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SI Materials and Methods
Inelastic Neutron Scattering. Inelastic neutron scattering mea-
surements were performed on a single crystal of silicon of
99.999% purity that was highly oriented (<2◦), purchased from
Virginia Semiconductor, Inc. The [110] oriented single crystal
was further machined into a cylinder of 3.8 cm in height, 2.54 cm
in outer diameter, and a 1.59-cm inner diameter to minimize
multiple scattering. The crystal was suspended in an aluminum
holder and then mounted into a closed-cycle helium refrigera-
tor for the 100 and 200 K measurements, and a similar holder
made from niobium was mounted into a low-background elec-
trical resistance vacuum furnace for measurements at 300, 900,
1,200, and 1,500 K. For all measurements, the incident energy
was 97.5 meV, and an oscillating radial collimator was used to
reduce background and multiple scattering (38, 49).

The time-of-flight neutron data included multiple datasets
from 200 rotations in increments of 0.5◦ about the vertical [110]
axis, reduced to create the 4D S(q,ε) (50, 51). A secondary data
reduction process consisted of folding the entire S(q,ε) dataset
into an irreducible wedge in the first Brillouin zone. Nonlinear
offsets of the q grid were corrected by fitting typically 50 in situ
Bragg diffractions in an energy transfer range of ∆ε = ± 4 meV
by a transformation to the positions of the theoretical diffraction
peaks for a diamond cubic structure. The multiphonon scatter-
ing was then subtracted, and the data were “folded back” and
corrected for the phonon creation thermal factor (39).

The multiphonon scattering was determined with q depen-
dence through the incoherent approximation and calculated
from Eq. S1 (39),

Sn>1(q, ε) =

10∑
n=2

e−2W (2W )n

n!
A1 ~An−1, [S1]

where 2W is the well-known Debye–Waller factor calculated
from the experimental temperature-dependent phonon density
of states (DOS) (25, 39). The single and n-phonon scattering
spectra are

A1 =
g(ε)

ε
〈n + 1〉, [S2]

An = A1 ~An−1. [S3]

The g(ε) is the experimental phonon DOS (25), and n is
the Planck distribution. We find that, even at temperatures
>1,000 K, the contributions above the 5th multiphonon spec-
trum (S5) are negligible. A global scaling factor (b ∗ Sn>1) was
applied to the total multiphonon scattering function throughout
the Brillouin zone after folding to correct for normalization. The
multiphonon scattering accounted for most of the background
intensity as seen clearly in Fig. S1.

The correct alignment of the data in reciprocal space and mul-
tiphonon subtraction produced S(q,ε) of high statistical quality.
Thermal shifts of phonons reported previously, when available,
were in good agreement (3, 19, 24).

Energy spectra at specific q points were evaluated by integrat-
ing over 0.0025 Å−3. Phonon centroids were then fitted using
the Levenberg–Marquardt nonlinear least square method for
multiple skewed-Voigt functions. The skewed-Voigt functions
gave the best fits to the known asymmetric lineshape of the
ARCS time-of-flight spectrometer. Examples of the scattered
intensities at a constant q, with fits, are shown for the X point
in Fig. S2.

For comparison, a “slice” of unfolded 4D S(q,ε) along a
momentum direction is shown in Fig. S3. The data were pro-
cessed using standard software and corrected for the phonon cre-
ation thermal factor (39, 52). First-principles calculations were
performed using the s-TDEP method described in Ab Initio Cal-
culations and elsewhere (17, 53). The experimental results are
in good agreement with first-principles calculations throughout
reciprocal space. There are benefits to assessing phonon intensi-
ties over multiple Brillouin zones, but these are not essential for
a study of thermal expansion.

Ab Initio Calculations. Ab initio DFT calculations were performed
with the projector augmented wave (54) formalism as imple-
mented in VASP (41–43, 55). All calculations used a 5 ×
5 × 5 supercell and a 500-eV plane wave energy cutoff. The
Brillouin zone integrations used a 3× 3× 3 k -point grid, and the
exchange–correlation energy was calculated with the AM05 func-
tional (45–47). All calculations were converged to within 1 meV
per atom. We found that calculations using other functionals as
in refs. 56 and 57 gave similar phonon dispersion curves, and are
expected to result in similar thermal trends.

Finite temperature phonon dispersions of silicon were calcu-
lated by fitting first-principles forces to a model Hamiltonian,
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The forces on atoms were generated using DFT with various
configurations of displaced atoms by a stochastic sampling of a
canonical ensemble, with Cartesian displacements (uαi ) normally
distributed around the mean thermal displacement using

uαi =
∑
k

εiαk ck√
mi

√
−2 ln ξ1 sin(2πξ2). [S5]

The thermal factor, ck , is based on thermal amplitudes of normal
mode k , with eigenvector εk and frequency ωk (33, 34, 58).

ck =

√
~(2nk + 1)

2ωk
, [S6]

and ξ1 and ξ2 are stochastically sampled numbers between 0
and 1. The phonon distribution follows the Planck distribution,
nk = (eβ~ωk − 1)

−1
, where the nuclear quantum effect can be

turned off by taking the high-temperature limit of Eq. S6. The
fitting to the model Hamiltonian used the TDEP method (17,
48). With thermal displacements from Eqs. S5 and S6, we refer
to our temperature-dependent calculations as the s-TDEP.

This method circumvents the issue of expensive compu-
tational resources required of ab initio molecular dynamics
(AIMD), replacing AIMD with a Monte Carlo sampling of
atomic positions and momentum near equilibrium positions
(17, 33). The quasiharmonic model was calculated as described
previously (25).

Phonon Shifts. The temperature-dependent renormalized phonon
frequencies were calculated from the phonon self-energy.
The phonon self-energy part, corrections to phonon energies
from many-body interactions, comprises real and imaginary
contributions,

Σλ = ∆λ + iΓλ. [S7]
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Phonon scattering rates, and phonon lifetimes, are related to the
imaginary part of the self-energy (1/τλ = 2Γλ) for mode λ eval-
uated at the harmonic frequency. The imaginary part of the self-
energy from many-body perturbation theory is

Γλ(Ω) =
~π
16

∑
λ′λ′′

|Φλλ′λ′′ |2

×
{

(nλ′ + nλ′′ + 1)δ(Ω− ωλ′ − ωλ′′) + (nλ′ − nλ′′)

× [δ(Ω− ωλ′ + ωλ′′)− δ(Ω + ωλ′ − ωλ′′)]
}
.

[S8]

The Ω(= E/~) is the probing energy, and the delta functions
conserve energy and momentum and sum over all possible three-
phonon interactions between modes. The Φλλ′λ′′ is the three-
phonon matrix element, the Fourier transform of the third-order
component of the interatomic potential (Eq. S4). The real part
of the self-energy is calculated through a Kramers–Kronig trans-
formation of the imaginary part,

∆(Ω) =
1

π

∫
dω

Γ(ω)

ω − Ω
. [S9]

The probing frequency, ~Ω, is directly comparable to the renor-
malized frequencies from the harmonic energies with pertur-
bative shifts calculated from the cubic term of the model
Hamiltonian (34),

~Ω = ~(ωk + ∆k ). [S10]

Fig. S1. Folded inelastic neutron scattering data (A) without and (B) with multiphonon subtracted S(q,ε) at 300 K. (C) Scattering intensity and fitted
spectrum at the X point. Fitted peaks are shown as the red solid line. Gray circles are without (from A) and black triangles are with (from B) multiphonon
scattering subtracted. Black dashed line shows subtracted multiphonon scattering intensity.

Essentially, the effective potential method fits the stochasti-
cally sampled phonon potential to capture all even terms in
the phonon potential as the “harmonic” frequencies (ω), and
the odd-term contributions add shifts of the frequencies pertur-
batively (∆) (31). This method includes higher-order phonon–
phonon interactions by renormalizing terms in the model
Hamiltonian.

Thermodynamic Calculations. Temperature-dependent coefficients
of linear thermal expansion in silicon were calculated through
the minimization of the free energy,

F(T ,V ) =E(T ,V ) +
∑
q,k

(~ωk (q,V ,T )

2

+ kBT ln(1− e−~ωk (q,T ,V )/kBT )
)
,

[S11]

from quasiharmonic calculations, and from s-TDEP (Fig. 5). The
QH assumes the only temperature dependence of the entropy is
from the volume expansion εk (V {T}) and the Planck distribu-
tion (nk ), whereas the anharmonic s-TDEP method minimizes
the free energy for temperature and volume simultaneously. The
vibrational entropy from all phonon modes,

∑
k , was calculated

as (1)

Svib(T ) = 3kB
∑
k

[
(nk + 1) ln(nk + 1)− nk ln(nk )

]
. [S12]
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Fig. S2. Constant q-S(q,ε) data at the X point for 100, 200, 300, 900, 1,200, and 1,500 K. Data are black markers, and fits are in orange.
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Fig. S3. (A–C) Inelastic neutron scattering and (D–F) first-principles calculations of S(q,ε) at 300 K along momenta q (X–Γ–X) in different Brillouin zones.
Calculated S(q,ε) was corrected for instrument resolution and polarization effects to match the experiment conditions (38, 39).
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