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ABSTRACT
We investigate the response of self-interacting dark matter (SIDM) halos to the growth of
galaxy potentials using idealized simulations, each run in tandem with standard collisionless
Cold Dark Matter (CDM). We find a greater diversity in the SIDM halo profiles compared to
the CDM halo profiles. If the stellar gravitational potential strongly dominates in the central
parts of a galaxy, then SIDM halos can be as dense as CDM halos on observable scales. For
extreme cases with highly compact disks core collapse can occur, leading to SIDM halos that
are denser and cuspier than their CDM counterparts. If the stellar potential is not dominant,
then SIDM halos retain constant density cores with densities far below CDM predictions.
When a disk potential is present, the inner SIDM halo becomes more flattened in the disk
plane than the CDM halo These results are in excellent quantitative agreement with the pre-
dictions of Kaplinghat et al. (2014). We also simulated a galaxy cluster halo with a central
stellar distribution similar to the brightest central galaxy of the cluster A2667. A SIDM halo
simulated with cross section over mass σ/m = 0.1 cm2 g−1 provides a good match to the
measured dark matter density profile of A2667, while an adiabatically-contracted CDM halo
is denser and cuspier. The cored profile of the same halo simulated with σ/m = 0.5 cm2 g−1

is not dense enough to match A2667. Our findings are in agreement with previous results that
σ/m & 0.1 cm2 g−1 is disfavored for dark matter collision velocities in excess of about 1500
km/s. More generally, the predictive cross-talk between baryonic potentials and SIDM density
distributions offers new directions for constraining SIDM cross sections in massive galaxies
where baryons are dynamically important.
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1 INTRODUCTION

The dark matter (DM) paradigm has been tremendously success-
ful in explaining the large-scale structure of our universe (see, e.g.
Planck Collaboration et al. 2015; Rodríguez-Torres et al. 2016),
though the precise nature of dark matter remains unknown. The
simplest example of cold dark matter (CDM), consisting of a sin-
gle, collisionless particle with negligible primordial thermal veloc-
ity dispersion, can match the large-scale data remarkably well. Al-
ternatively, dark matter could be more complex, with nongravita-
tional coupling to standard model particles (e.g. Boehm & Scha-
effer 2005; Escudero et al. 2015) and/or new dark sector particles
(e.g. Feng et al. 2010b; Khlopov et al. 2010; Lesgourgues et al.
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2016); many models of this kind produce observable signatures in
astronomical data sets (Mangano et al. 2006; Feng et al. 2009; Cyr-
Racine et al. 2015). In this paper we consider the possibility that
dark matter has strong elastic self-scattering interactions and ex-
plore the implications of such interactions on the dark matter dis-
tributions within individual galaxies. We specifically focus on the
back-reaction associated with galaxy formation.

Collisional or Self-Interacting dark matter (SIDM) was first
explored in the context of galaxy formation by Spergel & Stein-
hardt (2000), who argued that SIDM models with cross-section
over mass σ/m ∼ 1 cm2 g−1 should lead to observable con-
stant density cores in galaxies, in agreement with observations at
that time. While early estimates suggested that SIDM models of
this kind would significantly reduce substructure counts compared
to CDM, more recent numerical investigations have shown that
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2 Elbert et al.

the substructure differences are minimal (Vogelsberger et al. 2012;
Rocha et al. 2013). However, the original expectation that SIDM
halos should have constant-density cores has been demonstrated ro-
bustly in cosmological simulations (Davé et al. 2001; Rocha et al.
2013; Zavala et al. 2013).

SIDM cores are generated by energy-exchange interactions,
which heat the halo center until it becomes isothermal. The radial
extent of this core is set by the requirement that a typical dark mat-
ter particle will experience at least one interaction per Hubble time
(Rocha et al. 2013). This implies that larger SIDM cross sections
produce larger isothermal cores. If the cross section is large enough,
the isothermal region can extend beyond the peak in the halo’s ve-
locity dispersion profile; in this case, energy-exchange interactions
could extract heat from the core leading to core-collapse, which in-
creases the central density (Kochanek & White 2000; Balberg et al.
2002; Colín et al. 2002; Koda & Shapiro 2011; Vogelsberger et al.
2012). However, this effect is muted in cosmological simulations
and Elbert et al. (2015) used dark matter (only) zoom cosmologi-
cal simulations to show that core-collapse behavior sets in only for
very large cross sections σ/m & 10 cm2 g−1.

The tendency for SIDM models with σ/m . 10 cm2 g−1

to produce constant-density cores with lower overall density is of
special interest for comparisons to dwarf and low surface bright-
ness (LSB) galaxies. This is because many of these galaxies are
observed to have cores on roughly the scales expected in SIDM
(Flores & Primack 1994; Moore 1994; de Blok et al. 1996; Salucci
& Burkert 2000; de Blok et al. 2001; Swaters et al. 2003; Gentile
et al. 2004; Simon et al. 2005; Spekkens et al. 2005; Kuzio de Naray
et al. 2008; de Blok et al. 2008; Donato et al. 2009; Oh et al. 2011;
Adams et al. 2014) as opposed to the cusps predicted in dissipation-
less CDM simulations (Dubinski & Carlberg 1991; Navarro et al.
1997). SIDM cores also may provide a natural explanation for the
unexpectedly low densities of local dwarf galaxies (Vogelsberger
et al. 2012, 2014; Elbert et al. 2015), a problem known as “Too
Big to Fail" (TBTF) (Boylan-Kolchin et al. 2011, 2012; Ferrero
et al. 2012; Klypin et al. 2014; Papastergis et al. 2014; Garrison-
Kimmel et al. 2014b; Tollerud et al. 2014). There are many in the
galaxy formation community who believe these issues may be re-
solved by baryonic processes such as supernova feedback (Navarro
et al. 1996; Read & Gilmore 2005; Pontzen & Governato 2012;
Governato et al. 2012; Di Cintio et al. 2014; Oñorbe et al. 2015;
Maxwell et al. 2015; Dutton et al. 2016; Katz et al. 2016; Read
et al. 2016) though not all authors necessarily agree (Peñarrubia
et al. 2012; Garrison-Kimmel et al. 2013; Pace 2016). Tidal ef-
fects have been shown to solve TBTF in satellite galaxies (see e.g.
Read et al. 2006; Zolotov et al. 2012; Brooks & Zolotov 2014; Del
Popolo et al. 2014; Arraki et al. 2014), but the evidence for TBTF
in the local field (Kirby et al. 2014; Garrison-Kimmel et al. 2014b)
necessitates another solution for these galaxies. This ongoing de-
bate and the lack of DM detections in direct, indirect and collider
searches motivates a thorough exploration of the SIDM hypothesis.

The goal of this paper is to investigate the effects of galaxy for-
mation on SIDM halos, specifically the contraction of these halos
due to the gravitational potential of the galaxy. To this end we use a
set of N-body simulations similar to those initially used to examine
contraction in CDM halos. The work is organized as follows: in §2,
we briefly describe the properties required of a viable SIDM model
and in §3, we sketch the physics of contraction of SIDM halos and
motivate our work in this paper. We describe our simulations and
analysis in §4. We present our results in §5, discussing our Milky
Way analogue halos in §5.1 and our elliptical and lsb simulations
in §5.2, while in §5.3 we directly compare our simulations to the

analytic model presented in Kaplinghat et al. (2015). §6 shows the
results of our cluster simulations, and compares these with the ob-
servations of Newman et al. (2013a). We summarize our results and
conclude in §7.

2 PROPERTIES OF VIABLE SIDM MODELS

Previous work has placed constraints on the SIDM cross section
over mass across a range of halo masses. Generally, σ/m below
0.1 cm2 g−1 have been found to be indistinguishable from CDM
models (Rocha et al. 2013). In low mass galaxies with maximum
circular velocity Vmax ' 30 km s−1, σ/m values ranging from
0.5 to 10 cm2 g−1 alleviate the core-cusp and TBTF (Elbert et al.
2015; Zavala et al. 2013; Vogelsberger et al. 2012; Fry et al. 2015).
However, values significantly in excess of 1 cm2 g−1 may lead to
efficient tidal stripping of stars in the satellites of the MW and An-
dromeda (Gnedin & Ostriker 2001; Peñarrubia et al. 2010; Dooley
et al. 2016) , providing a possible avenue for an upper limit on the
cross section in the future. Recent work by Kaplinghat et al. (2015)
showed that SIDM models with cross sections around 2 cm2 g−1

fit the rotation curves of the 12 analyzed dwarf and low surface
brightness galaxies well. This work used an analytic model built
on arguments discussed previously (Rocha et al. 2013; Kaplinghat
et al. 2014) and showed that the analytic model is a good match for
the density profiles of halos in DM-only cosmological SIDM sim-
ulations. The summary of above constraints is that for collisional
velocities of order 100 km/s or smaller, a σ/m values close to 1
cm2 g−1 is favored and consistent with all existing constraints. A
larger sample of rotation curves will reduce uncertainties in the de-
termination of the cross section on galactic velocity scales.

The dark matter velocities in galaxy clusters are an order of
magnitude larger than in dwarf galaxies, and many techniques have
been used to constrain the DM self-interaction cross section at
these velocities. Cluster mergers have been used by many stud-
ies to constrain SIDM (see e.g. Randall et al. 2008; Dawson et al.
2012; Kahlhoefer et al. 2014; Massey et al. 2015; Schaller et al.
2015; Kim et al. 2016; Robertson et al. 2016), with typical lim-
its of σ/m ≤ 1 cm2 g−1 on the self-interaction cross section.
However, recent work by Kim et al. (2016) showed that constraints
based on the displacement of the stellar and dark matter centroids
are overly stringent, weakening previous constraints. They find that
the displacement of the brightest cluster galaxy (BCG) relative to
the halo center may be a better observable, possibly allowing σ/m
values around 0.1 cm2 g−1 to be tested. The Bullet cluster con-
straint based on the mass loss from the merging sub-cluster (Marke-
vitch et al. 2004) also needs to be reevaluated using self-consistent
SIDM merger simulations and taking into account cosmic variance
in the initial conditions. In addition, we also need theoretical re-
finement to apply these constraints to velocity-dependent cross sec-
tions. Cluster shapes have provided an orthogonal method of inves-
tigating self-interaction cross section on these scales. Core forma-
tion in SIDM halos leads to more spherical inner density profiles,
so measurements of the ellipticities of cluster halos have been used
to constrain σ/m values to below 0.1 cm2 g−1 (Miralda-Escudé
2002). However, due to the large scatter in axis ratios, the ability of
SIDM halos to retain some triaxiality, and the observational meth-
ods used to constrain halo shapes, the ellipticity constraints are un-
likely to be better than about 1 cm2 g−1 for cluster velocities (see
Peter et al. 2013, for a detailed discussion).

The most stringent constraint on cluster velocity scale arises
from the fact that the measured dark matter density profiles are
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Name Mv cv Np rcut ε Convergence Radius Potential Shape Mgal a b h
(1012M�) (106) (kpc) (kpc) (kpc) (1010M�) (kpc) (kpc) (kpc)

MW 1.0 13 3 230 0.4 0.83 MN Disk 5.0 1.5, 3.0, 6.0 0.3 –

LSB 0.2 11.8 10 170 0.19 0.30 MN Disk 0.06 2.2 0.2 –

Elliptical 1.8 9.7 10 300 0.37 1.0 Hernquist Sphere 6.2 − – 3.0

Cluster 103 3 50 500 2 3.4 Hernquist Sphere 210 − – 28.5

Table 1. Summary of simulated halos. The first five columns list identifying names and general simulation properties: halo mass, NFW concentration, particle
number, exponential cutoff radius and force softening. We define Mv following Bryan & Norman (1998) with a virial overdensity of ∆v = 97 with respect
to the critical density. The sixth column lists the convergence radius for the SIDM runs, which we set to 0.6 times the Power et al. (2003) radius for CDM as
found in Elbert et al. (2015). The last four columns summarize the properties of the galaxy potentials grown in each case, where Mgal is the final galaxy mass
and the other shape parameters are defined in Equations 1 and 2. Note that there are three separate disks of varying scale length for the Milky Way runs. We
refer to these in the text and figures as ‘Compact’, ‘Fiducial’, and ‘Extended.’

in substantial agreement with CDM outside the half-light radii of
the BCGs. Within about 10-50 kpc (range of BCG half-light radii),
however, the dark matter density profile is shallower than the CDM
expectations (Newman et al. 2013a), as we discuss later. Kapling-
hat et al. (2015) used these measurements to show that the pre-
ferred cross section for relative velocities larger than 1000 km/s
is about 0.1 cm2 g−1, consistent with earlier results from Yoshida
et al. (2000). If the inferred shallowness of the density profile is
due to AGN feedback or some other baryonic process (Martizzi
et al. 2013, e.g.), then this value of 0.1 cm2 g−1 provides a strin-
gent upper limit on the self-interaction cross section for velocities
in excess of 1000 km/s. This result and the large difference in DM
velocities in dwarf galaxies and galaxy clusters demand that vi-
able SIDM models must have a velocity dependent self-interaction
cross section. The required velocity dependence – from 1 cm2 g−1

for velocities below about 100 km/s to 0.1 cm2 g−1 for velocities
above 1000 km/s – can be easily accommodated in a variety of par-
ticle physics models (Feng et al. 2010a; Loeb & Weiner 2011; Tulin
et al. 2013; Cline et al. 2014; Boddy et al. 2014, 2016).

3 MOTIVATION: CONTRACTION OF SIDM HALOS

Our work on simulating SIDM halos including a baryonic compo-
nent is important for two specific reasons. First, in galaxies domi-
nated by baryons there is no systematic evidence for large cores or
lowered dark matter density profiles (e.g. Cappellari et al. 2015).
Second, in galaxy clusters the stars dominate the total mass budget
within their half-light radii, yet the dark matter tends to be under-
dense compared to predictions. There is a simple analytic model
(which we discuss later) that can explain both these observations
but it has not been tested against simulations including a stellar
component. By testing the accuracy of the analytic model we are
able to bolster the case for a velocity dependent self-interaction
cross section. We also test the possibility of core collapse in sys-
tems that have extremely dense baryonic distributions.

Since our aim is to test and further elucidate the physics of
how halos become isothermal in the potential well of the baryons,
we have chosen to run idealized simulations with disks grown adi-
abatically. This is complementary to the approach of running full-
fledged hydrodynamic simulations that include self-interactions be-
tween dark matter particles. Vogelsberger et al. (2014) and Fry et al.
(2015) examine dwarf galaxies (Mv ∼ 1010 M�) using fully self-
consistent hydrodynamic simulations and find that observable cores
are still formed in these dwarfs in SIDM. Fry et al. (2015) find that
the cores in their simulated dwarfs are not substantially different

from those formed purely via feedback in their CDM simulations.
It is not clear how these results generalize to larger halo masses,
where feedback is expected to be less important in driving core for-
mation in CDM halos and halo contraction effects are expected to
dominate (e.g. Di Cintio et al. 2014; Dutton et al. 2016; Fiacconi
et al. 2016).

The fact that growing baryonic potentials can cause contrac-
tion of CDM halos was first investigated analytically by Blumen-
thal et al. (1986) and Ryden & Gunn (1987), who used an adiabatic
invariant approach. They demonstrated that if a baryonic potential
grew to dominate the central potential, the entire dark halo would
contract, increasing the central dark matter density by more than an
order magnitude in plausible cases. Other studies (e.g. Jesseit et al.
2002) ran numerical simulations of isolated DM halos with disk po-
tentials and found the DM density in these halos reproduced analyt-
ical predictions. Gnedin et al. (2004) studied baryonic contraction
in hydrodynamic cosmological simulations and found that both adi-
abatic model predictions and isolated simulations produced central
densities that were roughly 50% too high in halos where baryons
dominate and proposed an alternative model to encapsulate the adi-
abatic contraction effect.

Though previous work has examined adiabatic contraction in
collisionless DM halos, they show that it typically occurs at early
times when the disk or bulge of a galaxy is forming. Moreover, the
adiabatic contraction timescales are much shorter than the typical
timescale for self-interactions in galaxies, assuming a cross section
around 1 cm2 g−1. Thus, we expect adiabatic contraction to hap-
pen (at early times) in SIDM halos as in CDM halos, unless inhib-
ited by feedback. The baryon dominated systems we simulate are
Milky Way size or larger and we assume that feedback does not pre-
vent adiabatic contraction in these systems (Di Cintio et al. 2014;
Dutton et al. 2016). Over longer timescales, the self-interaction pro-
cess will allow the halo to become isothermal out to a certain radius
and this process can make the dark matter density profile shallower
or retain the steep density profiles created by adiabatic contraction
or steepen it further in the case of core-collapse. The outcome de-
pends on a comparison of the gravitational potential of the baryons
to the velocity dispersion of dark matter.

Kaplinghat et al. (2014) discussed the response of SIDM ha-
los to the formation of a stellar disk or bulge using analytic equilib-
rium models. They found that the resultant SIDM core radius and
density should be linked closely to the underlying baryonic poten-
tial in systems where the baryons are important dynamically. In the
limit where the stars dominate the gravitational potential, the dark
matter density profile (in the region where it is isothermal) scales
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as exp(−Φ?(r)/σ2
v0) (Amorisco & Bertin 2010; Kaplinghat et al.

2014) where Φ? is the gravitational potential of the stars and σv0

is the 1-d central velocity dispersion of dark matter. Thus stars and
dark matter are tied together in terms of the density profile and the
shape of the dark matter halo must follow the contours of the stellar
gravitational potential. This result emphasizes the need to account
for baryonic processes when exploring SIDM phenomenology in
galaxies with significant gas or stellar components.

The goal of this paper is to numerically investigate the effects
of baryonic contraction on SIDM halos using a set of isolated N-
body dark matter simulations of Milky Way, Elliptical, LSB, and
Cluster analogue halos. These simulations are similar in spirit to
those first used to test and confirm analytic contraction models in
the context of CDM. All of our halos were simulated with fixed
SIDM cross sections of σ/m = 0.5 cm2 g−1, but we show be-
low that our simulations reproduce the model of Kaplinghat et al.
(2015), indicating we can use their model to extend our results to a
wide range of cross sections.

4 SIMULATIONS

Our code is a modified version of GADGET-2 (Springel 2005) that
allows for the inclusion of hard-sphere scattering between dark
matter particles (Rocha et al. 2013). The simulations consist of a
series of 3 to 50 million particle dark matter halos, initialized as
Navarro, Frenk, & White (1997) profiles, and run in isolation with
and without an analytic galaxy potential. The potentials are grown
linearly in time from a mass of zero to a final massMgal in 1 Gyr at
the start of our simulations. We also simulated our Milky Way halo
forming the fiducial disk after the SIDM core stabilized and found
no difference in the DM distribution. The particle initial conditions
were generated by the public code SPHERIC 1, which was first in-
troduced in Garrison-Kimmel et al. (2013). To increase our effec-
tive resolution we exponentially truncate the outer regions of our
initial NFW halos. These truncation radii lie far outside the halo
scale radius except in the case of the Cluster, which we truncate
aggressively in order to resolve the central few kpc of the halo.

Table 1 summarizes our simulations, which consist of four
characteristic halo/galaxy mass 2 combinations:

(i) Milky Way: Mv = 1012M� with disks Mgal = 5 ×
1010M�;

(ii) LSB: Mv = 2× 1011M� with disk Mgal = 6× 108M�;
(iii) Elliptical: Mv = 1.8 × 1012M� with Mgal = 6.2 ×

1010M�; and
(iv) Cluster: Mv = 1× 1015M� with Mgal = 2.1× 1012M�.

Each of these simulations are run with CDM and SIDM and also
with and without the galaxy potentials for comparison. The Milky
Way halo mass simulations include three separate galaxy disk po-
tential runs, each of which has a fixed galaxy mass but variable
scale length (see below). We present 22 simulations in all. All
SIDM halos were run with σ/m = 0.5 cm2 g−1 and used a self-
interaction smoothing factor of 25 % of the force softening length
(Rocha et al. 2013). We also resimulated our cluster halo with
σ/m = 0.1 cm2 g−1. The force softening and convergence radius
(Power et al. 2003; Elbert et al. 2015) of each run are indicated in
columns five and six.

1 https://bitbucket.org/migroch/spheric
2 Our virial mass definition follows Bryan & Norman (1998) for a flat
LCDM cosmology with Ωm = 0.27.

For the disk potentials in the LSB and Milky Way runs we
adopt the form of Miyamoto & Nagai (1975):

ΦMN(R, z) =
−GMgal√

R2 + (a+
√
b2 + z2)2

, (1)

where a defines a scale length and b sets a scale height.
Each Milky Way simulation has a fixed scale height b = 0.3

kpc. We explore three scale lengths: a = 1.5, 3.0, and 6.0 kpc,
which we refer to as ‘Compact Disk’, ‘Fiducial Disk’, and ‘Ex-
tended Disk’, respectively. These values 3 roughly span the lower
two-sigma to upper one-sigma of disk sizes for Mgal = 5 ×
1010 M� galaxies (Reyes et al. 2011). In particular, the compact
disk is extremely dense and was chosen to investigate whether core
collapse occurs. Our LSB disk mimics a typical LSB from Kuzio
de Naray et al. (2008), with Mgal = 6.3× 108 M�, a = 2.2 kpc,
and b = 0.2 kpc.

We use spherical Hernquist (1990) distributions for the Ellip-
tical and Cluster galaxy runs:

ΦH(r) =
−GMgal

(r + h)
. (2)

For the Elliptical, we adopt h = 3.0 kpc and Mgal = 6.2 ×
1010M� motivated by matching themedian of bin 28 in Graves
et al. (2009). We relate the typical effective radius for galaxies
of this size by demanding that the 3D half-light radii are equal:
h = Re/1 +

√
2. For the central cluster galaxy we match the re-

sults for A2667 as quoted in Newman et al. (2013b) by fitting a
Hernquist profile with the same half-light radius to the best-fit dPIE
profile, which yields Mgal = 2.1× 1012M� and h = 28.5 kpc.

Each simulation was analyzed after reaching dynamical equi-
librium, such that the density profile was no longer evolving. This
occurred within ∼ 5 Gyr for all cases except the “compact" SIDM
Milky Way, which underwent core collapse and showed a slowly
increasing core density until we stopped the simulation after 10
Gyr.

5 RESULTS

5.1 Milky Way Halos

The setup for the Milky Way analogue simulations is shown in the
left column of Figure 1. The black dotted line shows the circu-
lar velocity curve (Vc(r) =

√
GM(< r)/r) for our CDM-only

run (equivalent to the initial conditions) and the solid black line
shows Vc(r) for SIDM-only run, which is noticeably less dense
in the center owing to SIDM core formation (e.g., Rocha et al.
2013). The colored lines show the implied in-plane circular veloci-

ties (
√

r dΦ
dr
|z=0) for the imposed Extended, Fiducial, and Compact

Disk potentials. These show that the disk potential is dominant in
our compact and fiducial runs. Our goal is to explore the halo back-
reaction to the growth of each of these components.

The middle column of Figure 1 shows the dark matter density
profiles for all simulations. The solid lines correspond to the SIDM
model and dotted lines to the CDM model. The gray curves are the
dark-matter only runs while the colored lines show what happens
after the potentials are grown. For reference, the bottom panel plots

3 We map the MN disk parameter to quoted exponential disk scale
lengths Rd by requiring that the half-mass radii are equal. This implies
a ' 1.25Rd for the range of parameters we explore.
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Figure 1. Left: The black lines show circular velocity profiles for dark-matter only Milky Way size halos (SIDM, solid; CDM, dashed). The colored lines show
the circular velocity profiles of three imposed baryonic potentials: Fiducial Disk (yellow), Extended Disk (magenta), and Compact Disk (cyan). Middle: Dark
matter density profiles without (grey) and with (colored) response to the grown disk potentials. The lower panel shows the ratio of the SIDM run to CDM run
as a function of radius for each set of simulations. Right: Velocity dispersion profiles of the same halos, which demonstrate isothermal cores for the SIDM
runs, as expected. Note that the relative effect of baryonic contraction is much more substantial in SIDM: the central densities at 600 pc increase by a factor of
∼ 70 from the non-contracted case to the Compact Disk case in SIDM, compared to only a factor of∼ 5 in the CDM case. Interestingly, the Fiducial Disk runs
in SIDM and CDM have very similar normalizations, though the SIDM simulation does show a small core developing within ∼ 800 pc. The Compact Disk,
on the other hand, has led to core-collapse in the SIDM halo, resulting in a much higher central density than even the contracted CDM halo. Core collapse is
expected when the velocity dispersion has a negative gradient within the scattering radius, as is clearly the case for the Compact Disk in the right panel.

SIDM Only

CDM Only CDM, Fiducial Disk CDM, Compact Disk

SIDM, Fiducial Disk SIDM, Compact Disk

5 kpc

Figure 2. Edge-on vizualizations of the dark matter density of an idealized Milky Way sized halo formed with CDM (top) and SIDM (bottom). Images along
the left edge are dark-matter only runs. The middle panels show the dark matter after the growth of a disk like the Milky Way. The far right panel shows the
dark matter after the growth of a compact disk (see Table 1). As expected, the SIDM-only simulation has a much lower central density than the CDM-only
case. When a Milky Way-like disk is imposed, both CDM and SIDM halos contract to similar overall central densities, but the SIDM halo tracks the shape of
the disk potential more closely than CDM owing to its isothermal velocity distribution. The compact disk case drives core-collapse in the SIDM simulation,
and thus results in an even higher core density than in the contracted CDM run.
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the ratio of dark matter density in SIDM to CDM as a function of
radius for each set of runs.

As expected, both CDM and SIDM halos contract in response
to galaxy potential growth 4. The relative differences are enlighten-
ing. While the dark-matter-only simulations are quite distinct be-
tween the cuspy CDM run and the cored SIDM within ∼ 3 kpc,
the dark matter profiles in the Fiducial Disk runs are almost iden-
tical down to the resolving limit. Specifically, the SIDM halo has
responded more to the imposed potential than the CDM halo and
this has driven the two profiles to a very similar end state. We only
begin to see the formation of an SIDM core within ∼ 1 kpc, which
is similar to the Milky Way core size measured in Portail et al.
(2016). The Extended Disk runs, which impose a less severe poten-
tial, have maintained something closer to the original differences,
with SIDM beginning to roll off towards a core within∼ 3 kpc, but
the differences between the SIDM and CDM are less severe than
in the DM-only case (which disagree at 5 kpc). Finally, the Com-
pact Disk has produced a dramatic change: the SIDM halo is now
more dense than CDM at small radii, with a very cuspy distribu-
tion ρ ∼ r−2.5 at r ∼ 2 kpc. This is a result of core-collapse: the
compact disk potential has heated the dark matter to such an extent
that it is now hotter in the core than in the outer part. The SIDM
particles are conducting heat outwards, resulting in a loss of core
pressure and subsequent mass inflow.

The SIDM phenomenology is clarified in the right panel of
Figure 1, which shows the velocity dispersion profile of the dark
matter in each run. The two SIDM simulations with clear constant-
density core behavior (DM-only and Extended Disk) are seen to
have well-established isothermal velocity distributions at small
radii. In these cases, the SIDM halos are hotter in their cores and
colder in their outer regions than their CDM counterparts. This is
exactly the situation that leads to heat transfer from the outside in.
The same effect is seen, though much more mildly, in the Fiducial
Disk case. In the Compact Disk runs, even the CDM halo is hotter
in the core than in the outer part. Such a declining velocity disper-
sion profile is subject to outward heat flow in the SIDM simulation,
and this drives core collapse.

We show in Section 5.3 that the resultant density profiles are
well explained by the analytical predictions presented in Kapling-
hat et al. (2014, 2015), with the exception of the Compact Disk.
However this is to be expected, given the gravothermal core col-
lapse occurring in the Compact Disk, which violates the assump-
tion of isothermality the model is based on.

Figure 2 displays visualizations of the dark matter in three
pairs of our simulations, with CDM runs shown along the top and
SIDM along the bottom. The left row shows the dark-matter only
versions of each simulation. The middle and right rows show resul-
tant dark matter distributions after the growth of our Fiducial and
Compact disks, oriented such that the disks are seen edge-on. These
results emphasize that the shapes of the SIDM halos have been al-
tered substantially by the formation of the disk, mirroring the bary-
onic potential much more closely than the CDM cases within 10
kpc.

5.2 LSB and Elliptical Halos

Figure 3 shows the density profiles and initial rotation curves of
our elliptical and LSB halos. In the upper-left panel, we see that

4 We have confirmed that our CDM runs generally adhere to the expecta-
tions of standard Blumenthal et al. (1986) contraction

the elliptical halo is baryon-dominated within ∼ 5 kpc, and conse-
quently the density profiles (lower-left panel) show significant con-
traction. Again we see minimal difference between the final SIDM
and CDM halos, with no SIDM core resolved. This is not surpris-
ing given our results from 5.1; denser galaxies will have greater
impacts on their host halos and inhibit SIDM core formation. We
also display the total (DM + baryons) density profiles in the lower-
left panel of Figure 3, as well as an r−2 power-law for comparison.
As a result of contraction, both simulations have power-law slopes
of α = −2 around 3 kpc, and slightly steeper outside this region.
This places our simulations in agreement with observations of el-
liptical galaxies (Gavazzi et al. 2007; Auger et al. 2010). In short,
because they are centrally baryon dominated, predictions for SIDM
halos are largely the same as the CDM case for elliptical galaxies.

Our LSB-analogue simulations, however, do exhibit differ-
ences between CDM and SIDM runs. The right panel of Figure 3
demonstrates that the LSB disk has very little effect on our dark
matter halos: the CDM halo undergoes barely any contraction, and
the SIDM halo still displays a central core. This makes sense in
light of our previous results that massive and centrally concentrated
baryon densities generate the largest impacts on both SIDM and
CDM halos. The diffuse nature of low-surface-brightness galaxies
implies that their baryons have little effect on the host dark matter
halos. Thus, these systems are the best laboratories to investigate
dark matter self-interaction possibilities.

5.3 Analytic Model

In this section, we compare the results of our simulations to the
analytic model presented in Kaplinghat et al. (2015). In this model,
the dark matter is assumed to behave as an isothermal gas within a
radius r1, defined as the radius where particles interact at least once
in the age of the system: Γ(r1) tage = 1 or

ρ(r1) (σ/m) (4/
√
π)σv0 tage = 1. (3)

Here σ/m is the SIDM cross-section per unit mass, σv0 is the radial
velocity dispersion in the core and the factor of 4/

√
π accounts for

the average relative velocity for Maxwellian distribution. tage is the
time period over which the self-interactions have been operating.
We take this to be the time after the stellar component is fully in
place to be consistent with the boundary conditions imposed.

The analytic model we use is spherically symmetric. To apply
it to our simulated galaxies, we follow the procedure of Kapling-
hat et al. (2014) and construct a new spherical mass profile for the
baryonsMbaryon(r) by including all the mass in all the stars within
a sphere of radius r. Inside r1 the SIDM density is set by hydro-
static equilibrium, giving

∇2 ln ρDM(r) = − 4π

σ2
v0

G [ρDM(r) + ρbaryon(r)] , (4)

where ρbaryon is the density profile corresponding to the mass pro-
file Mbaryon. At r1, as boundary conditions, the isothermal mass
and density profiles (from solving the hydrostatic equation above)
are required to match the CDM halo profile after adiabatic contrac-
tion (essentially the z = 0 CDM profile in our simulations).

Figure 4 shows circular velocity profiles for our contracted
SIDM halos along with the analytic predictions for rotation curves.
Here the cyan bands indicate the range of solutions which match
ρ(r1) and M(r1) within 5%, except for the core collapse case
as discussed below. We chose 5% for two reasons. One, it shows
the sensitivity of the inner density profile of SIDM profiles to the
matching (boundary) conditions. Two, the simulated SIDM only
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Figure 3. Initial rotation curves and final DM differential density profiles for our elliptical and LSB galaxy simulation simulated in both CDM and SIDM. Left:
Elliptical Simulations. The top panel shows the rotation curves for our CDM and SIDM halos as well as for the added Hernquist potential, displaying how the
halo becomes baryon-dominated within 5 kpc. The bottom panel shows the response of the halos to the added potential; as in the MW disk above, there is very
little difference between the two contracted halos. We also include the total (DM plus galaxy potential) density profiles in cyan, and an r−2 power-law for
comparison. Right: LSB simulations. The top panel shows the rotation curves for the initial CDM and SIDM halos along with the central disk potential, which
contributes far less to the central mass and density of these halos. The lower panel shows that this relatively shallow baryonic potential has a much smaller
impact on the host halo; there is very little difference between the initial and contracted CDM halos. The SIDM halo contracts slightly more, but still retains a
core of lower density than the initial CDM halo.

and CDM only halos are not identical and examining a range of
matching profiles makes us less sensitive to the differences in the
simulated halo for the SIDM only and CDM only runs.

Generally, the analytic model agrees well with the simulation
results. The glaring exception to this is the Compact Disk "Milky
Way" run, for which the agreement is not good and 5% matches
were not found; for this run Fig. 4 displays fits that match at the
15% level. This is because, as noted in Section 5.1, the halo host-

ing the compact disk is undergoing core-collapse, and so the as-
sumption that the halo is isothermal is violated, and the analytic
solution returns a central density far smaller than observed in the
simulations. Note that the fit is very sensitive to the value of the
central dispersion σv0 because the inner density profile scales as
exp(−Φ?(r)/σ2

v0). So, it should be possible to chose a lower cen-
tral dispersion σv0 resulting in a higher inner dark matter density,
but this would not be a useful exercise. In addition, we also found
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Figure 4. Comparison between circular velocities of our analytic model and simulations. Generally the analytic model is in agreement with simulations, with
the notable exception of the Compact Disk. This is because of the core-collapse occurring in the Compact Disk simulation, causing greater central densities
than predicted by our model, leading to higher circular velocities in the halo center.

that our initial SIDM halos are about 0.1% less massive than their
CDM analogues at large radii, which could also throw off the an-
alytic fit. This difference in mass is constant beyond the SIDM
core radius, implying that the mass removed from the halo cen-
ters in core formation escapes the inner halo, and potentially the
halo itself. This evaporation is not seen in cosmological simulations
(Rocha et al. 2013, e.g.) or captured in analytic treatment (Kapling-
hat et al. 2014), and is likely due to the truncated nature of our ini-
tial halo profiles. Indeed, the difference is greatest in our cluster
simulation, the most severely truncated halo.

The other main differences between the Kaplinghat et al.
(2015) model predictions and our simulation results are in the pro-
files of the Cluster and LSB halos. The circular velocities match
well at small radii, but the simulated profiles are flatter than the
analytic ones. We believe this is primarily caused by the halo evap-
oration mentioned above. If so, this is a numerical artifact of the
halo truncation adopted in our initial conditions and not a predic-
tion of the SIDM models. In our other simulations where the stellar
gravitational potential is dominant enough, this mass loss is not
seen.

Aside from these differences, the analytic model does an ex-
cellent job predicting the densities and central circular velocities of
the contracted halos. The success of the model for the Milky Way
analogs is surprising because the assumption of spherical symmetry

in the analytic model is grossly violated. Given the overall consis-
tency of the analytic model predictions with our simulation halo
profiles, we are confident that the Kaplinghat et al. (2015) model
treats contraction in SIDM halos due to baryons well. In particular,
it may be used to model SIDM halos with cross sections other than
that simulated here (0.5 cm2 g−1).

6 CLUSTER LIMITS

We also simulate an analog of Abell cluster 2667. Our setup is de-
scribed in the bottom row of Table 1. The virial mass and concen-
tration of the initial NFW halo match the observations of Newman
et al. (2013b), however they model the density of the BCG as a dual
psuedo-isothermal elliptical profile (dPIE):

ρ =
ρ0

1 + r2/(r2
core)(1 + r2/r2

cut)

In order to model this in our simulations we use a Hernquist
(1990) sphere with the same half-mass radius as the measured pro-
file, and use a least-squares fitting method to obtain a best-fit total
mass. This is necessary because dPIE profiles exhibit central cores,
while Hernquist profiles have central 1/r cusps, so a Hernquist dis-
tribution with the same mass and half-mass radius as a dPIE dis-
tribution will be less dense at all radii outside of the core radius,
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Figure 5. Density profiles for our simulations of cluster Abell 2667, along with the inferred dark matter density profile from Newman et al. (2013a). Even
before contraction, our CDM halo (left) is too dense and the contracted SIDM profile with σ/m = 0.5 cm2 g−1 (center) is not dense enough to reproduce
the observed density profile. Our contracted SIDM halo with σ/m = 0.1 cm2 g−1 (right), however, matches the observed density of Abell 2667 well, in
agreement with the predictions of Kaplinghat et al. (2015).

significantly reducing the contraction effect we wish to investigate.
We grow the central potential over the course of 2 Gyr, and allow
the halo to evolve for 3 Gyr after this, running for 5 Gyr total.

Figure 5 shows the density profiles of our simulations; uncon-
tracted densities are plotted as black dashed lines, while the con-
tracted halos are solid black. We also include a vertical arrow to
indicate the smallest converged radius of our simulations, as de-
fined in Elbert et al. (2015). We plot the inferred Cored NFW dark
matter density profile measured by Newman et al. (2013a) as a cyan
band, though we note that the generalized NFW fits Newman et al.
(2013a) reported are not significantly different. Finally, the effec-
tive density of the BCG Hernquist profile is shown in magenta. The
leftmost figure displays our CDM simulations. Even before con-
traction, the initial NFW profile is too centrally dense to match
observations by a factor of ∼ 1.5 at the limits of our resolution.
Adiabatic contraction increases the density by another factor of
1.5, further worsening this discrepancy. If instead we assume the
dark matter is self interacting with a cross section of 0.5 cm2 g−1

we obtain the densities in the center plot. In this case, we see that
such a cross-section results in a halo that is underdense by more
than a factor of 3 in its center, and still below the observed limits
at 100 kpc in our SIDM-only simulation. While baryonic contrac-
tion does increase the DM density, it is not nearly strong enough
to completely alleviate the problem. Indeed, over most of our re-
solved region the contracted halo is only 20− 30% higher than the
SIDM-only simulation.

This result may seem surprising at first given that the baryons
are important in the center in terms of their dynamical mass. How-
ever, the key point is that the DM halo is so massive that its velocity
dispersion dwarfs the stellar potential. In this respect, the contrac-
tion of the SIDM halo is different from the adiabatic contraction of
CDM halos; applying the Blumenthal et al. (1986) adiabatic con-
traction formula would result in a halo profile much denser than the
simulated result. The isothermal equilibrium solution, on the other
hand, is a good match to the simulated halo profile.

We also simulate Abell 2667 with a cross-section of
0.1 cm2 g−1; our results are plotted in the right-panel of Fig-
ure 5. In the SIDM only case, the density is near the lower-limits

of the Newman et al. (2013a) data. After contraction has been ac-
counted for, however, 0.1 cm2 g−1 is consistent with observations,
bordering the upper limits of the Newman et al. (2013a) mea-
surement, and we estimate that a cross section of 0.2 cm2 g−1

will border the lower limits. Our estimates are in agreement with
the results of Kaplinghat et al. (2015), who find cross sections of
0.1 − 0.2 cm2 g−1 (assuming tage = 5 Gyr) by fitting to the
Newman et al. (2013a) data using the analytic model (described
previously). This implies that a SIDM model with a cross section
that falls from about 1 cm2 g−1 on dwarf galaxy scales to about
0.1 cm2 g−1 on cluster scales can resolve the small-scale puzzles
(Kaplinghat et al. 2015; Elbert et al. 2015; Vogelsberger et al. 2014;
Zavala et al. 2013), while also matching density profile constraints
in clusters.

7 CONCLUSIONS

In this work we have investigated the combined effects of baryonic
gravitational potentials and dark matter self-interactions on dark
matter halos using idealized simulations of dark matter halos with
galactic potentials. By simulating halos of various sizes with many
different potentials we have found:

• SIDM halo shapes are not inherently more resilient to effects
from baryons than their CDM counterparts. For a Milky Way halo
hosting a Milky Way analogue disk, the SIDM halo is more com-
pact along the disk axis than its CDM equivalent in agreement with
the prediction of Kaplinghat et al. (2014). For an elliptical galaxy,
whose stellar potential is markedly more spherical, we expect the
SIDM halo to be correspondingly more spherical.
• Halos that host substantial baryonic populations display few

differences in spherically-averaged density profiles between CDM
and SIDM models on observable scales. Even extended baryon
populations can contract halos with respect to SIDM-only simula-
tions, though these systems retain potentially observable constant-
density cores and are less dense than CDM. In extreme cases, we
find that potentials from dense baryonic structure can cause SIDM
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halos to core-collapse and become denser than their CDM counter-
parts.
• Halos that host less massive or highly diffuse stellar and

gas disks display substantial differences between CDM and SIDM
models. Thus, the original motivation for explaining the low den-
sities observed in galaxies dominated by dark matter is still intact.
Among galaxies, these are likely the best systems to measure or
constrain the SIDM cross section.
• The densities of our contracted halos are in good agreement

with the analytical predictions in Kaplinghat et al. (2014, 2015),
with the exception of the core-collapsing Compact Disk because it
no longer obeys the isothermal assumption of the model. In par-
ticular, we show that the spherically-averaged density profiles are
well approximated by the simple model in Kaplinghat et al. (2015),
which has an isothermal core and an undisturbed CDM outer pro-
file.
• We simulated a cluster halo for 3 Gyr after the brightest clus-

ter galaxy was fully in place to test against the mass measure-
ments for A2667 Newman et al. (2013a). Our simulated CDM
halo was denser than the observed central profile for A2667. On
the other hand, SIDM with σ/m ' 0.5 cm2 g−1 was too low
in density compared to the measurements. The choice of σ/m '
0.1 cm2 g−1 was in much better agreement with the measured nor-
malization (and inner slope) of the A2667 density profile. Larger
values like σ/m ' 0.5 cm2 g−1 are ruled out, even allowing for a
factor of 2 uncertainty in the age of the halo. These conclusions are
in substantial agreement with the detailed analysis of seven clusters
(Newman et al. 2013a) by Kaplinghat et al. (2015), which found a
average value of σ/m ' 0.1 cm2 g−1 on cluster velocity scales
for an assumed age of 5 Gyr.

Based on these results, an ideal scale to investigate possible
DM self-interactions appears to be the dwarf galaxy scale with halo
masses 1010−11 M� scale, as they will have the largest interaction
cross sections and the least contracted halos. However, these are
precisely the halos expected to be most vulnerable to stellar feed-
back (Pontzen & Governato 2012; Governato et al. 2012; Di Cintio
et al. 2014; Oñorbe et al. 2015). Ongoing work (Vogelsberger et al.
2014; Fry et al. 2015; Robles et al. in prep) is investigating the ef-
fects of feedback on the SIDM halos and their results suggest that
dwarfs with stellar massesM? . 106M� will have density profiles
indistinguishable from the predictions of the dark matter-only sim-
ulations. This suggests that the faintest dwarf spheroidals provide
excellent laboratories constraining SIDM models.

For halo masses much larger than 1011 M� that host a large
stellar disk or bulge, as the inner halo becomes isothermal the
SIDM halo retains the high densities created by adiabatic contrac-
tion following the formation of the disk. Thus, in Milky Way sized
halos the CDM and SIDM halos densities are very similar beyond
about a kpc, in marked contrast to the dark-matter-only predictions.
As predicted by Kaplinghat et al. (2014), the self-interactions also
force the SIDM halo to be more compact along the stellar disk
axis. We find that the SIDM halo in the inner region of Milky Way
analogs is more compact along the galactic disk axis than the CDM
halo. Thus, it may be possible to use the shape of the dark matter
halo in the inner regions of large spiral galaxies to provide a sharp
test of the SIDM paradigm.

The predictive cross-talk between the dark matter and baryons
in the SIDM models leads to a large diversity of halo profiles and
halo shapes. This cross-talk is purely gravitational and the result
of the dark matter becoming isothermal in the inner parts of the
halos and they are fully explained by simple equilibrium models.

The prospects for using these concrete predictions of the SIDM
paradigm to rule in or rule out SIDM in the near future are excel-
lent.
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