Ngamnithiporn, Jette, Bachman, Virgil, and Stoltz

Supporting Information

Nickel-Catalyzed Enantioselective Allylic Alkylation of Lactones and Lactams with Unactivated Allylic Alcohols

Aurapat Ngamnithiporn, Carina I. Jette, Shoshana Bachman, Scott C. Virgil, and Brain M. Stoltz*

Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 stoltz@caltech.edu

Table of Contents:

Materials and Methods	SI 2
List of Abbreviations	SI 3
Nucleophile Synthesis	SI 3
General Procedure for Catalytic Reactions	SI 7
Additional Ligand Screen Results	SI 9
Solvent Effects in Nickel-Catalyzed Asymmetric Allylic Alkylation of Lactones	SI 11
Additional Optimization with Lactam 4a	SI 12
Spectroscopic Data for Products from Catalytic Reactions	SI 13
Experimental Procedure and Characterization Data for Product Transformations	SI 25
Determination of Enantiomeric Excess	SI 29
Crystal Structure Analysis of Allylated Product 3af (sample No.: p17471)	SI 33
References	SI 42
NMR and IR Spectra of New Compounds	SI 43
SFC Traces of Racemic and Enantioenriched Compounds	SI 105

Supporting Information

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon.¹ Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, panisaldehyde, or KMnO₄ staining. Silicycle Silia*Flash*® P60 Academic Silica gel (particle size 40–63 nm) was used for flash chromatography. ¹H NMR spectra were recorded on Bruker 400 MHz or Varian Mercury 300 MHz spectrometers and are reported relative to residual CHCl₃ (δ 7.26 ppm). ¹³C NMR spectra were recorded on Bruker 400 MHz spectrometer (101 MHz) and are reported relative to CHCl₃ (δ 77.16 ppm). ¹⁹F NMR spectra were recorded on Varian Mercury 300 MHz spectrometer (282 MHz). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m =multiplet, br s = broad singlet, br d = broad doublet, app = apparent. Data for ${}^{13}C$ NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained using Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm pathlength cell and are reported as: $\left[\alpha\right]_{D}^{T}$ (concentration in 10 mg/1 mL, solvent). Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+), or obtained from Caltech mass spectrometry laboratory. Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu K_a radiation ($\lambda = 1.54178$ Å) from an IµS micro-source for the structure of compound P17471. The structure was solved by direct methods using SHELXS¹ and refined against F^2 on all data by full-matrix least squares with SHELXL-2016² using established refinement techniques.³ All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise stated.

List of Abbreviations:

ee – enantiomeric excess, SFC – supercritical fluid chromatography, TLC – thin-layer chromatography, IPA – isopropanol, MTBE – methyl *tert*-butyl ether, PE – petroleum ether, LHMDS – lithium bis(trimethylsilyl)amide, Bz – benzoyl, Ts – Tosyl, Boc – *tert*-butyloxycarbonyl

Synthesis of Nucleophiles: Experimental Procedures and Spectroscopic Data General procedure 1: α-acylation of lactones

Ethyl 2-oxotetrahydro-2*H*-pyran-3-carboxylate (1a):⁴ To a solution of LHMDS (3.43 g, 20.5 mmol, 2.05 equiv) in THF (20 mL) was added a mixture of delta-valerolactone (1.00 g, 10.0 mmol, 1.00 equiv) and diethyl carbonate (1.3 mL, 11.0 mmol, 1.10 equiv) at -78 °C. After stirring at room temperature for 6 hours, the reaction was quenched with glacial acetic acid (5 mL), diluted with Et₂O (20 mL), and stirred for 5 minutes. The insoluble white solid was filtered off and rinsed with more Et₂O. The filtrate was concentrated and purified by column chromatography (50% to 65% Et₂O in PET) to afford **1a** as a colorless oil (1.20 g, 70% yield); ¹H NMR (300 MHz, CDCl₃) δ 4.46–4.31 (m, 2H), 4.25 (qd, *J* = 7.1, 1.7 Hz, 2H), 3.56 (dd, *J* = 8.3, 7.5 Hz, 1H), 2.38–2.08 (m, 2H), 2.08–1.80 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). All characterization data match those reported.⁵

Methyl 2-oxotetrahydro-2*H*-pyran-3-carboxylate (1b): Compound 1b was prepared from dimethyl carbonate using general procedure 1 (1.38 g, 87% yield); ¹H NMR (300 MHz, CDCl₃) δ 4.46–4.32 (m, 2H), 3.80 (s, 3H), 3.58 (dd, *J* = 8.4, 7.5 Hz, 1H), 2.38–2.06 (m, 2H), 2.02–1.81 (m, 2H). All characterization data match those reported.⁴

Ethyl 2-oxochromane-3-carboxylate (1c): Compound 1c was prepared from dihydrocoumarin and diethyl carbonate using general procedure 1 (0.28 g, 25% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.33–7.18 (m, 2H), 7.17–6.99 (m, 2H), 4.34–4.08 (m, 2H), 3.76 (dd, J = 8.5, 6.1 Hz, 1H), 3.42 (dd, J = 16.0, 8.5 Hz, 1H), 3.18 (dd, J = 16.0, 6.0 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H). All characterization data match those reported.⁶

General procedure 2: α-acylation of lactams

Ethyl 1-benzoyl-2-oxopiperidine-3-carboxylate (4a):⁷ To a solution of diisopropylamine (1.7 mL, 12 mmol, 1.2 equiv) in THF (65 mL) at 0 °C, *n*-BuLi (4.6 mL, 11 mmol, 2.4 M in hexanes, 1.1 equiv) was added dropwise over 10 minutes. After stirring for 30 min at 0 °C, the solution was cooled to -78 °C and a solution of benzoyl-protected lactam⁸ (2.0 g, 12 mmol, 1.2 equiv) in THF (17 mL) was then added over 5 minutes. The reaction mixture was stirred at -78 °C for 2 hours and warmed to -30 °C for 1 hour. Ethyl cyanoformate (1.1 mL, 11 mmol, 1.1 equiv) was then added at -78 °C. The reaction was allowed to slowly warm to room temperature overnight. Upon complete consumption of starting material by TLC, the reaction was quenched with

saturated NH₄Cl. The aqueous layer was extracted with EtOAc (50 mL × 4). The combined organic phases were washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was purified by column chromatography (30% EtOAc in hexanes) to provide product **4a** as a white amorphous solid (1.47 g, 53% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.66 (m, 2H), 7.52–7.44 (m, 1H), 7.43–7.34 (m, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.89–3.75 (m, 2H), 3.58–3.50 (m, 1H), 2.40–2.27 (m, 1H), 2.22–2.00 (m, 2H), 2.00–1.89 (m, 1H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 170.0, 169.6, 135.6, 132.0, 128.3, 128.2, 62.0, 51.2, 46.4, 25.6, 20.7, 14.2; IR (Neat Film, NaCl) 3062, 2980, 1734, 1701, 1683, 1476, 1449, 1392, 1285, 1258, 1185, 1152, 1113, 1026, 999, 730, 670, 638 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₅H₁₈NO₄ [M+H]⁺: 276.1230, found 276.1237.

Methyl 1-benzoyl-2-oxopiperidine-3-carboxylate (4b): Compound **4b** was prepared from Bzprotected lactam and methyl cyanoformate using general procedure 2 and purified by column chromatography (40% EtOAc in hexanes) to provide a colorless amorphous solid (0.33 g, 51% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.65 (m, 2H), 7.48 (m, 1H), 7.43–7.36 (m, 2H), 3.86–3.80 (m, 2H), 3.79 (s, 3H), 3.59 (t, *J* = 6.4 Hz, 1H), 2.39–2.27 (m, 1H), 2.23–2.03 (m, 2H), 2.02–1.89 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 170.5, 169.6, 135.6, 132.0, 128.3, 128.3, 52.9, 51.1, 46.4, 25.6, 20.9; IR (Neat Film, NaCl) 2953, 1738, 1681, 1600, 1449, 1392, 1284, 1258, 1200, 1151, 1115, 1065, 973, 954, 857, 796, 731, 701, 639; HRMS (MM) *m/z* calc'd for C₁₄H₁₆NO₄ [M+H]⁺: 262.1074, found 262.1066.

1-(*tert***-butyl) 3-ethyl 2-oxopiperidine-1,3-dicarboxylate**: This compound was prepared from Boc-protected lactam⁹ using general procedure 2 and purified by column chromatography (20% EtOAc in hexanes) to provide a colorless oil (0.47 g, 70% yield); ¹H NMR (400 MHz, CDCl₃) δ 4.30 – 4.13 (m, 2H), 3.75 – 3.62 (m, 2H), 3.49 (dd, *J* = 8.7, 6.8 Hz, 1H), 2.24 – 2.02 (m, 2H),

1.96 (dtt, J = 14.1, 6.6, 5.2 Hz, 1H), 1.81 (dddt, J = 14.1, 8.8, 7.5, 5.3 Hz, 1H), 1.52 (s, 9H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 167.6, 152.8, 83.6, 61.7, 51.6, 45.9, 28.1, 24.4, 21.2, 14.2; IR (Neat Film, NaCl) 2980, 2939, 1772, 1717, 1478, 1458, 1393, 1369, 1297, 1252, 1146, 1115, 1096, 1056, 1029, 937, 852, 778, 748, 642; HRMS (MM) *m/z* calc'd for C₁₃H₂₁NO₅Na [M+Na]⁺: 294.1312, found 294.1315.

Ethyl 2-oxo-1-tosylpiperidine-3-carboxylate: This compound was prepared from tosylprotected lactam¹⁰ using general procedure 1 and purified by column chromatography (35% to 40% EtOAc in hexanes) to provide a colorless oil (0.32 g, 41% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 7.9, 2H), 4.12 (qd, J = 7.1, 1.2 Hz, 2H), 4.03–3.84 (m, 2H), 3.41 (dd, J = 7.5, 6.3 Hz, 1H), 2.43 (s, 3H), 2.19–1.97 (m, 3H), 1.96–1.82 (m, 1H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 166.6, 145.1, 135.7, 129.5, 128.9, 61.9, 50.9, 46.6, 24.3, 21.8, 21.5, 14.1; IR (Neat Film, NaCl) 2980, 1737, 1694, 1456, 1353, 1289, 1169, 1089, 1036, 1008, 827, 815, 706, 670, 653; HRMS (MM) *m/z* calc'd for C₁₅H₂₀NO₅S [M+H]⁺: 326.1057, found 326.1066.

Ethyl 1-methyl-2-oxopiperidine-3-carboxylate: This compound was prepared from methyl-protected lactam using previously reported procedure;¹¹ ¹H NMR (300 MHz, CDCl₃) δ 4.31–4.08 (m, 2H), 3.44–3.20 (m, 3H), 2.96 (s, 3H), 2.24–1.89 (m, 3H), 1.89–1.69 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). All characterization data match those reported.¹²

Ethyl 2-oxo-1-phenylpiperidine-3-carboxylate: This compound was prepared from phenyl-protected lactam¹³ using general procedure 2 and purified by column chromatography (40%

EtOAc in hexanes) to provide a pale yellow solid (0.53 g, 42% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.35 (m, 2H), 7.29–7.22 (m, 3H), 4.31–4.15 (m, 2H), 3.76–3.61 (m, 2H), 3.57 (dd, *J* = 7.8, 6.4 Hz, 1H), 2.35–2.04 (m, 3H), 2.00–1.88 (m, 1H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 166.2, 142.9, 129.3, 127.0, 126.1, 61.5, 51.4, 49.7, 25.3, 21.5, 14.3; IR (Neat Film, NaCl) 2943, 1734, 1654, 1595, 1494, 1462, 1427, 1371, 1353, 1308, 1259, 1197, 1171, 1036, 763, 697, 659; HRMS (MM) *m/z* calc'd for C₁₄H₁₈NO₃ [M+H]⁺: 248.1281, found 248.1278.

Ethyl 1-benzyl-2-oxopiperidine-3-carboxylate: This compound was prepared from benzyl-protected lactam¹⁴ using general procedure 2 (0.32 g, 56% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.37–7.23 (m, 5H), 4.73 (d, *J* = 14.7 Hz, 1H), 4.51 (d, *J* = 14.7 Hz, 1H), 4.24 (qd, *J* = 7.1, 4.0 Hz, 2H), 3.59–3.43 (m, 1H), 3.36–3.12 (m, 2H), 2.29–1.97 (m, 2H), 1.97–1.83 (m, 1H), 1.82–1.64 (m, 1H), 1.31 (t, *J* = 7.2 Hz, 3H). All characterization data match those reported.¹⁵

Nickel-Catalyzed Asymmetric Allylic Alkylation Reactions: General Procedures

<u>Please note</u> that the absolute configuration was determined only for compound **3af** via x-ray crystallographic analysis. The absolute configuration for all other products has been inferred by analogy. For respective HPLC and SFC conditions, please refer to Table S3.

General procedure 3: Nickel-catalyzed asymmetric allylic alkylation of lactones

In a nitrogen-filled glovebox, to an oven-dried 4-mL vial equipped with a stir bar was added (*R*)-P-Phos ligand *L4* (15.5 mg, 0.024 mmol, 12 mol%) and Ni(COD)₂ (5.5 mg, 0.02 mmol, 10 mol%) in Et₂O (1.2 mL). The vial was then capped with a PTFE-lined septum cap and stirred at room temperature. After 30 minutes, the catalyst mixture was cooled to 10 °C. Precooled nucleophile (0.2 mmol, 1 equiv) in Et_2O (0.4 mL) and electrophile (0.2 mmol, 1 equiv) in Et_2O (0.4 mL) at 10 °C were prepared and then added to the catalyst mixture at 10 °C. The vial was sealed with a PTFE-lined septum cap and stirred at 10 °C. After 48 h, the vial was removed from the glovebox. The crude reaction mixture was filtered through a silica plug with Et_2O , concentrated under vacuum, and purified by silica gel flash chromatography to furnish the product.

General procedure 4: Nickel-catalyzed asymmetric allylic alkylation of lactams

In a nitrogen-filled glovebox, to an oven-dried 4-mL vial equipped with a stir bar was added (*R*)-P-Phos ligand *L4* (15.5 mg, 0.024 mmol, 12 mol%) and Ni(COD)₂ (5.5 mg, 0.02 mmol, 10 mol %) in MTBE (1.2 mL). The vial was then capped with a PTFE-lined septum cap and stirred at room temperature. After 30 minutes, the catalyst mixture was cooled to 10 °C. Precooled nucleophile (0.2 mmol, 1 equiv) in toluene (0.4 mL) and electrophile (0.2 mmol, 1 equiv) in toluene (0.4 mL) at 10 °C were prepared and then added to the catalyst mixture at 10 °C. The vial was sealed with a PTFE-lined septum cap and stirred at 10 °C. After 48 h, the vial was removed from the glovebox. The crude reaction mixture was filtered through a silica plug with Et₂O, concentrated under vacuum, and purified by silica gel flash chromatography to furnish the product.

Additional Ligand Screen Results

Table S1. Additional Ligand Screen

Entry	Ligand	ee (%)	Entry	Ligand	ee (%)
1	L5	14	19	L23	0
2	L6	20	20	L24	-34
3	L7	-	21	L25	-
4	L8	-60	22	L26	6
5	L9	57	23	L27	3
6	L10	67	24	L28	-
7	L11	-63	25	L29	31
8	L12	-	26	L30	9
9	L13	8	27	L31	-15
10	L14	19	28	L32	-22
11	L15	_	29	L33	-
12	L16	11	30	L34	-73
13	L17	24	31	L35	-
14	L18	_	32	L36	-
15	L19	12	33	L37	-
16	L20	_	34	L38	-
17	L21	_	35	L39	_
18	L22	17	36	L40	-44

Ligand List:

L9

L5: Ar = 3,5-t-Bu₂C₆H₃ *L6*: Ar = 3,5-t-Bu₂-4-MeOC₆H₂

L7: Ar = 3,5-(CF₃)₂C₆H₃

L8

Supporting Information

L39

L38

L40

Solvent Effects in Nickel-Catalyzed Asymmetric Allylic Alkylation of Lactones

Table S2. Solvent Effects^[a]

Ligand	Solvent (% ee) ^[b]				
	Et ₂ O	МТВЕ	THF	Dioxane	Toluene
<i>L1: (R)</i> -BINAP	62% ee	65% ee	41% ee	18% ee	45% ee
<i>L2</i> : <i>(R)</i> -H ₈ -BINAP	74% ee	72% ee	60% ee	22% ee	46% ee
L3: (R)-Segphos	72% ee	70% ee	45% ee	28% ee	46% ee
<i>L4</i> : <i>(R)</i> -P-phos	74% ee	67% ee	52% ee	25% ee	51% ee

[a] Conditions: lactone (0.05 mmol), alcohol (0.05 mmol), Ni(COD)₂ (10 mol %), ligand (12 mol %) for 19 h. [b] Determined by chiral SFC analysis.

Optimization of Reaction Parameters for Lactams

Table S3. Optimization of reaction parameters for lactam 4a^[a]

entry	PG	ligand	solvent	yield [%] ^[b]	ee [%] ^[c]	
1	Bz	L2	PhMe:MTBE (2:3)	95	77	
2	Bz	L3	PhMe:MTBE (2:3)	>95	88	
3	Bz	L4	PhMe:MTBE (2:3)	79	90	
4 [d]	Bz	L4	PhMe:MTBE (2:3)	28	88	
5	Bz	L4	PhMe:Et ₂ O (2:3)	70	88	
6	Bz	L4	PhMe	51	88	
7	Bz	L4	THF	15	76	
8 ^[e]	Bz	L4	PhMe:MTBE (2:3)	>95	88	

[a] Conditions: lactam (0.1 mmol), alcohol (0.1 mmol), Ni(COD)₂ (10 mol %), ligand (12 mol %) for 48 h. [b] Yields determined by ¹H NMR of crude reaction mixture using trimethoxybenzene as a standard. [c] Determined by chiral SFC analysis. [d] 5 mol % Ni(COD)₂ and 6 mol % L4 were used. [e] Reaction performed at 23 °C.

L2: (R)-H₈-BINAP

L3: (R)-Segphos

OMe

SI 12

Spectroscopic Data for Products from Catalytic Reactions

3aa

Ethyl (R)-3-allyl-2-oxotetrahydro-2H-pyran-3-carboxylate (3aa)

Product **3aa** was prepared using general procedure 3 at -10 °C and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (31.8 mg, 75% yield); 86% ee, $[\alpha]_D^{25}$ +3.84 (*c* 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 5.84–5.69 (m, 1H), 5.19–5.08 (m, 2H), 4.34–4.23 (m, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.73 (ddt, *J* = 13.8, 6.8, 1.2 Hz, 1H), 2.59 (ddt, *J* = 13.9, 7.9, 1.0 Hz, 1H), 2.38–2.25 (m, 1H), 2.05–1.88 (m, 1H), 1.92–1.79 (m, 2H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.0, 132.6, 119.9, 69.0, 62.2, 54.0, 40.8, 28.0, 20.6, 14.2; IR (Neat Film, NaCl) 2981, 1732, 1457, 1399, 1367, 1348, 1244, 1200, 1162, 1108, 1026, 974, 925, 857, 640 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₁H₁₇O₄ [M+H]⁺: 213.1121, found 213.1120; SFC Conditions: 25% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): major = 2.66, minor = 3.29.

3ba

Methyl (R)-3-allyl-2-oxotetrahydro-2H-pyran-3-carboxylate (3ba)

Product **3ba** was prepared using general procedure 3 at -10 °C and purified by column chromatography (30% EtOAc in hexanes) to provide a colorless oil (25.5 mg, 64% yield); 86% ee, $[\alpha]_D^{25}$ + 5.071 (*c* 0.896, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.85–5.66 (m, 1H), 5.20–5.10 (m, 2H), 4.33–4.26 (m, 2H), 3.76 (s, 3H), 2.75 (ddt, *J* = 13.8, 6.8, 1.3 Hz, 1H), 2.61 (ddt, *J* = 13.8, 7.8, 1.0 Hz, 1H), 2.39–2.26 (m, 1H), 2.03–1.77 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 169.9, 132.5, 120.1, 69.2, 54.1, 53.2, 40.9, 28.1, 20.6; IR (Neat Film, NaCl) 3079, 2955, 2920, 1733, 1640, 1480, 1436, 1401, 1349, 1321, 1277, 1247, 1204, 1164, 1122, 1108, 1076, 1000, 978, 126, 844, 716, 659, 640; HRMS (MM) *m/z* calc'd for C₁₀H₁₅O₄ [M+H]⁺: 199.0965,

found 199.0970; SFC Conditions 20% IPA, 2.5 mL/min, Chiralpak IC column λ = 210 nm, t_R (min): major = 3.35, minor = 3.99.

Ethyl (S)-3-allyl-2-oxochromane-3-carboxylate (3ca)

Product **3ca** was prepared using general procedure 3 at -10 °C and purified by column chromatography (5% EtOAc in hexanes) to provide a colorless oil (31.9 mg, 61% yield); 64% ee, $[\alpha]_D^{25}$ -30.75 (*c* 0.92, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.13 (m, 2H), 7.13–7.00 (m, 2H), 5.91 (ddt, *J* = 16.6, 10.6, 7.3 Hz, 1H), 5.23–5.12 (m, 2H), 4.05 (qq, *J* = 10.8, 7.1 Hz, 2H), 3.26 (d, 15.9 Hz, 1 H), 3.04 (d, *J* = 15.9 Hz, 1H), 2.84–2.67 (m, 2H), 1.02 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 167.2, 151.2, 132.1, 128.7, 128.5, 124.8, 121.4, 120.4, 116.5, 62.2, 53.3, 38.6, 32.5, 14.0; IR (Neat Film, NaCl) 3079, 2982, 2936, 1774, 1738, 1653, 1640, 1590, 1541, 1490, 1460, 1344, 1232, 1190, 1145, 1096, 1020, 921, 858, 759, 658; HRMS (MM) *m/z* calc'd for C₁₅H₁₇O₄ [M+H]⁺: 261.1121, found 261.1123; SFC Conditions: 5% IPA, 2.5 mL/min, Chiralcel OB-H column, $\lambda = 210$ nm, t_R (min): minor = 2.22, major = 2.64.

Ethyl (R)-3-cinnamyl-2-oxotetrahydro-2H-pyran-3-carboxylate (3ab)

Product **3ab** was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (34.4 mg, 60% yield); 90% ee, $[\alpha]_D^{25}$ -12.15 (*c* 0.64, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.25 (m, 4H), 7.27–7.17 (m, 1H), 6.47 (dt, *J* = 16.0, 1.4 Hz, 1H), 6.19 (ddd, *J* = 15.8, 8.0, 7.0 Hz, 1H), 4.35–4.17 (m, 4H), 2.91 (ddd, *J* = 13.8, 7.0, 1.4 Hz, 1H), 2.74 (ddd, *J* = 13.8, 8.0, 1.2 Hz, 1H), 2.45–2.31 (m, 1H), 2.11–1.77 (m, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.1, 136.9, 134.8, 128.7,

127.7, 126.4, 124.1, 69.1, 62.3, 54.4, 40.1, 28.1, 20.6, 14.2; IR (Neat Film, NaCl) 2980, 2342, 1955, 1733, 1577, 1449, 1399, 1367, 1243, 1198, 1164, 1026, 971, 910, 858, 746, 695, 642 cm⁻¹; HRMS (MM) *m/z* calc'd for $C_{17}H_{21}O_4$ [M+H]⁺: 289.1430, found 289.1434; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): major = 5.49, minor = 6.31.

Ethyl (*R*,*E*)-2-oxo-3-(3-(*p*-tolyl)allyl)tetrahydro-2*H*-pyran-3-carboxylate (3ac)

Product **3ac** was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a white amorphous solid (37.5 mg, 62% yield); 90% ee, $[\alpha]_D^{25}$ -14.42 (*c* 0.95, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.1 Hz, 2H), 7.15–6.98 (m, 2H), 6.51–6.33 (m, 1H), 6.13 (ddd, *J* = 15.8, 8.1, 7.0 Hz, 1H), 4.31–4.26 (m, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.90 (ddd, *J* = 13.8, 7.0, 1.4 Hz, 1H), 2.72 (ddd, *J* = 13.8, 8.1, 1.2 Hz, 1H), 2.41–2.25 (m, 4H), 2.02–1.78 (m, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 170.1, 137.5, 134.7, 134.2, 129.3, 126.3, 123.0, 69.1, 62.3, 54.4, 40.2, 28.1, 21.3, 20.6, 14.2; IR (Neat Film, NaCl) 2978, 1731, 1513, 1456, 1399, 1367, 1269, 1242, 1197, 1163, 1096, 1025, 972, 859, 803, 642 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₈H₂₃O₄ [M+H]⁺: 303.1591, found 303.1591; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 254 nm, t_R (min): major 6.47, minor = 7.71.

Supporting Information

Ethyl (*R,E*)-3-(3-(4-methoxyphenyl)allyl)-2-oxotetrahydro-2*H*-pyran-3-carboxylate (3ad) Product 3ad was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (50.5 mg, 79% yield); 88% ee, $[\alpha]_D^{25}$ -15.9 (*c* 0.95, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.24 (m, 2H), 6.89–6.79 (m, 2H), 6.41 (d, 15.8 Hz, 1H), 6.03 (ddd, *J* = 15.7, 8.0, 7.0 Hz, 1H), 4.29 (t, *J* = 5.9 Hz, 2H), 4.22 (q, *J* = 7.2 Hz, 2H), 3.79 (s, 3H), 2.89 (ddd, *J* = 13.8, 7.0, 1.4 Hz, 1H), 2.71 (ddd, *J* = 13.7, 8.1, 1.2 Hz, 1H), 2.43–2.29 (m, 1H), 2.05–1.79 (m, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 170.2, 159.2, 134.2, 129.8, 127.5, 121.7, 114.0, 69.1, 62.2, 55.4, 54.5, 40.1, 28.1, 20.6, 14.2; IR (Neat Film, NaCl) 2978, 2837, 1732, 1608, 1577, 1512, 1457, 1400, 1349, 1367, 1249, 1198, 1108, 1032, 972, 840, 757, 667, 640; HRMS (MM) *m/z* calc'd for C₁₈H₂₃O₅ [M+H]⁺: 319.1540, found 319.1525; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 254 nm, t_R (min): major = 5.37, minor = 6.37.

3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.1, 162.4 (d, J = 246.8 Hz), 133.5, 133.1 (d, J = 3.3 Hz), 127.9 (d, J = 8.0 Hz), 123.9 (d, J = 2.2 Hz), 115.5 (d, J = 21.7 Hz), 69.0, 62.3, 54.4, 40.1, 28.2, 20.6, 14.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -114.56 (tt, J = 8.6, 5.3 Hz); IR (Neat Film, NaCl) 2981, 2342, 1733, 1602, 1508, 1456, 1400, 1368, 1349, 1298, 1269, 1226, 1198, 1160, 1095, 1025, 972, 847, 767, 711, 668, 639 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₇H₂₀FO₄ [M+H]⁺: 307.1340 found 307.1343; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): major = 5.12, minor = 5.95.

Ethyl (*R,E*)-3-(3-(4-chlorophenyl)allyl)-2-oxotetrahydro-2*H*-pyran-3-carboxylate (3af) Product 3af was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (39.5 mg, 61% yield); 87% ee, $[\alpha]_D^{25}$ -10.81 (*c* 0.83, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 4H), 6.42 (dt, *J* = 15.7, 1.3 Hz, 1H), 6.18 (dd, *J* = 15.9, 7.9, 7.1 Hz, 1H), 4.29 (t, *J* = 5.7 Hz, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.87 (ddd, *J* = 13.9, 7.1, 1.4 Hz, 1H), 2.74 (ddd, *J* = 13.8, 7.9, 1.2 Hz, 1H), 2.46–2.32 (m, 1H), 2.15–1.80 (m, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 170.1, 135.4, 133.5, 133.2, 128.8, 127.6, 124.9, 69.0, 62.3, 54.4, 40.1, 28.2, 20.6, 14.2; IR (Neat Film, NaCl) 2979, 2358, 1729, 1490, 1455, 1404, 1243, 1197, 1164, 1092, 971, 820, 760, 679 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₇H₂₀ClO₄ [M+H]⁺: 323.1045, found 323.1041; SFC Conditions: 30% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): major = 2.29, minor = 2.57.

Supporting Information

Ethyl (*R*,*E*)-2-oxo-3-(3-(4-(trifluoromethyl)phenyl)allyl)tetrahydro-2*H*-pyran-3-carboxylate (3ag)

Product **3ag** was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (31.2 mg, 44% yield); 86% ee, $[α]_D^{25}$ –6.52 (*c* 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.47 (m, 2H), 7.47–7.38 (m, 2H), 6.50 (d, *J* = 15.8 Hz, 1H), 6.32 (dt, *J* = 15.8, 7.5 Hz, 1H), 4.30 (dd, *J* = 6.3, 5.2 Hz, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.90 (ddd, *J* = 13.8, 7.1, 1.3 Hz, 1H), 2.77 (ddd, *J* = 13.8, 7.7, 1.2 Hz, 1H), 2.47–2.34 (m, 1H), 2.05–1.81 (m, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 170.0, 140.4 (d, *J* = 1.6 Hz), 133.4, 129.4 (q, *J* = 32.4 Hz), 127.2, 126.5, 125.6 (q, *J* = 3.7 Hz), 122.9, 69.0, 62.4, 54.4, 40.1, 28.3, 20.6, 14.2; ¹⁹F NMR (282 MHz, CDCl₃) δ –62.52 (s); IR (Neat Film, NaCl) 2982, 1733, 1684, 1616, 1540, 1414, 1326, 1244, 1198, 1163, 1120, 1068, 1016, 972, 862, 833, 652; HRMS (MM) *m*/*z* calc'd for C₁₈H₂₀F₃O₄ [M+H]⁺: 357.1308, found 357.1307; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 254 nm, t_R (min): major = 4.02, minor = 4.72.

Ethyl (*R*,*E*)-3-(3-(3,5-dimethylphenyl)allyl)-2-oxotetrahydro-2*H*-pyran-3-carboxylate (3ah) Product 3ah was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (41.0 mg, 65% yield); 88% ee, $[\alpha]_D^{25}$ -13.58 (*c* 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.00–6.94 (m, 2H), 6.87 (dt, *J* = 1.9, 1.0 Hz,

1H), 6.46–6.36 (m, 1H), 6.15 (ddd, J = 15.7, 8.2, 6.8 Hz, 1H), 4.32–4.27 (m, 2H), 4.27–4.20 (m, 2H), 2.91 (ddd, J = 13.8, 6.8, 1.4 Hz, 1H), 2.71 (ddd, J = 13.7, 8.2, 1.2 Hz, 1H), 2.43–2.26 (m, 7H), 2.04–1.79 (m, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 170.2, 138.1, 136.8, 135.0, 129.4, 124.3, 123.6, 69.1, 62.3, 54.4, 40.2, 28.1, 21.3, 20.6, 14.2; IR (Neat Film, NaCl) 2978, 2917, 1731, 1602, 1456, 1398, 1367, 1350, 1242, 1198, 1163, 1096, 1026, 972, 853, 759, 693, 638 cm⁻¹; HRMS (MM) *m*/*z* calc'd for C₁₉H₂₅O₄ [M+H]⁺: 317.1747, found 317.1749; SFC Conditions: 5% IPA, 3.0 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): minor = 9.68, major = 11.56.

Ethyl (*R,E*)-3-(3-(naphthalen-2-yl)allyl)-2-oxotetrahydro-2*H*-pyran-3-carboxylate (3ai) Product 3ai was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (42.1 mg, 62% yield); 88% ee, $[\alpha]_D^{25}$ +27.34 (*c* 0.82, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.73 (m, 3H), 7.72–7.67 (m, 1H), 7.57 (dd, J = 8.5, 1.8 Hz, 1H), 7.52–7.38 (m, 2H), 6.68–6.59 (m, 1H), 6.34 (ddd, J = 15.8, 8.0, 7.0 Hz, 1H), 4.30 (t, J = 5.8 Hz, 2H), 4.24 (q, J = 7.1 Hz, 2H), 2.96 (ddd, J = 13.7, 7.0, 1.4 Hz, 1H), 2.81 (ddd, J = 13.7, 8.0, 1.2 Hz, 1H), 2.48–2.34 (m, 1H), 2.03–1.81 (m, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.1, 134.8, 134.3, 133.6, 133.0, 128.2, 128.0, 127.7, 126.3, 126.1, 125.9, 124.5, 123.6, 69.0, 62.3, 54.4, 40.2, 28.1, 20.6, 14.2; IR (Neat Film, NaCl) 2980, 1732, 1597, 1507, 1456, 1399, 1367, 1243, 1198, 1097, 1023, 971, 896, 861, 815, 751, 667, 639, 624; HRMS (MM) *m/z* calc'd for C₂₁H₂₃O₄ [M+H]⁺: 339.1591, found 339.1595; SFC Conditions 30% IPA, 2.5 mL/min, Chiralpak AD-H column $\lambda = 254$ nm, t_R (min): major = 3.36, minor = 4.24.

Supporting Information

Ethyl (R,E)-3-(3-(2-methoxyphenyl)allyl)-2-oxotetrahydro-2H-pyran-3-carboxylate (3aj)

Product **3aj** was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (32.4 mg, 51% yield); 90% ee, $[\alpha]_D^{25}$ -11.96 (*c* 0.87, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.21 (ddd, *J* = 8.2, 7.4, 1.7 Hz, 1H), 6.90 (td, *J* = 7.6, 1.1 Hz, 1H), 6.88–6.75 (m, 2H), 6.16 (ddd, *J* = 15.9, 8.2, 6.9 Hz, 1H), 4.29 (dd, *J* = 6.2, 5.5 Hz, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.83 (s, 3H), 2.92 (ddd, *J* = 13.8, 6.8, 1.5 Hz, 1H), 2.77 (ddd, *J* = 13.7, 8.2, 1.2 Hz, 1H), 2.44–2.29 (m, 1H), 2.03–1.81 (m, 3H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 170.2, 156.5, 129.5, 128.7, 126.8, 126.0, 124.5, 120.7, 110.9, 69.2, 62.2, 55.5, 54.4, 40.6, 28.1, 20.7, 14.2; IR (Neat Film, NaCl) 2978, 2838, 1732, 1598, 1489, 1464, 1399, 1244, 1198, 1163, 1104, 1051, 1027, 976, 858, 755, 641; HRMS (MM) *m/z* calc'd for C₁₈H₂₃O₅ [M+H]⁺: 319.1540, found 319.1542; SFC Conditions 10% IPA, 2.5 mL/min, Chiralcel OD-H column λ = 254 nm, t_R (min): minor = 9.05, major = 9.85.

3ak

Ethyl (R,E)-3-(3-(furan-2-yl)allyl)-2-oxotetrahydro-2H-pyran-3-carboxylate (3ak)

Product **3ak** was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (45.5 mg, 82% yield); 88% ee, $[\alpha]_D^{25}$ -11.85 (*c* 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.27 (m, 1H), 6.37–6.23 (m, 2H), 6.17 (d, *J* = 3.2 Hz, 1H), 6.14–6.01 (m, 1H), 4.29 (dd, *J* = 6.3, 5.5 Hz, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.86 (ddd, *J* = 13.9, 7.2, 1.3 Hz, 1H), 2.70 (ddd, *J* = 13.9, 8.0, 1.2 Hz, 1H), 2.40–2.29 (m, 1H), 2.05–

1.78 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.0, 152.4, 141.9, 123.2, 122.7, 111.3, 107.6, 69.1, 62.3, 54.4, 39.8, 28.1, 20.6, 14.1; IR (Neat Film, NaCl) 2980, 1732, 1456, 1399, 1244, 1200, 1166, 1097, 1017, 969, 926, 858, 749, 640 ; HRMS (MM) *m/z* calc'd for C₁₅H₁₉O₅ [M+H]⁺: 343.1329, found 343.1327; SFC Conditions 10% IPA, 2.5 mL/min, Chiralpak AD-H column $\lambda = 254$ nm, t_R (min): major = 3.97, minor = 4.62.

3al

Ethyl (*R*,*E*)-2-oxo-3-(3-(thiophen-2-yl)allyl)tetrahydro-2*H*-pyran-3-carboxylate (3al)

Product **3al** was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (39.9 mg, 68% yield); 88% ee, $[\alpha]_D^{25}$ -15.7 (*c* 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.12 (dt, *J* = 4.9, 1.0 Hz, 1H), 6.97–6.87 (m, 2H), 6.59 (dtt, *J* = 15.7, 1.4, 0.6 Hz, 1H), 6.00 (ddd, *J* = 15.4, 8.0, 7.2 Hz, 1H), 4.29 (t, *J* = 5.9 Hz, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.86 (ddd, *J* = 13.9, 7.2, 1.4 Hz, 1H), 2.70 (ddd, *J* = 13.8, 8.0, 1.2 Hz, 1H), 2.42–2.29 (m, 1H), 2.06–1.80 (m, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.0, 142.0, 127.9, 127.4, 125.5, 124.2, 123.7, 69.1, 62.3, 54.4, 40.0, 28.2, 20.6, 14.2; IR (Neat Film, NaCl) 3107, 2980, 1731, 1446, 1367, 1348, 1244, 1199, 1165, 1096, 1024, 965, 855, 750, 704, 643; HRMS (MM) *m*/*z* calc'd for C₁₅H₁₉O₄S [M+H]⁺: 295.0999, found 295.0994; SFC Conditions 10% IPA, 2.5 mL/min, Chiralpak AD-H column λ = 254 nm, t_R (min): major = 6.33, minor = 7.51.

3am

Ethyl (R,E)-3-(but-2-en-1-yl)-2-oxotetrahydro-2H-pyran-3-carboxylate (3am)

Product **3am** was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (25.6 mg, 57% yield); 78% ee, $[\alpha]_D^{25}$ -0.22 (*c*

1.13, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.55 (dqt, *J* = 15.0, 6.2, 1.1 Hz, 1H), 5.47–5.30 (m, 1H), 4.27 (t, *J* = 5.7 Hz, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.72–2.61 (m, 1H), 2.51 (ddt, *J* = 13.8, 7.7, 1.1 Hz, 1H), 2.35–2.26 (m, 1H), 2.02–1.90 (m, 1H), 1.90–1.78 (m, 2H), 1.65 (dq, *J* = 6.5, 1.2 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 170.2, 130.7, 124.9, 69.0, 62.1, 54.3, 39.7, 27.9, 20.6, 18.1, 14.2; IR (Neat Film, NaCl) 2965, 2938, 1730, 1447, 1400, 1272, 1223, 1198, 1163, 1107, 1077, 973, 856; HRMS (MM) *m*/*z* calc'd for C₁₂H₁₉O₄ [M+H]⁺: 227.1278, found 227.1275; SFC Conditions 25% IPA, 2.5 mL/min, Chiralpak IC column λ = 210 nm, t_R (min): major = 2.87, minor = 3.69.

Ethyl (*R*)-2-oxo-3-((2*E*,4*E*)-5-phenylpenta-2,4-dien-1-yl)tetrahydro-2*H*-pyran-3carboxylate (3an)

Product **3an** was prepared using general procedure 3 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (57.3 mg, 91% yield); 88% ee, $[α]_D^{25}$ -22.45 (*c* 0.96, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.35 (m, 2H), 7.30 (ddd, *J* = 7.7, 6.8, 1.2 Hz, 2H), 7.24–7.17 (m, 1H), 6.74 (ddd, *J* = 15.7, 10.4, 0.8 Hz, 1H), 6.49 (d, *J* = 15.7 Hz, 1H), 6.28 (ddq, *J* = 15.4, 10.5, 1.1 Hz, 1H), 5.83–5.69 (m, 1H), 4.29 (t, *J* = 5.8 Hz, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.84 (ddd, *J* = 13.9, 7.2, 1.3 Hz, 1H), 2.68 (ddd, *J* = 13.8, 8.1, 1.1 Hz, 1H), 2.41–2.26 (m, 1H), 2.03–1.80 (m, 3H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.0, 137.2, 135.3, 132.1, 128.7, 128.5, 128.3, 127.6, 126.4, 69.0, 62.3, 54.4, 39.9, 28.1, 20.6, 14.2; IR (Neat Film, NaCl) 3058, 3024, 2980, 1732, 1490, 1478, 1448, 1400, 1367, 1347, 1241, 1198, 1097, 1025, 994, 910, 857, 750, 694, 667, 640; HRMS (MM) *m/z* calc'd for C₁₉H₂₃O₄ [M+H]⁺: 315.1585, found 315.1585; SFC Conditions 15% IPA, 2.5 mL/min, Chiralpak AD-H column $\lambda = 254$ nm, t_R (min): major = 5.30, minor = 6.23.

Ethyl (S)-3-allyl-1-benzoyl-2-oxopiperidine-3-carboxylate (5aa)

Product **5aa** was prepared using general procedure 4 and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (45.9 mg, 73% yield); 90% ee, $[\alpha]_D^{25}$ +42.42 (*c* 0.968, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.70 (m, 2H), 7.54–7.44 (m, 1H), 7.44–7.34 (m, 2H), 5.80–5.62 (m, 1H), 5.17–5.03 (m, 2H), 4.30 (q, *J* = 7.2 Hz, 2H), 3.84–3.71 (m, 2H), 2.72 (ddt, *J* = 13.8, 6.8, 1.2 Hz, 1H), 2.56 (ddt, *J* = 13.8, 7.9, 1.0 Hz, 1H), 2.43–2.25 (m, 1H), 2.04–1.83 (m, 3H), 1.36 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 171.9, 171.8, 135.9, 133.0, 131.8, 128.2, 128.1, 119.7, 62.1, 56.4, 46.6, 40.0, 30.3, 20.3, 14.3; IR (Neat Film, NaCl) 3074, 2936, 2341, 1734, 1700, 1684, 1450, 1388, 1278, 1147, 1177, 1050, 1027, 919, 824, 726, 694, 668 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₈H₂₂NO₄ [M+H]⁺: 316.1543, found 316.1543; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 254$ nm, t_R (min): major = 3.77, minor = 4.39.

Methyl (S)-3-allyl-1-benzoyl-2-oxopiperidine-3-carboxylate (5ba)

Product **5ba** was prepared using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a colorless oil (51.0 mg, 85% yield); 90% ee, $[\alpha]_D^{25}$ +48.58 (*c* 0.890, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.59 (m, 2H), 7.55–7.44 (m, 1H), 7.40 (ddt, *J* = 8.3, 6.6, 1.2 Hz, 2H), 5.84–5.63 (m, 1H), 5.20–5.02 (m, 2H), 3.83 (s, 3H), 3.77 (dd, *J* = 6.7, 5.4 Hz, 2H), 2.73 (ddt, *J* = 13.7, 6.8, 1.2 Hz, 1H), 2.57 (ddt, *J* = 13.7, 7.7, 1.1 Hz, 1H), 2.41–2.29 (m, 1H), 2.07–1.85 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 172.4, 171.8, 135.9, 133.0, 131.8, 128.2, 128.1, 119.8, 56.5, 52.9, 46.6, 39.9, 30.3, 20.2; IR (Neat Film, NaCl) 3075, 2953, 1738, 1702, 1683, 1640, 1583, 1478, 1449, 1436, 1349, 1277, 1252, 1177, 1147, 1078, 1052, 1027, 1001, 844, 819, 796, 726, 695, 651; HRMS (MM) *m/z* calc'd for C₁₇H₂₀NO₄

 $[M+H]^+$: 302.1387, found 302.1377; SFC Conditions 10% IPA, 2.5 mL/min, Chiralpak AD-H column $\lambda = 254$ nm, t_R (min): minor = 3.96, major = 4.53.

Ethyl (S)-1-benzoyl-3-cinnamyl-2-oxopiperidine-3-carboxylate (5ab)

Product **5ab** was prepared using general procedure 4 at 30 °C and purified by column chromatography (20% to 40% Et₂O in hexanes) to provide a colorless oil (58.2 mg, 74% yield); 90% ee, $[\alpha]_D^{25}$ +71.0 (*c* 0.88, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.73 (m, 2H), 7.55–7.45 (m, 1H), 7.45–7.37 (m, 2H), 7.36–7.27 (m, 4H), 7.25–7.20 (m, 1H), 6.46 (dt, *J* = 15.7, 1.3 Hz, 1H), 6.14 (ddd, *J* = 15.8, 8.0, 6.9 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.86–3.73 (m, 2H), 2.91 (ddd, *J* = 13.8, 7.0, 1.4 Hz, 1H), 2.72 (ddd, *J* = 13.8, 8.0, 1.2 Hz, 1H), 2.49–2.35 (m, 1H), 2.10–1.91 (m, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 172.0, 171.9, 137.0, 135.9, 134.6, 131.9, 128.6, 128.2, 128.2, 127.6, 126.4, 124.5, 62.2, 56.9, 46.6, 39.3, 30.5, 20.3, 14.3; IR (Neat Film, NaCl) 2979, 1728, 1684, 1600, 1578, 1449, 1390, 1277, 1194, 1172, 1150, 1026, 970, 923, 934, 857, 822, 795, 745, 725, 694, 661 cm⁻¹; HRMS (MM) *m/z* calc'd for C₂₄H₂₆NO₄ [M+H]⁺: 392.1856, found 392.1849; SFC Conditions: 30% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): minor = 2.56, major = 2.95.

Experimental Procedures and Characterization Data for Product Transformations

Ethyl (S)-2-(hydroxymethyl)-2-(3-hydroxypropyl)pent-4-enoate (6)

To a solution of allvlated product **3aa** (42.5 mg, 0.2 mmol, 1 equiv) in 4:1 methanol:THF (1.4 mL), CeCl₃.7H₂O was added (149.0 mg, 0.4 mmol, 2 equiv). After cooling the reaction mixture at 0°C for 10 minutes, NaBH₄ (37.5 mg, 1.0 mmol, 5 equiv) was added in three portions over the course of 20 minutes. Additional methanol (1.5 mL) was added to rinse the side of the flask and the reaction mixture was stirred for another 10 minutes. The reaction was quenched with glacial acetic acid. The crude mixture was then concentrated under reduced pressure. The resultant residue was extracted with EtOAc, washed with NaHCO₃ and brine, dried over anhydrous MgSO₄, filtered, and purified by column chromatography (70% EtOAc in hexanes) to afford diol **6** as a colorless oil (54.1 mg, 88% yield). $[\alpha]_D^{25}$ +1.222 (c 0.92, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.71 (ddt, J = 17.4, 10.1, 7.4 Hz, 1H), 5.14–4.99 (m, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.72-3.62 (m, 2H), 3.59 (td, J = 6.2, 1.6 Hz, 2H), 2.65 (br s, 2H), 2.38 (ddt, J = 14.0, 7.3, 1.2 Hz, 1H), 2.30 (ddt, J = 13.9, 7.5, 1.1 Hz, 1H), 1.75–1.58 (m, 2H), 1.58–1.42 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 133.4, 118.6, 64.5, 62.9, 60.8, 50.8, 38.0, 29.3, 27.1, 14.4; IR (Neat Film, NaCl) 2281, 3078, 2940, 1725, 1641, 1465, 1447, 1372, 1329, 1300, 1219, 1191, 1138, 1112, 1053, 920, 862, 824, 782, 748, 679, 634; HRMS (MM) m/z calc'd for $C_{11}H_{21}O_4 [M+H]^+$: 217.1434, found 217.1427.

Ethyl (S)-2-allyl-2-(3-hydroxypropyl)-3-oxopent-4-enoate (7)

A 0.5 M solution of vinylmagnesium bromide in THF (0.3 mmol, 1.5 equiv) was added dropwise to a solution of allylated product **3aa** (42.5 mg, 0.2 mmol, 1 equiv) in THF (0.7 mL) at -78 °C

over 15 minutes. After 9 hours at -78 °C, the reaction was quenched with NH₄Cl. The mixture was diluted with EtOAc, washed with brine, and dried over anhydrous Na₂SO₄. Flash column chromatography (50% EtOAc in hexanes) of the crude residue afforded compound **7** as a colorless oil (80.0 mg, 67% yield); 86% ee, $[\alpha]_D^{25}$ -9.914 (*c* 0.798, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.53 (dd, *J* = 16.9, 10.2 Hz, 1H), 6.39 (dd, *J* = 17.0, 1.8 Hz, 1H), 5.70 (dd, *J* = 10.1, 1.8 Hz, 1H), 5.57 (ddt, *J* = 16.8, 10.1, 7.4 Hz, 1H), 5.16–5.04 (m, 2H), 4.19 (qd, *J* = 7.1, 0.7 Hz, 2H), 3.62 (td, *J* = 6.4, 1.1 Hz, 2H), 2.79–2.55 (m, 2H), 2.04–1.82 (m, 2H), 1.51–1.30 (m, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.5, 172.1, 132.2, 131.8, 129.5, 119.3, 62.9, 61.7, 61.6, 35.9, 27.5, 27.0, 14.2; IR (Neat Film, NaCl) 340, 3079, 2924, 1732, 1698, 1642, 1612, 1447, 1402, 1368, 1299, 1262, 1200, 1137, 1096, 1057, 1029, 983, 923, 856, 808, 739, 670, 686, 654; HRMS (MM) *m/z* calc'd for C₁₃H₂₁O₄ [M+H]⁺: 241.1440, found 241.1443; SFC Conditions: 30% IPA, 2.5 mL/min, Chiralpak IC column, λ = 210 nm, t_R (min): major = 7.14, minor = 7.64.

(S)-7-oxaspiro[4.5]dec-2-ene-1,6-dione (8)

Compound 7 (68.9 mg, 0.29 mmol, 1 equiv) in degassed toluene (3.0 mL) was added to a stirred solution of Grubbs' II catalyst (12.2 mg, 5 mol%) in toluene (15 mL) at 23 °C. After stirring at 40 °C for 4 hours under argon atmosphere, the dark brown solution was filtered through silica plug, flushed with acetone, and concentrated under vacuum. The crude residue was then redissolved in acetonitrile, 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) was added (52 uL, 0.35 mmol, 1.2 equiv), and the reaction mixture was stirred at room temperature. Upon complete consumption of starting material by TLC, the reaction was quenched with NH₄Cl, extracted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was purified by column chromatography (30% acetone in hexanes) to provide spirocycle **8** as a colorless oil (25.6 mg, 53% yield). $[\alpha]_D^{25}$ -62.168 (*c* 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dt, *J* = 5.6, 2.7 Hz, 1H), 6.14 (dt, *J* = 5.7, 2.2 Hz, 1H), 4.66–4.50 (m, 1H), 4.47–4.40 (m, 1H), 3.39 (dt, *J* = 18.9, 2.5 Hz, 1H), 2.58 (dt, *J* = 18.9, 2.4 Hz, 1H), 2.41–2.25 (m, 1H), 2.25–2.13 (m, 1H), 1.92–1.75 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 206.2,

170.1, 163.8, 131.2, 71.0, 53.9, 44.5, 30.7, 20.4; IR (Neat Film, NaCl) 3082, 2932, 2871, 1728, 1699, 1592, 1422, 1403, 1343, 1272, 1217, 1160, 1108, 1080, 963, 816, 763; HRMS (MM) m/z calc'd for C₉H₁₁O₃ [M+H]⁺: 167.0703, found 167.0696.

(S)-(3-allyl-1-benzylpiperidin-3-yl)methanol (9)

To a flame-dried microwave vial under argon was added lactam 5aa (63 mg, 0.2 mmol) and dry diethyl ether (2.0 mL). Lithium aluminum hydride (91 mg, 2.4 mmol) was added slowly. The reaction was allowed to stir at room temperature for 10 minutes, after which it was sealed and heated to 65°C for 36 h. The reaction was guenched with water and 15% sodium hydroxide solution and extracted with ethyl acetate (5 mL \times 4). The combined extracts were dried with Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was purified by column chromatography (50% EtOAc in hexanes) to afford alcohol 9 as a colorless oil (39.3 mg, 80% vield). [a]_D²⁵+29.393 (c 0.965, CHCl₃); ¹H NMR (400 MHz, CDCl₃) & 7.36–7.22 (m, 5H), 5.74 (ddt, J = 16.7, 10.4, 7.6 Hz, 1H), 5.06-4.95 (m, 2H), 3.63 (ad, J = 10.6, 1.6 Hz, 2H), 3.52-3.39(m, 2H), 2.78-2.66 (m, 2H), 2.10-2.00 (m, 3H), 1.91 (d, J = 7.5 Hz, 2H), 1.69-1.54 (m, 2H), 1.36–1.19 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.0, 133.9, 129.1, 128.5, 127.3, 117.8, 72.4, 63.5, 62.8, 54.0, 37.2, 33.2, 29.8, 23.0; IR (Neat Film, NaCl) 3392, 3065, 3028, 3003, 2932, 2858, 2797, 2759, 1949, 1822, 1730, 1638, 1586, 1603, 1586, 1553, 1494, 1466, 1453, 1415, 1392, 1370, 1352, 1311, 1300, 1259, 1248, 1208, 1180, 1162, 1127, 1116, 1072, 1045, 1028, 1045, 1001, 913, 875, 834, 810, 739, 699, 635, 619; HRMS (MM) m/z calc'd for C₁₆H₂₄NO [M+H]⁺: 246.1852, found 246.1847.

To a flame dried vial was added CuCl₂·H₂O (4.1 mg, 0.024 mmol), PdCl₂(PhCN)₂ (9.2 mg, 0.024 mmol), AgNO₂(1.9 mg, 0.012 mmol), t-BuOH (3.75 mL) and nitromethane (0.25 mL). The solution was sparged with O₂ for 15 minutes, and then neat lactam **5aa** (63.1 mg, 0.2 mmol) was added. The solution was then sparged for another 3 minutes and allowed to stir for 14 hours under an oxygen atmosphere. Upon reaction completion by TLC, water (4 mL) was added and the aqueous layer was extracted with DCM (4 mL \times 3). The combined organic layers were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The product was purified by column chromatography (50% EtOAc in hexanes) to yield 75% of product 10. $\left[\alpha\right]_{D}^{25}$ +3.159 (c 0.685, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 7.78–7.69 (m, 2H), 7.52–7.44 (m, 1H), 7.44–7.35 (m, 2H), 4.38–4.24 (m, 2H), 3.89–3.70 (m, 2H), 2.73–2.59 (m, 1H), 2.55–2.38 (m, 2H), 2.23–2.13 (m, 2H), 2.06–1.91 (m, 2H), 1.82 (ddd, J = 13.6, 9.9, 5.4 Hz, 1H), 1.37 (t, J =7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.9, 175.0, 172.1, 171.9, 135.8, 132.0, 128.2, 128.2, 62.4, 55.8, 46.6, 39.9, 31.5, 27.8, 20.2, 14.3; IR (Neat Film, NaCl) 2924, 2853, 2727, 1723, 1704, 1681, 1601, 1449, 1391, 1348, 1275, 1195, 1174, 1150, 1062, 1023, 959, 916, 856, 824, 796, 726, 695, 659; HRMS (MM) m/z calc'd for C₁₈H₂₂NO₅ [M+H]⁺: 332.1492, found 332.1483.

Ethyl (S)-3-allyl-2-oxopiperidine-3-carboxylate (11)¹⁶

To a flame dried vial under argon was added NaOEt (17.4 mg, 0.26 mmol) and ethanol (1.3 mL). Lactam **5aa** (63.1 mg, 0.20 mmol) was added and the resulting mixture was stirred for 48 h at 65 °C. The reaction was quenched with citric acid (154 mg, 0.80 mmol) and the EtOH was removed in vacuo. The resulting oil was then diluted with water (2 mL) and extracted with chloroform. The combined organic layers were dried with Na₂SO₄ and the solvent was removed in vacuo. The product was purified by column chromatography (80% EtOAc in hexanes) to afford amide **11** as a colorless oil (35.6 mg, 84% yield). $[\alpha]_D^{25}$ +36.162 (*c* 0.89, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.40 (s, 1H), 5.76 (dddd, *J* = 16.8, 10.2, 8.1, 6.5 Hz, 1H), 5.20–5.05 (m, 2H), 4.29–4.10 (m, 2H), 3.40–3.18 (m, 2H), 2.78 (ddt, *J* = 13.8, 6.5, 1.3 Hz, 1H), 2.66–2.50 (m, 1H), 2.14–2.04

(m, 1H), 1.93–1.68 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 170.8, 133.7, 119.2, 61.6, 53.5, 42.5, 40.0, 29.4, 19.6, 14.3; IR (Neat Film, NaCl) 3213, 3077, 2978, 2941, 2873, 1732, 1668, 1490, 1469, 1417, 1392, 1356, 1326, 1314, 1297, 1282, 1241, 1193, 1153, 1116, 1094, 1026, 1005, 921, 856, 812, 763, 719, 663; HRMS (MM) *m/z* calc'd for C₁₁H₁₈NO₃ [M+H]⁺: 212.1281, found 212.1280.

entry	compound	SFC analytic conditions	ee (%)
1		Chiralpak IC, λ = 210 nm 25% IPA/CO ₂ , 2.5 mL/min t _R (min) major 2.66, minor 3.29	86
2		Chiralpak IC, λ = 210 nm 20% IPA/CO ₂ , 2.5 mL/min t _R (min) major 3.35, minor 3.99	86
3	3ba	Chiracel OB-H, λ = 210 nm 5% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 2.22, major 2.64	64
4		Chiralpak AD-H, λ = 254 nm 10% IPA/CO2, 2.5 mL/min tʀ (min) major 5.49, minor 6.31	90
5	3ab	Chiralpak AD-H, λ = 254 nm 10% IPA/CO2, 2.5 mL/min tռ (min) major 6.47, minor 7.71	90

Table S4. Determination of Enantiomeric Excess

Т́ Ме

Зас

entry	compound	SFC analytic conditions	ee (%)
6	OEt	Chiralpak AD-H, λ = 254 nm 15% IPA/CO2, 2.5 mL/min tr (min) major 5.37, minor 6.37	88
7	3ad OMe OEt	Chiralpak AD-H, λ = 254 nm 10% IPA/CO2, 2.5 mL/min tκ (min) major 5.12, minor 5.95	88
8	3ae F OEt 3af	Chiralpak AD-H, λ = 254 nm 30% IPA/CO2, 2.5 mL/min tκ (min) major 2.29, minor 2.57	87
9	CI OEt 3ag	Chiralpak AD-H, λ = 254 nm 10% IPA/CO2, 2.5 mL/min tʀ (min) major 4.02, minor 4.72	86
10	CF ₃	Chiralpak AD-H, λ = 254 nm 5% IPA/CO₂, 3 mL/min tʀ (min) minor 9.68, major 11.56	88

entry	compound	SFC analytic conditions	ee (%)
11	OEt 3ai	Chiralpak AD-H, λ = 254 nm 30% IPA/CO2, 2.5 mL/min tR (min) major 3.36, minor 4.24	88
12	OEt 3aj	Chiralcel OD-H, λ = 254 nm 10% IPA/CO2, 2.5 mL/min tκ (min) minor 9.05, major 9.85	90
13	3ak	Chiralpak AD-H, λ = 254 nm 10% IPA/CO2, 2.5 mL/min tR (min) major 3.97, minor 4.62	88
14	OEt	Chiralpak AD-H, λ = 254 nm 10% IPA/CO2, 2.5 mL/min tκ (min) major 6.33, minor 7.51	88
15	3al OEt Me	Chiralpak IC, λ = 210 nm 25% IPA/CO2, 2.5 mL/min tr (min) major 2.87, minor 3.69	78
16	Sam OEt San Ph	Chiralpak AD-H, λ = 254 nm 15% IPA/CO2, 2.5 mL/min tռ (min) major 5.30, minor 6.23	88

entry	compound	SFC analytic conditions	ee (%)
17		Chiralpak IC, λ = 254 nm 20% IPA/CO ₂ , 2.5 mL/min t _R (min) major 3.77, minor 4.39	90
18	Bz N OMe 5ba	Chiralpak AD-H, λ = 254 nm 10% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 3.96 major 4.53	90
19	Bz N OEt Ph 5ab	Chiralpak AD-H, λ = 254 nm 30% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 2.56, major 2.95	90
20	OEt	Chiralpak IC, λ = 210 nm 10% IPA/CO2, 2.5 mL/min tR (min) major 7.14, minor 7.64	86

X-Ray Crystal Structure Data for Allylated Product 3af

The alpha-quaternary lactone product **3af** (87% ee) was crystallized from chloroform at -30 °C to provide crystals suitable for X-ray analysis.

Table S5. Crystal data and structure refinement for 5am (P17471)

Identification code	P17471	
Empirical formula	C17 H19 Cl O4	
Formula weight	322.77	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 6.9832(6) Å	α= 90°.
	b = 8.5007(7) Å	β= 90°.
	c = 26.483(2) Å	$\gamma = 90^{\circ}$.
Volume	1572.1(2) Å ³	
Z	4	
Density (calculated)	1.364 Mg/m ³	
Absorption coefficient	2.289 mm ⁻¹	
F(000)	680	

Crystal size	0.300 x 0.150 x 0.050 mm ³
Theta range for data collection	3.337 to 74.260°.
Index ranges	-8<=h<=8,-10<=k<=10,-32<=l<=32
Reflections collected	25120
Independent reflections	3188 [R(int) = 0.0489]
Completeness to theta = 67.679°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7538 and 0.6272
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3188 / 0 / 200
Goodness-of-fit on F ²	1.060
Final R indices [I>2sigma(I)]	R1 = 0.0260, wR2 = 0.0656
R indices (all data)	R1 = 0.0278, wR2 = 0.0664
Absolute structure parameter	0.061(4)
Extinction coefficient	n/a
Largest diff. peak and hole	$0.227 \text{ and } -0.175 \text{ e.}\text{Å}^{-3}$

Table S6. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2x \ 10^3)$ for P17471. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

z U(eq)
9(1) 23(1)
0(1) 17(1)
3(1) 24(1)
0(1) 16(1)
0(1) 19(1)
6(1) 24(1)
8(1) 26(1)
8(1) 17(1)
6(1) 24(1)
2(1) 20(1)
1(1) 19(1)
7(1) 27(1)
1(1) 20(1)
1(1) 21(1)

Ngamnithiporn, Jette, Bachman, Virgil, and Stoltz

C(11)	4812(3)	5296(2)	2874(1)	22(1)
C(12)	6521(2)	4825(2)	2586(1)	21(1)
C(13)	7937(3)	3834(3)	2784(1)	27(1)
C(14)	9558(3)	3457(3)	2508(1)	29(1)
C(15)	9789(3)	4068(2)	2030(1)	24(1)
Cl(1)	11856(1)	3606(1)	1692(1)	34(1)
C(16)	8423(3)	5039(2)	1816(1)	24(1)
C(17)	6799(3)	5404(2)	2097(1)	24(1)

Table S7. Bond lengths [Å] and angles [°] for P17471.

O(1)-C(1)	1.333(2)
O(1)-C(5)	1.467(2)
C(1)-O(2)	1.210(2)
C(1)-C(2)	1.530(2)
C(2)-C(6)	1.530(2)
C(2)-C(3)	1.543(2)
C(2)-C(9)	1.551(2)
C(3)-C(4)	1.518(3)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(5)	1.505(3)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-O(3)	1.202(2)
C(6)-O(4)	1.340(2)
C(7)-O(4)	1.459(2)
C(7)-C(8)	1.508(3)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800

C(9)-C(10)	1.502(2)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-C(11)	1.326(3)
C(10)-H(10)	0.9500
C(11)-C(12)	1.472(3)
C(11)-H(11)	0.9500
C(12)-C(17)	1.397(3)
C(12)-C(13)	1.401(3)
C(13)-C(14)	1.384(3)
C(13)-H(13)	0.9500
C(14)-C(15)	1.379(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.382(3)
C(15)-Cl(1)	1.7431(19)
C(16)-C(17)	1.392(3)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(1)-O(1)-C(5)	122.26(14)
O(2)-C(1)-O(1)	118.72(16)
O(2)-C(1)-C(2)	120.46(16)
O(1)-C(1)-C(2)	120.61(15)
C(1)-C(2)-C(6)	106.47(13)
C(1)-C(2)-C(3)	113.40(14)
C(6)-C(2)-C(3)	108.67(14)
C(1)-C(2)-C(9)	104.69(14)
C(6)-C(2)-C(9)	110.14(14)
C(3)-C(2)-C(9)	113.22(14)
C(4)-C(3)-C(2)	109.75(14)
C(4)-C(3)-H(3A)	109.7
C(2)-C(3)-H(3A)	109.7
C(4)-C(3)-H(3B)	109.7
C(2)-C(3)-H(3B)	109.7
H(3A)-C(3)-H(3B)	108.2
C(5)-C(4)-C(3)	108.75(16)
C(5)-C(4)-H(4A)	109.9
-------------------	------------
C(3)-C(4)-H(4A)	109.9
C(5)-C(4)-H(4B)	109.9
C(3)-C(4)-H(4B)	109.9
H(4A)-C(4)-H(4B)	108.3
O(1)-C(5)-C(4)	113.07(15)
O(1)-C(5)-H(5A)	109.0
C(4)-C(5)-H(5A)	109.0
O(1)-C(5)-H(5B)	109.0
C(4)-C(5)-H(5B)	109.0
H(5A)-C(5)-H(5B)	107.8
O(3)-C(6)-O(4)	124.08(16)
O(3)-C(6)-C(2)	125.33(16)
O(4)-C(6)-C(2)	110.55(14)
O(4)-C(7)-C(8)	106.47(14)
O(4)-C(7)-H(7A)	110.4
C(8)-C(7)-H(7A)	110.4
O(4)-C(7)-H(7B)	110.4
C(8)-C(7)-H(7B)	110.4
H(7A)-C(7)-H(7B)	108.6
C(6)-O(4)-C(7)	116.84(13)
C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(10)-C(9)-C(2)	114.54(15)
C(10)-C(9)-H(9A)	108.6
C(2)-C(9)-H(9A)	108.6
C(10)-C(9)-H(9B)	108.6
C(2)-C(9)-H(9B)	108.6
H(9A)-C(9)-H(9B)	107.6
C(11)-C(10)-C(9)	123.40(17)
C(11)-C(10)-H(10)	118.3
C(9)-C(10)-H(10)	118.3

C(10)-C(11)-C(12)	126.94(18)
C(10)-C(11)-H(11)	116.5
C(12)-C(11)-H(11)	116.5
C(17)-C(12)-C(13)	117.39(17)
C(17)-C(12)-C(11)	119.79(17)
C(13)-C(12)-C(11)	122.81(17)
C(14)-C(13)-C(12)	121.30(18)
C(14)-C(13)-H(13)	119.3
C(12)-C(13)-H(13)	119.3
C(15)-C(14)-C(13)	119.48(18)
C(15)-C(14)-H(14)	120.3
C(13)-C(14)-H(14)	120.3
C(14)-C(15)-C(16)	121.37(18)
C(14)-C(15)-Cl(1)	118.91(15)
C(16)-C(15)-Cl(1)	119.72(15)
C(15)-C(16)-C(17)	118.44(17)
C(15)-C(16)-H(16)	120.8
C(17)-C(16)-H(16)	120.8
C(16)-C(17)-C(12)	122.01(18)
C(16)-C(17)-H(17)	119.0
C(12)-C(17)-H(17)	119.0

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	22(1)	19(1)	28(1)	-3(1)	0(1)	4(1)
C(1)	16(1)	19(1)	17(1)	2(1)	0(1)	2(1)
O(2)	15(1)	27(1)	32(1)	4(1)	1(1)	0(1)
C(2)	13(1)	16(1)	19(1)	-1(1)	-1(1)	0(1)
C(3)	15(1)	21(1)	22(1)	-1(1)	-1(1)	-2(1)
C(4)	25(1)	19(1)	29(1)	2(1)	-2(1)	-7(1)
C(5)	31(1)	16(1)	30(1)	-4(1)	-2(1)	-4(1)

Table S8. Anisotropic displacement parameters (Å²x 10³) for P17471. The anisotropicdisplacement factor exponent takes the form: $-2p^{2}[h^{2} a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

Ngamnithiporn, Jette, Bachman, Virgil, and Stoltz

C(6)	11(1)	18(1)	23(1)	0(1)	-1(1)	-1(1)
O(3)	31(1)	16(1)	27(1)	-3(1)	2(1)	-1(1)
C(7)	17(1)	17(1)	26(1)	6(1)	0(1)	2(1)
O(4)	22(1)	16(1)	20(1)	2(1)	0(1)	0(1)
C(8)	28(1)	28(1)	24(1)	6(1)	1(1)	6(1)
C(9)	17(1)	22(1)	21(1)	0(1)	-1(1)	0(1)
C(10)	20(1)	21(1)	22(1)	-3(1)	-1(1)	2(1)
C(11)	20(1)	22(1)	24(1)	1(1)	-2(1)	2(1)
C(12)	20(1)	22(1)	21(1)	-1(1)	-1(1)	-3(1)
C(13)	24(1)	38(1)	18(1)	4(1)	0(1)	3(1)
C(14)	24(1)	40(1)	24(1)	2(1)	-3(1)	7(1)
C(15)	21(1)	27(1)	23(1)	-4(1)	1(1)	-3(1)
Cl(1)	27(1)	48(1)	28(1)	-1(1)	8(1)	5(1)
C(16)	27(1)	27(1)	19(1)	2(1)	1(1)	-4(1)
C(17)	24(1)	24(1)	24(1)	4(1)	-2(1)	0(1)

Table S9. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for P17471.

	Х	У	Z	U(eq)
H(3A)	4771	6023	4653	23
H(3B)	5585	5747	4093	23
H(4A)	5583	8477	4274	29
H(4B)	4108	8133	3822	29
H(5A)	3106	8551	4859	31
H(5B)	2594	9746	4413	31
H(7A)	3689	1884	5119	24
H(7B)	1387	1843	5134	24
H(8A)	3645	3726	5802	40
H(8B)	2714	2082	5964	40
H(8C)	1367	3547	5830	40
H(9A)	1329	4433	3497	24
H(9B)	1991	6214	3417	24

Ngamnithiporn, Jette, Bachman, Virgil, and Stoltz

H(10)	4813	3751	3425	25
H(11)	4115	6171	2748	26
H(13)	7782	3413	3113	32
H(14)	10505	2782	2648	35
H(16)	8589	5447	1485	29
H(17)	5851	6067	1953	28

Table S10. Torsion angles [°] for P17471.

170.67(16)
-14.5(2)
-45.3(2)
139.99(16)
-164.76(17)
20.5(2)
71.34(19)
-103.36(18)
-43.6(2)
-161.81(15)
75.47(19)
60.8(2)
32.0(2)
-54.7(2)
124.19(18)
-113.33(19)
11.2(2)
-57.84(17)
64.64(18)
-170.80(13)
2.6(2)
-175.38(13)
175.89(14)
168.24(15)
-77.66(18)
44.2(2)

C(2)-C(9)-C(10)-C(11)	-132.25(19)
C(9)-C(10)-C(11)-C(12)	-179.98(17)
C(10)-C(11)-C(12)-C(17)	165.5(2)
C(10)-C(11)-C(12)-C(13)	-16.1(3)
C(17)-C(12)-C(13)-C(14)	0.7(3)
C(11)-C(12)-C(13)-C(14)	-177.81(19)
C(12)-C(13)-C(14)-C(15)	0.1(3)
C(13)-C(14)-C(15)-C(16)	-0.7(3)
C(13)-C(14)-C(15)-Cl(1)	179.04(16)
C(14)-C(15)-C(16)-C(17)	0.6(3)
Cl(1)-C(15)-C(16)-C(17)	-179.20(15)
C(15)-C(16)-C(17)-C(12)	0.2(3)
C(13)-C(12)-C(17)-C(16)	-0.8(3)
C(11)-C(12)-C(17)-C(16)	177.69(18)

Symmetry transformations used to generate equivalent atoms:

References:

³ P. Müller, Crystallography Reviews 2009, 15, 57.

⁵ (a) M. Szosak, M. Spain, K. A. Choquette, R. A. Flowers II, D. J. Procter, *J. Am. Chem. Soc.* **2013**, 135, 15702; (b) D. Parmar, L. A. Duffy, D. V. Sadasivam, H. Matsubara, P. A. Bradley, R. A. Flowers II, D. J. Procter, *J. Am. Chem. Soc.* **2009**, 131, 15467.

- ⁶ S. Suljić, J. Pietruszka, Adv. Synth. Catal. 2014, 356, 1007.
- ⁷ Adapted from synthesis of a similar compound, see: D. C. Behenna, Y. Liu, T. Yurino, J. Kim, D. E. White, S. C. Virgil, B. M. Stoltz, *Nature Chem.* **2012**, 4, 130.
- ⁸ (a) A. Filippis, D. G. Pardo, J. Cossy, *Synthesis*. **2004**, 17, 2930; (b) C. J. Foti, D. L., *J. Org. Chem.* **1995**, 60, 2656.
- ⁹ E. C. Garnier, L. S. Liebeskind, J. Am. Chem. Soc. 2008, 130, 7449
- ¹⁰ J. Z. Deng, D. V. Paone, A. T. Ginnetti, H. Kurihara, S. D. Dreher, S. A. Weissman, S. R. Stauffer, C. S. Burgey, *Org. Lett.* **2009**, 11, 345.
- ¹¹ P. Sauerberg, J. W. Kindtler, L. Nielsen, M. J. Sheardown, T. Honoré *J. Med. Chem.* **1991**, 34, 687.
- ¹² A. Loreto, A. Migliorini, P. A. Tardella, A. Gambacorta. Eur. J. Org. Chem. 2007, 14, 2365.
- ¹³ R. Hosseinzadeh, M. Tajbakhsh, M. Mohadjerani, H. Mehdinejad, Synlett. 2004, 9, 1517
- ¹⁴ J. Cossy, A. de Filippis, D. Gomez Pardo, Org. Lett. **2003**, 5, 3037.
- ¹⁵ N. Hoshiya, K. Takenaka, S. Shuto. J. Uenishi, Org. Lett. 2016, 18, 48.
- ¹⁶ Adapted from: S. G. Davies, J. R. Haggitt, O. Ichihara, R. J. Kelly, M. A. Leech, A. J. P. Mortimer, P. M. Roberts, A. D. Smith, *Org. Biomol. Chem.* **2004**, 2, 2630.

¹ G. M. Sheldrick, Acta Cryst. 1990, A46, 467.

² G. M. Sheldrick, Acta Cryst. 2015, C71, 3.

⁴ Procedure adapted from: P. Jakubec, A. J. M. Farley, D. J. Dixon, *Beilstein J. Org. Chem.* **2016**, 12, 1096.

Infrared spectrum (Thin Film, NaCl) of compound 4a.

Infrared spectrum (Thin Film, NaCl) of Boc-protected lactam.

Infrared spectrum (Thin Film, NaCl) of Ts-protected lactam.

SI 50

Infrared spectrum (Thin Film, NaCl) of Ph-protected lactam.

Infrared spectrum (Thin Film, NaCl) of compound 3aa.

¹H NMR (400 MHz, CDCl₃) of compound **3ba**.

Infrared spectrum (Thin Film, NaCl) of compound 3ba.

¹H NMR (400 MHz, CDCl₃) of compound **3ca**.

¹H NMR (400 MHz, CDCl₃) of compound **3ab**.

Infrared spectrum (Thin Film, NaCl) of compound 3ab.

SI 60

Infrared spectrum (Thin Film, NaCl) of compound 3ac.

SI 62

Infrared spectrum (Thin Film, NaCl) of compound 3ae.

51	50	с С	0.00	58	59	61
14	4	4		14	14.	14
<u> </u>	Į.	1		5	5	5

UY)LUONAN <mark>AN</mark> ANANAN	ULATI (ATAKI MANANA	ivijanananinakinah	HTYLLIN MIDNAF DUAR)	n di mananyi va ka	İDMİ YAİNA İMMANI MANANA İM	U Suddan yf Padwa sifer y felyng An y D	iawalanibawan lalambu	unphailtean an thirth an thirth	YAYADAMAN YAYADIYA	WALAAD DALWAAD IN WAAD IN	UNIVARIAN
20	0	-20	-40	-60	-80 ppm	-100	-120	-140	-160	-180	

¹⁹F NMR (282 MHz, CDCl₃) of compound **3ae**

Infrared spectrum (Thin Film, NaCl) of compound 3af.

Infrared spectrum (Thin Film, NaCl) of compound 3ag.

Infrared spectrum (Thin Film, NaCl) of compound **3ah**.

¹H NMR (400 MHz, CDCl₃) of compound **3ai**.

Infrared spectrum (Thin Film, NaCl) of compound 3ai.

¹H NMR (400 MHz, CDCl₃) of compound **3aj**.

SI 82

¹H NMR (400 MHz, CDCl₃) of compound **3am**.

SI 84

¹H NMR (400 MHz, CDCl₃) of compound **3an**.

SI 86

Infrared spectrum (Thin Film, NaCl) of compound 5aa.

¹³C NMR (101 MHz, CDCl₃) of compound **5aa**.

0

¹H NMR (400 MHz, CDCl₃) of compound **5ab**.

SI 92

SI 93

¹H NMR (400 MHz, CDCl₃) of compound 9.

Infrared spectrum (Thin Film, NaCl) of compound 9.

SI 100

Infrared spectrum (Thin Film, NaCl) of compound 10.

SI 102

¹H NMR (400 MHz, CDCl₃) of compound **11**.

Infrared spectrum (Thin Film, NaCl) of compound 11.

SI 104

SFC Traces of Racemic and Enantioenriched Compounds

Racemic 3aa

Enantioenriched 3aa

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	2.620	MM	0.1572	4079.00391	432.53638	93.1655
2	3.309	MM	0.1476	299.23267	33.77860	6.8345

Racemic 3ba

Signal 1: DAD1 A, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	3.349	BB	0.1347	356.33640	40.47424	50.6192
2	3.997	BB	0.1549	347.61929	34.09465	49.3808

Enantioenriched 3ba

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	3.318 3.984	 BB BB	 0.1152 0.1189	 709.51819 53.68814	90.74887 6.88919	92.9654 7.0346

Racemic 3ca

				210101101	2000.020.0	
2	2,637	FM	0.2228	1.42501e4	1066.19885	50,9214

Enantioenriched 3ca

Racemic 3ab

Enantioenriched 3ab

Racemic 3ac

Signal 2: DAD1 D, Sig=254,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	6.468	BB	0.1577	1620.27124	160.62090	49.9937
2	7.714	BBA	0.1760	1620.67798	143.22626	50.0063

Enantioenriched 3ac

Racemic 3ad

Enantioenriched 3ad

Racemic 3ae

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	5.118	BB	0.1154	144.14236	19.68591	49.1936	
2	5.947	BB	0.1322	148.86833	17.34062	50.8064	

Enantioenriched 3ae

Racemic 3af

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	2.292	VB	0.0621	871.48029	220.66896	50.0852
2	2.569	BB	0.0672	868.51556	205.93077	49.9148

Enantioenriched 3af

Racemic 3ag

Enantioenriched 3ag

Signal 2: DAD1 D, Sig=254,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	4.066	BB	0.0988	8166.38477	1346.01123	92.9903
2	4.777	BB	0.1070	615.58563	90.86684	7.0097

Racemic 3ah

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	9.679	BB	0.2081	3600.74146	272.66794	50.1264
2	11.555	BB	0.2713	3582.58228	205.54137	49.8736

Enantioenriched 3ah

Racemic 3ai

51911a1 2. DADI D, 519-254,0 Ker-500,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	olo	
1	3.357	BB	0.0821	1292.65442	242.93283	49.9831	
2	4.243	BB	0.0982	1293.52759	203.45856	50.0169	

Enantioenriched 3ai

Racemic 3aj

2	9.848 VV	0.2277 7086.89697	493.04605	50.1419

Enantioenriched 3aj

Signal 2: DAD1 D, Sig=254,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	9.267	BB	0.1900	173.35948	14.24575	4.8279
2	10.086	BB	0.2145	3417.41455	248.43091	95.1721

Racemic 3ak

#	[min]		[min]	[mAU*s]	[mAU]	olo
1	3.971	MM	0.1320	1.40731e4	1777.38208	48.2039
2	4.620	MM	0.1436	1.51219e4	1755.34912	51.7961

Enantioenriched 3ak

Racemic 3al

Enantioenriched 3al

Racemic 3am

Enantioenriched 3am

Signal 1: DAD1 A, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.910	VB	0.0964	1693.62781	265.69073	88.9254
2	3.720	BB	0.1088	210.92073	29.70895	11.0746

Racemic 3an

Enantioenriched 3an

Racemic 5aa

Signal 2: DAD1 D, Sig=254,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	3.766	BB	0.1253	1016.56195	127.06444	50.0580
2	4.388	BB	0.1466	1014.20660	107.02486	49.9420

2 6.228 BB 0.1357 3918.68042 458.49170 50.0048

Enantioenriched 5aa

Racemic 5ba

2 4.525 BB 0.0996 2042.61084 315.37271 50.0206

Enantioenriched **5ba**

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	3.997	BB	0.0906	36.39927	6.19094	4.8796
2	4.565	BB	0.0996	709.55328	109.53050	95.1204

Racemic 5ab

Enantioenriched 5ab

Racemic 7

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.143	MF	0.2183	2200.42358	168.01707	50.6247
2	7.641	FM	0.2295	2146.11572	155.82289	49.3753

Enantioenriched 7

Signal 1: DAD1 A, Sig=210,8 Ref=360,100

Peak RetTime # [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 7.013	MF	0.2234	6921.48047	516.47284	93.1932
2 7.543	FM	0.2113	505.54355	39.87366	6.8068