




Report CTSL-33

CALIFORNIA INSTITUTE OF TECHNOLOGY

Synchrotron Laboratory 
Pasadena, California

REFINEMENTS IN BUBBLE DENSITY MEASUREMENT*

L. J. Fretwell≠ Jr., D. G. Coyne, and J. H. Mullins

May 24, 1962

*Supported in part by the U. S. Atomic Energy Commission Contract 
No. AT(11-1)-68.

≠Partially supported by the National Science Foundation.



-1-

I. Introduction p. 2

II. Theory p. 3

III. Gap Length Distribution Method p. 3

IV. Mean Gap Length Method p. 15

Appendix I p. 29

Appendix II p. 30

Appendix III p. 32

Contents



-2-

I. Introduction
The object of particle track analysis is to obtain physical para- 

meters of the particle producing the track from quantities easily measured 
on the track image. Many of the problems in such analysis are common to 

bubble chamber, emulsion and cloud chamber work, and, although the fol­

lowing discussion is directed toward bubble chamber track analysis, many 
of the ideas can be taken over into emulsion or cloud chamber work.

With the advent of more careful temperature and pressure control in 
bubble chambers, a quantity of interest is the bubble density, which is 

the average number of bubbles per unit length along the track. For given 
operating conditions, the bubble density is a function of the particle
velocity only; over a wide range it is believed to be approximately pro-
portional to the inverse square of the particle velocity.1-7) Knowledge 

of this functional relationship and possession of techniques for calibra­

tion and for bubble density measurement permit one to measure to some 
degree of accuracy the velocity of non-stopping particles in a bubble 

chamber.
As a matter of convenience, we shall often assume that the relation­

ship between bubble density and particle velocity is the inverse square 

law valid at lower energies. This particular form of the dependence is 
not essential to the arguments presented, and the general conclusions

should still hold for other dependences, in particular the bubble density

rise for highly relativistic particles in some media.5-7) 
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II. Theory
Direct counting of the number of bubbles per unit length along a 

track gives an incorrect result for the bubble density, due primarily to 

bubble image coalescence. Thus it is necessary to find an estimator for 
the bubble density. Choice of an estimator is guided by the requirements 

that it be efficient, that it be conveniently measurable, and that required 
corrections may be easily applied to it.

We shall now investigate two methods satisfying these criteria.

The Gap Length Distribution method is the easier method to apply to 

measurement by hand, since one must simply decide whether each gap in a 
track is greater or less than certain fixed distances. The Mean Gap 
Length method is more amenable to automation since the required quantities 

are the total number of gaps and the total gap length in a track, with 
less attention to the details of individual gaps.

III. Gap Length Distribution Method

Since a bubble should be equally likely to occur anywhere along a 

track, bubble spacings should be describable by a Poisson distribution.

Thus, if one plots the logarithm of the number of gaps greater than X in 

a given track against X, he gets a straight line over some range of X. If 
the track were infinitely long and he plotted the logarithm of the proba­

bility of finding a gap greater than X against X the line would he straight 

over all positive X. Consideration of finite track length ℓ introduces a 

term (1 - x/ℓ) into the exponential distribution so that the line is
straight only for X small compared to ℓ: this is discussed in Appendix I.
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The probability of finding a gap not small compared to ℓ is so low for ℓ 
large compared to the average bubble formation length X, that such gaps 

would not be used in the analysis of a bubble chamber event. Hence we 
shall neglect the (1 - x/ℓ) term.

Appendix II demonstrates that the number of bubble gaps greater 
than a given value varies with the bubble density, the bubble diameter, 

variations about an average bubble diameter, measurement errors, etc., but 

that the slope of the straight line on the semilog plot is a function only 

of the bubble density. Since for a velocity measurement we want to deter­

mine the bubble density as accurately as possible without having to worry 

about a measurement of these other, usually poorly known, quantities, a 
measurement should be directed toward obtaining the slope of the straight 
line as accurately as possible.

For a given track, the procedure squeezing the most possible infor­
mation out of a picture would be to measure each gap between successive 

bubbles, then do a maximum likelihood fit to these measurements. But for 

a track containing several hundred bubbles, this is a very cumbersome pro­

cess without elaborate analysis equipment. A simpler procedure would be 
to pick several values of X, measure the number of gaps greater than X for 

each of these values, and fit a straight line to these points on the semi­
log plot. This is the procedure investigated below.

If we have a track of length L long compared to the average bubble 

spacing, the mean number of bubbles in the track will be approximately nL, 

where n is the bubble density. If the effective bubble diameter (the shor­
test distance between bubble centers such that there is a visible gap
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between the bubbles) is d, the number of measurable gaps will be approxi­

mately nLe-nd. The number of gaps greater than X will be nLe-n(d+x).

For a given value of X the number of events should be Poisson distributed,
so we may write

where K is nLe-nd with factors taking into account measurement errors, 
etc.

Let us now consider making r measurements at X1, X2 , . . ., Xr;

Xi > Xi+1, Xr = 0; where a measurement at consists of counting the 
number of gaps greater than in a given track. This number will be 
denoted by Ni. The number we would expect is N*i = K e-nxi. Using the 

maximum likelihood method10) we want to find the value of n that maximizes 

the joint probability of obtaining N gaps greater than X1, N2 - N1 gaps 

between X1 and X2 , N3 - N2 gaps between X2 and X3, etc. Assuming that 
Ni - Ni-1 will also be Poisson distributed about the expected value, we 

write the likelihood function

where, if i =1, Xi-1 = ∞  and N i-1 = 0.
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Best Value of n

so we want to find the value of n that satisfies this equation.

Error in n

Let us assume that the statistics are good enough that ℒ  is approxi­

mately Gaussian in K and n in the region of the optimum values of K and n . 

Then the error Δn in n will be given by10)

where (reference 1)
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Choice of Measurement Spacing

n being the quantity we want to measure, the should be chosen to

minimize the error in n, which, from the above equations, means maximizing 
-∂ 2 ω / ∂ n 2 .. Since the are of course unknown, we want to maximize

- ∂2ω/∂n2 averaged over the probability distribution of the Ni. But the 
joint probability of obtaining a particular set of Ni is just the
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likelihood function. Hence the quantity to maximize is

since

so

Remembering that

so that

In considering the sum over all Ni, we will think of it as a sum 
over all pairs (Ni - Ni-1), which we will denote by ni. Remembering that 
we said above that we would let the ni have Poisson distributions,
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times

times

Let fi denote the Poisson distribution

where

By factoring ℒ into its product of fk and doing the sums over nk one at a 
time, they become sums like
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When we get to i and j,

so

Recombining terms,

The first term is just

But since and, for

(see initial statement of likelihood function, above). 
Hence the first term vanishes and we have
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Consider for the moment

So we may write

The i = 1 term vanishes since , so

is the function we will maximize with respect to the Xi.
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First consider 1 < i < r.

Defining

Add 1 to each side to complete the square. Take the square root, selec­
ting the signs according to the following criteria: If ρ > 0,

so

so

The other choice of relative signs in the square root corresponds 
to or ρ < 0, which is physically meaningless. So we
obtain
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Consider i = 1.

So we have the recursion relation

to determine the Xi. Table I shows values for the first few ρi.

TABLE I

1 1.59362 1.59362 9 0.29906 5.89787

2 1.01758 2.61120 10 0.27187 6.16974
3 0.75403 3.36524 11 0.24923 6.41897

4 0.60043 3.96567 12 0.23007 6.64904

5 0.49932 4.46499 13 0.21366 6.86270

6 0.42756 4.89255 14 0.19943 7.06213
7 0.37394 5.26649 15 0.18698 7.24912

8 0.33232 5.59881
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The more measurements we take (the bigger r is), the more accurate 
the determination of n . If r is large enough, making N1 small enough that 

the statistics on N1 become poor, the Gaussian approximation involved in 

the error analysis fails, so it is no longer clear that the criteria used 

above continue to apply. However, making r larger than about 4 does little 

to improve the accuracy, as can be seen from Table II.

We define , determined as above.

TABLE II

r ϵr r ϵr

2 .8047 10 .9899

3 .9057 11 .9915

4 .9440 12 .9928

5 .9628 13 .9939

6 .9734 14 .9947

7 .9801 15 .9953

8 .9845 16 .9959

9 .9876
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An ideal measurement has ϵ = 1 as an upper limit because there
are only Nr events and the statistics on Nr events limits our relative   
error to being no better than (Nr)-1/2. ϵ4 is already within 6 per cent

of this limit, and in particular cases, difficulty of making that many 
measurements or poor statistics may dictate a smaller number of measure­

ments than this. The recursion formula used to obtain the ϵr is given in 
Appendix III.

The measurement error indicated in Table II is derived under the 
assumption that the distances chosen for the gap length bins were the 

optimum ones for the bubble density of that particular track. Of course 
one does not know the bubble density before he measures it. Figure 1 

shows how ε varies if one guesses wrong at the bubble density, then opti­

mizes the distances for the gap length bins on the basis of that guess.

As above, r is the number of measurements. G is the true bubble density 
divided by the guessed bubble density. The quantity plotted (F) is the 
factor by which one must multiply the ϵr of Table II to get ϵ such that 

the relative error in the measurement is 1 / ϵ√Nr. For a reasonable num­
ber of measurements, one can make a rather crude initial estimate of the 

bubble density to set the spacings and the effect on the error is small. 

Having this initial guess correct within a factor of two will probably 
suffice for most applications.

IV. Mean Gap Length Method

An easier and statistically more efficient technique is to measure 
the total length G of gaps in a track and the number N of the gaps; n /g
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is then the required bubble density.3,4,8,9)

Let us assume that we have a machine capable of scanning a track, 
deciding whether it sees a region of bubble or a region of gap at each 

point along the way, and giving us at the end of the scan the total length 
run, the total gap length, and the number of gaps encountered. We now 
consider complications of an instrumental nature (the actual bubble 
chamber, film, and scanning device) and of a physical nature (background 
bubbles, velocity change due to energy loss along the track, and varying 
magnification due to track dip in the chamber.)

Defining n(x) to be the true instantaneous "bubble density" at 
each point along a track and d(x) to be the bubble diameter, we note 

from the Poisson distribution of the bubble spacings that the probability 
of having a gap of length at least ℓ between two bubbles is 
e-n(x)[d(x)+ℓ]. Therefore, in a track of length L, the expected total 

gap length is

and the expected number of gaps is

Thus, if n is constant along the track, n = N/g independent of the value 
or the distribution of the bubble diameters. Even if n varies along the 
track, the random fluctuations that must occur in d should yield the 

correct value of N/G on the average.
Unfortunately, there are several instrumental effects that might 

lead to non-random changes in d(x) and hence to incorrect values of N/g



- 1 7 -

where the bubble density is changing along the track. Variation in light­
ing intensity in different parts of the chamber could make some bubble 
images darker and bigger than others. If the size of the film image is 
primarily due to focus and diffraction effects and not to the actual 
bubble size, a dipping track will experience a change in bubble diameter 
due to a change in focus. The combination of projection device and 

measuring instrument used may have different sensitivities in various 
parts of the picture; like the lighting variation this could change the 

bubble diameter. One should minimize these effects as much as possible; 

if it is impossible to eliminate them, it may be necessary to correct the 
measured bubble density empirically, depending upon the region where the 
track occurs (see reference 9).

Gap Filling Errors

Gap filling is an instrumental complication that can be removed 
electronically. Due to imperfect focus, instrument slit width, and devel­

opment of film grains adjacent to those illuminated, bubble edges appear 
fuzzy to the measuring instrument. As an example, suppose that the film 
density is Gaussian-distributed in the neighborhood of a bubble. The 
solid line in Figures 2A and 2B shows two such bubbles separated by 1.0

and 1.5 "bubble diameters" (bubble diameter = 2a if the film density is

proportional to e-x^2/a^2). Considering the two Gaussian curves to

represent illumination and assuming the film darkening to be linear with 

light intensity (filling is even worse for non-linear darkening, as is the 
case with ordinary film), the dashed curve shows the film development due
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to the overlapping tails. Suppose 0.75 to be the discrimination level 
between gap and bubble. Filling reduces the gap length between the two 

bubbles by 55 per cent in 2A, but not at all in 2B. Since a large frac­
tion of the total gap length is contributed by the longer gaps which are 
not changed by gap filling, the gap length distribution is affected more 
than the total gap length. Much more serious is the loss of counts from 
the total number of gaps; had the discrimination level in 2A been 0.7 

instead of 0.75, the gap would have been missed altogether.
This effect can be eliminated by delaying the bubble-to-gap elec­

tronic switchover some distance I from the point where the signal level 

actually passes the triggering point. Then the electronic circuit ignores 
all gaps shorter than I and subtracts I from all the other gaps. I is 

chosen to be the gap size such that the gap filling just becomes negli­

gible, and all gaps considered are essentially free of filling. The 

effect of this delay circuit is to increase the effective bubble diameter 

by I, the only disadvantage in this approach being the loss of gap number 
statistics.

Background Bubbles

When there are many stray bubbles present in the chamber, some of 
these will lie along the track (i.e., within the acceptance region of the 
instrument) and be counted. If we assume that such bubbles are equally 

likely to occur anywhere within the region of interest, the background 

bubbles will be Poisson-distributed and their "bubble density" adds to the 

true bubble density along the track. Suppose that a measurement in a
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region near the track gives nB bubbles per unit length. Denoting with 
subscript B the quantities arising from background bubbles and subscript 

T quantities arising from true track-produced bubbles, measured quantities 
are:

Since we assume that d is not a function of x ,

Thus a simple subtraction of the background bubble density from (N/G)meas 
yields the quantity N/g discussed above.

Change in Particle Velocity: The Residual Range Method

Bubble density is not constant along a track due to energy loss by 
the particle producing the track. If the change in velocity is not great, 
this effect may be ignored. But occasionally one would like to bubble 

count a track whose bubble density changes appreciably. Segmentation of 
the track into regions of almost constant bubble density may make the
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statistics quite poor for each segment.

Consider a track segment of length L to be bubble counted. Define 
R to be the range of the particle in the bubble chamber liquid beyond the 

segment measured, if the chamber had been big enough to allow the particle 
to stop. If R were known, ß would be known at each point along the seg-

ment. Taking n(x) = no/ß2 (x), consider

For a given particle in a given bubble chamber medium, F1 and F2 are func­
tions of R, L, and the product nod only. Since L is known, simultaneous 

measurement of F1 and F2 will determine R (and incidentally nod). F1 
and F2 are written such that dependence on L is slow so that the R deter­

mination may be made graphically by making graphs of vs F2 showing 

constant values of R, in steps of L of, say, 0.5 cm. One such graph for 
L = 8 cm is shown in Fig. 3 (the liquid is CF3Br at 30°C and 150 psi).

Use of this procedure for determining R requires that track para­

meters be used with background bubble effects removed. In terms of 

measured quantities,
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where is ℒB the measured lacunarity (the average fraction of a track
segment consisting of gap) from the background run.

Dipping Tracks

Correction for track dip in emulsion may simply be done by a factor 

of cos ϴ where ϴ is the dip angle, as shown by Barkas.8) Bubble chamber 

track dip cannot be handled so simply; the requirement that the light rays 
pass through the camera lens makes the relevant angle the angle between 

the track and the light ray rather than the dip angle, and the problem is 
further compounded by the multiple indices of refraction to be taken into 
account.

An additional complication is introduced by the fact that the

chamber-to-film magnification is a function of the depth in the chamber,
causing no (the bubble density for a particle with ß = 1, assuming a 

ß-2 law) to vary in an approximately linear way along a dipping track. We
now develop a technique for handling this linear change in no.

First, suppose ß to be constant along the track segment. By the

mean value theorem, there is some point b in the segment such that, if we
measure no there and calculate assuming no constant, we get the same  
answer for N/g as if we had considered the linear dependence of no on posi­

tion (only n/g is considered since g/l does not explicitly contain no).

Letting a be the rate of change of no with distance and n*o = no(b), b is 
determined by



- 2 2 -

which has the solution

For , as one would expect.

For . For many bubble chamber

operating conditions, b will not vary greatly from R + L/2. For example, 

in the Caltech 12-inch heavy liquid chamber, b cannot vary from R + L/2 

by more than 0.16 L in the worst case.

In this formula, a and L are known. Remembering that F2 is the 
track lacunarity corrected for background, we use
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This same approach may he followed when β changes appreciably in 
the track segment, as - ℓn F2 is still a measure of some average 
nod/β2.

Summary of Procedure

Incorporating the various corrections above, bubble density analy­
sis proceeds as follows:

1) Measure N, G, L for the track and NB, GB , LB on a background
run near the track.

2)
3) For no , use the value for the depth in the chamber correspon­

ding to the depth of the point b on the track where

5) Use curve of F1 vs F2 for appropriate value of L to determine 
"residual range", R.

6) Determine initial particle velocity from range-energy relation­
ship in the bubble chamber liquid.

In all of the above, it is assumed that the particle type is known, 

and it is the energy that is to be measured. This is the way in which we 

are using the gap counting technique. Of course, if gap counting is to be 

used in conjunction with another parameter such as track curvature in a
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magnetic field for particle identification, then the above procedure can 
be used as well. In this latter case one tries several particle masses 

to find the best agreement with the other measured parameter.

Chamber Calibration

In order to use this particle velocity analysis, the chamber is 
calibrated using stopping pions, or, if long tracks are available, stop­

ping protons. This measurement of no should be redone each time the 

chamber temperature or pressure might have changed.

To measure no from a stopping particle, one first computes a graph 
of F1 vs F2 for various values of L (R is of course zero). Measuring 

F2 and L on the track then graphically yields F1, which, divided into the 

measured value of n/g , gives no . Since statistics on stopping tracks may 

be poor, several measurements may have to he averaged to give a value of 

no. Thus, unless there are many stopping particles in each picture, it is 

important for the chamber to be stable from picture to picture.

Information from Blob Length
The residual range method of bubble density analysis as discussed

so far is analogous to the usual mean gap length analysis. Barkas9) has 
shown that additional information is contained in the mean blob length if 

one knows the effective bubble diameter. It is on just those tracks 

requiring the residual range method of analysis that blob length informa­

tion would be most useful, since a particle with a large velocity change 

was probably close to stopping and hence would have low lacunarity (see
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reference 9). Therefore let us now consider how this added information 
may be obtained using the Residual Range method.

Again looking at Fig. 3, one sees that, for the larger values of R 

(implying more constant velocity along the segment being considered), the 
lines of constant R approach vertical straight lines. Here the Residual 

Range method becomes the familiar constant velocity mean gap length method, 
where a measurement of N/g (or F1) suffices to determine the bubble den­

sity and hence the velocity. For lacunarity (F2) near unity, lines of 
constant nod are horizontal; knowledge of the lacunarity combined with 
knowledge of the bubble diameter does not add information to the bubble 
density measurement.

As the lacunarity (F2) decreases, lines of constant nod attain more 
slope, so that a second measurement of R (and hence the velocity) may come 

from combining the known bubble diameter (or nod) with the measured 

lacunarity (F2).
Since mean gap length and mean blob length (with known bubble dia­

meter) afford two independent measurements of particle velocity, the same 
approach should be followed here. In the present notation, mean blob 
length is L-G/N, or

Denoting the mean blob length times no by F3, we may write
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Or, in terms of the measured quantities F1 and F2,

Thus one might include on his graphs of F1 vs F2 lines of constant F3 . 

Then the gap length information would be obtained exactly as described 
above for the Residual Range method. To obtain the blob length informa­

tion, one computes F3 from F1 and F2, then finds the intersection of that 

value of F3 with the known value of nod, giving a second value for R.
In order to avoid complicating the graphs further by including the 

F3. plot, one may calculate where the F3 and nod intersection will lie.
With F1 plotted on a linear scale and F2 plotted on a logarithmic scale, 

lines of constant nod and lines of constant F3 are nearly straight. Let
  F1* and F2* represent the measured values of F1 and F2; let F1** represent

the intersection of the line for the known nod with the line F2 = F2*, 
and F2** represent the nod intersection with the line F1 = F1*. The 

approximation to the nod line becomes
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The equation for the F3 line is

In linear approximation (Taylor expansion about

Combining the two equations yields for F1:

The intersection of this value of F1 with the known nod line will yield
the mean blob length estimate of R.

For combining the gap length and blob length estimates of bubble
density, Barkas9) assumes that the two estimates are sufficiently close 
that a linear interpolation will suffice. He obtains
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where

being the measured lacunarity, d the effective bubble diameter, and

σb2 the variance of the mean blob length.
Making the same assumption for the Residual Range method, we may

write

using the above expression for
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Appendix I

The probability of finding a distance between two bubbles equal to
or greater than X is e-nx, where n is the bubble density, in an infinite­

ly long track. Bubble diameter for the moment is assumed zero. If the 
track is of length L, this probability of gap length X will equal the 
probability of finding a gap of length X times the number of places the 
gap could begin and remain within the interval, divided by the number of 
places the gap could begin without having to end in the interval. For a 

gap between X and X + dx,
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Appendix II
Consider an interval long enough that its finite size may be 

neglected. For zero bubble size, as we saw in Appendix I, the probability 
of a gap occurring of length between X and X + dX is

If the bubble diameter is d, for a gap X, the centers of the bubbles must 
be separated by X + d; therefore,

If the bubble diameter is Gaussian distributed with radius r, variance σ, 
the probability that a bubble has radius Y is

times

times

If σ is small compared to r,
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times n dX

By a similar treatment, if there is a measurement error with varia­

tion σ << d, Gaussian distributed,

In each case, the value of dP(X) depends rather critically on d, less 

severely on σ, but its X dependence is a function only of n .
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Appendix III
Recursion formula for ϵ r :

where

To show that ϵ → 1 as r → ∞ , we will first show that ρ → 0 
as r → ∞ . From the definition ρi > 0, for all i.

Define

But
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From the recursion relation,

since for

since if

Thus the ρi form a decreasing, bounded sequence. By the Bolzano- 

Weierstrass theorem, the ρi must have at least one limit point. It is 

easily shown that the decreasing nature of the sequence requires that 

there can be only one limit point. Hence the ρi converge to some value 
we will call ρ∞ . Applying the same arguments to the Xi, they also con­
verge.

so

For physical reasons ϵr must be a bounded increasing function; each 
additional measurement must improve the accuracy of the result, but with 

a finite Nr the error cannot be zero (which corresponds to ϵ being
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infinite). Therefore, by arguments similar to the above, ϵr converges to 

a limit, ϵ. Therefore, ϵ must satisfy

in the limit r → ∞ .

so
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