavelet transform of the data at
the i level (Starck & Murtagh 1994). The above algorithm can
be easily extended to 2D space assuming separability which
leads to a row-by-row convolution, followed by column by col-
umn convolution. Then from the original imageA0(x, y) and af-
ter the convolution we get a smoothed approximationA1(x, y).
The first wavelet planeW1(x, y) is computed by the difference
of the two images. Repeating the above procedure recursively
for every smoothed approximation image forJ times and com-
puting the wavelet planes as the differences between two con-
secutive approximations we get at the final levelJ a set ofJ+1
images,W = W1,W2, ...,WJ,AJ. In our implementation we
have chosen a B-spline of degree 3 as scaling function and 5 de-
composition levels; the first plane contains the highest spatial
frequencies and the last the lowest ones.

For each image we computed a sharpened one, adding the
first three levels of the“ à trous” wavelet transform and a
smoothed one adding the rest of the levels; we further smoothed
the second image applying a boxcar mean filter. Furthermore
we subtracted from the sharpened image the smoothed one and
computed a binary mask setting pixel values higher (or lower)
than an empirically estimated threshold to 0 and the rest to 1
(Fig. 9). Finally, we multiplied the line-of-sight velocity images
by these masks producing segmented images, in which pixels
corresponding to bright (or dark) fibrils were set to zero and the
rest pixels retained their original values.

We further used the method of Sect. 2.3 in order to com-
pute the flow velocity components from the segmented images.
In Fig. 10a we compare the radial components of the flow ve-
locity computed from Hα ± 0.35 Å line of sight velocities,
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Fig. 9. Imagea) shows an intensity image (computed adding opposite wing filtergrams) at Hα ± 0.35 Å and imageb) shows the same image
enhanced using the“ à trous” wavelet transform. Imagec) shows a binary image in which pixels corresponding to dark fibrils has been set
to 0 and the rest to 1. Imaged) shows a similar toc) image in which pixels corresponding to bright fibrils has been set to 0. Tick marks in both
axis correspond to 2.62′′.

rejecting pixels corresponding to dark fibrils (solid line) and
pixels corresponding to bright fibrils (dotted line). We observe
that there is not a significant difference of the values of the ve-
locity as a function of distance from the spot center. In Fig. 10b
we compare the vertical component of the flow velocity; it is
clear that there is a significant difference in the values of the
velocity. The magnitude of the vertical component of the flow
velocity related to dark fibrils is significantly higher than that
related to bright fibrils.

4. Summary and conclusions

We studied the chromospheric Evershed flow from filtergrams
obtained at nine wavelengths along the Hα profile; in the fol-
lowing we summarize our results.

As it is clear from the introduction there is a discrepancy
concerning the velocity values of the Evershed flow as well as
if (assuming a siphon flow along a flux tube) the flow is sub-
critical (remains subsonic along the whole flux tube) or criti-
cal (undergoes a smooth transition from subsonic to supersonic
at some point near the apex of the loop). We found that the
flow velocity related to some of the more dark superpenumbral
fibrils is significantly higher than the average chromospheric
Evershed flow. This seems to justify the high velocities re-
ported by early observers who concentrated their attention on
the more dark fibrils.

Comparison of the intensity with residual line-of-sight ve-
locities (after subtracting the average flow velocity) verifies the
above result, showing significant deviations from the average
flow for the pixels related to the most dark fibrils. We further
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Fig. 10.Comparison of the radiala) and the verticalb) component of
the flow velocity computed from the Hα ± 0.35 Å line of sight veloc-
ity maps, retaining pixels corresponding mainly to bright fibrils (solid
line) and pixels corresponding mainly to dark fibrils (dotted line).

found deviations from the average flow that are larger for the
dark fibrils. This indicates that the flow velocity is different for
various categories of fibrils and probably time dependent. Still
the azimuthally averaged flow velocity can be considered rep-
resentative for the majority of the flow channels. In order to fur-
ther investigate the properties of the Evershed flow for differ-
ent categories of fibrils, we computed the average flow vector
from segmented line-of-sight velocity maps, excluding bright
or dark fibrils alternatively. We found that the radial compo-
nent of the flow velocity does not show a significant difference
concerning the maximum value. However the magnitude of the
vertical component of the flow velocity related to dark fibrils is
significantly higher than that related to bright fibrils. This indi-
cates that the inclination angle between the velocity vector and
the horizontal plane is lower in the bright fibrils and thus that
they are more flat than the dark fibrils. It is possible that this is
related to different physical conditions in the fibrils.

The average flow velocities we found in both bright and
dark fibrils are subsonic. However the profile of the velocities
as a function of distance from the spot center, indicates that the
maximum of the velocities is located in the region where the

flow vector shows almost maximum inclination with respect to
the horizontal; thus the flow speed continues to increase in the
descending part of the tube. Even if the error in the estima-
tion of the angle between the flow and the horizontal is large,
the fact that the maximum of the radial component of the ve-
locity coincides with the maximum of the vertical component
indicates that the flow speed attains its maximum value in the
descending part of the loop. This is not consistent with a sub-
critical flow and can be understood in terms of a critical flow
(see Figs. 3 and 5 of Thomas 1988). Thus we can conclude that
the flow in the majority of fibrils (for which the average flow
can be considered a plausible representative) is critical.

Since the values of the average chromospheric Evershed
flow that we found are consistent with previous estimations
(e.g. Haugen 1969; Dialetis et al. 1985) a question arises, why
while the flow velocity profile indicates that the flow is critical,
this is not reflected in the velocity values. A possible answer
to this question is that the flow is concentrated in thin chan-
nels within the limits of the spatial resolution of our observa-
tions; thus we practically compute average line-of-sight veloc-
ities. The integration over large angles in order to compute the
average flow velocity vector results in further underestimating
the velocities.

Finally, we found that the inverse Evershed flow velocity
decreases systematically at lower chromospheric heights and
the maximum of the flow velocity shifts towards the inner pe-
numbral boundary. We note that recently Hirzberger & Kneer
(2001) found an antisymmetric behavior for the photospheric
Evershed flow; the flow velocity decreases systematically with
photospheric height and the maximum of the flow velocity
shifts towards the outer penumbral boundary in higher photo-
spheric layers. This behavior is probably related to the geom-
etry of the fibrils assuming that they extend higher up as we
move to higher atmospheric layers.
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