
S Supplementary Material

The supplementary material is organized as follows. Section S.1 shows that no

index rule is optimal in the search problem considered in the main text. Section

S.2 contains the proof of Propositions 4and Corollary 1, while Section S.3 contains

the proof of Proposition 5. Section S.4 shows that Assumption 1 is without loss

of generality. Section S.5 solves for the optimal policy when N = 2 and shows

how Propositions 1-3 in the main text help simplify the taxonomy of the problem.

Section T contains examples referenced in the main text, while Section U provides

step-by-step derivations of expressions used in the analysis.

S.1 Indexability

I discuss formally why, unlike Weitzman’s, the optimal policy in my model is not

an index policy. To do so, I define the notion of an index, and an index rule. I

then show that, under Assumption 1, no index rule is optimal even when N = 1.

I finish the section with two remarks for the case of N > 1, which follow from the

suboptimality of index rules. To keep the presentation simple, I assume that Xi,

box i’s set of possible prize realizations, is finite.

Formally, each box can be used to define a Markov decision process, with pa-

rameters as follows. Let δ ∈ [0, 1] denote the discount factor. The set of states

is Si = {∅} ∪ Xi, where {∅} represents that box i is uninspected, and xi that

prize xi ∈ Xi has been realized. The set of controls is Ai = {0, 1}, where

ai = 0 corresponds to taking box i without inspection. Transition probabilities

are given by: P (si = xi|si = ∅, ai = 1) = fi(xi), P (si = xi|si = ∅, ai = 0) = 0,

P (si = xi|si = x′i, ai) = 1[x′i = xi]. That is, if the agent inspects box i, it tran-

sitions to state xi with probability fi(xi); it does not transition when it is taken

without inspection. Moreover, for all xi ∈ Xi, state xi is absorbing . Finally,

payoffs are given by (i) v(∅, 0) = (1− δ)µi, (ii) v(∅, 1) = −ki, v(xi, 1) = (1− δ)xi,
and (iii) v(xi, 0) = K, for some K < min{xi : xi ∈ Xi}. That is, (i) taking a

box without inspection yields a payoff of µi, (ii) when the agent inspects the box,

he pays its inspection cost, and when he returns to the box, he receives xi, and

(iii) when the agent inspects the box, he can’t take it without inspection, so I
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assign a low payoff to ai = 0 when the box is inspected. The agent maximizes his

discounted expected sum of payoffs.

An index for box i is a function that depends on the state of box i; I denote it

νi : Si 7→ R. An index policy for a set of boxes N is a policy that at each state

chooses the box with the highest index.

In the environment under consideration, a slightly different definition of an in-

dex policy is needed. One needs to know both which box to choose next, and also

whether to inspect it, or take it without inspection. Let νi,ai : Si 7→ R denote the

index for box i for action ai. An index policy chooses at each state the box with

the highest max{ν·,0, ν·,1}, and applies to it the action with the highest index.

Assume now that N = 1, and the box is uninspected. Let z denote the outside

option. Suppose that xB1 < xR1 . If an index policy is optimal, then two things must

be true. First, for z ≤ xB1 , ν0,1(∅) ≥ ν1,1(∅) should hold, since box 1 should be

taken without inspection. Second, for z ∈ (xB1 , x
R
1 ), ν1,1(∅) ≥ ν0,1(∅), since box 1

should be inspected. Hence, it follows that ν0,1(∅) = ν1,1(∅). Then, an index policy

would imply that the agent is indifferent between inspecting box 1, and taking it

without inspection, but this is not always the case. When the box is uninspected,

what action is optimal depends on z (recall Proposition 0), but, by definition, the

index cannot condition on this information.

Interestingly, when xR1 < xB1 , an index does exist, since for any z, should the

box be chosen, it can only be optimal to take it without inspection. To see this,

define ν0,1 = µ, and ν1,1 < µ. Also, since z can be interpreted as a box with

zero inspection cost, and probability 1 of yielding a prize of z, one can define

ν1,z = ν0,z = z. In this case, the index policy is optimal. In fact, Glazebrook

[1] shows that a sufficient condition for a stoppable superprocess1 to be solvable

by an index policy is that the optimal action with which to continue with box 1

does not depend on the value of z, i.e., that xR1 < xB1 . However, if this holds for

all boxes, the optimal policy is trivial: search finishes immediately, and the agent

takes max{z,maxi∈N µi}.

Remark S.1. When N = 1, the reservation and backup values, and the initial

outside option, are enough to determine the optimal policy. However, the proof

1The Markov decision process defined above is a special case of a stoppable superprocess.
Superprocesses are instances of restless bandits, which are shown to be PSPACE-hard in [2].
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that no index rule is optimal when N = 1 suggests why the cutoffs are not enough

to determine the optimal policy when N > 1.2 The reason why more than the

cutoff values matter to determine the optimal policy is that they don’t necessarily

determine the full “value” of a box. By the previous discussion, the value of a

box depends on whether the box will be inspected, or taken without inspection.

To see this, consider Problem 2 in Section 1. If only school A is available, it is

optimal to accept school A without inspection. Now add school B, and note that

it is worse than school A both to inspect and to take without inspection.3 One

would then expect that the optimal policy remains the same when adding school

B. However, this is not the case, because what dominates taking school A without

inspection is inspecting school B and then choosing, given xB, whatever is best

between inspecting or taking school A without inspection. Thus, the boxes’ cutoffs

alone are not enough to determine the optimal policy.

Remark S.2. A second difference between Weitzman’s model and the one consid-

ered here is that, contrary to the stopping rule in Weitzman, stopping and taking a

box without inspection is not a one-step look ahead rule. More precisely, in Weitz-

man’s model stopping is optimal at decision node (U , z) if, and only if, for every

i ∈ U , it is optimal to stop at ({i}, z). Clearly, if it is optimal to stop at (U , z),
the agent should not find it optimal to inspect any box i ∈ U , i.e., stopping being

optimal at ({i}, z) is a necessary condition for stopping to be optimal at (U , z). In

Weitzman’s model, it is also sufficient. However, in this search problem, it could

be that for all i ∈ U , stopping and taking a box without inspection is optimal at

({i}, z), and yet this is not the optimal policy at (U , z). To see this, consider again

Problem 2. Using equation (BV), it follows that z = 0 < mini∈{A,B} x
B
i . However,

the optimal policy has the student visit school B first. This follows from the same

observation as in Remark S.1: what dominates taking either school without in-

spection is the possibility of, after visiting school B, choosing optimally whether

to use school A as an option to inspect, or to take without inspection.

2Section T.1 shows that two sets of boxes can share the same cutoffs, and yet have different
optimal policies.

3Equations (RV)-(BV) can be used to show that xRA > xRB > xBA > xBB .
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S.2 Proof of Proposition 4 and Corollary 1

Proposition 4. Fix a set N = {1, ..., n} of boxes. Assume that boxes can be

labelled so that [xBi , x
R
i ] forms a monotone decreasing sequence in the set inclusion

order. Then, for all i, j ∈ N , such that i < j, Πij ≥ max{Πji, µi}, and the optimal

policy is an in Theorem 1.

Proof. Proposition 2 implies that, for i < j, max{Πij,Πji} ≥ µi. It remains to

show that Πij ≥ Πji. Section U shows that:

Πij − Πji =

∫ +∞

xRj

∫ +∞

xRj

(min{xRi , xi, xj} − xRj )dFjdFi

+

∫ xBi

−∞

∫ xBi

−∞
(max{xi, xj, xBj } − xBi )dFjdFi. (S.1)

Hence, [xBj , x
R
j ] ⊂ [xBi , x

R
i ] implies that Πij ≥ Πji.

Corollary 1. Assume {Fi}i∈N is such that if i < i′, then Fi is a mean-preserving

spread of Fi′ . Moreover, assume ∀i ∈ N ki = k. Then, (∀i, i′ ∈ N ), i < i′ implies

that [xBi′ , x
R
i′ ] ⊂ [xBi , x

R
i ].

Proof. It suffices to show that if i < i′, then [xBi′ , x
R
i′ ] ⊆ [xBi , x

R
i ]. To see this,

rewrite equation (RV) for box i as:

k =

∫ +∞

xRi

(x− xRi )dFi(x) =

∫ +∞

−∞
max{x− xRi , 0}dFi(x),

and, note that, if Fi is a mean-preserving spread of Fi′ , then:

k =

∫ +∞

−∞
max{x− xRi , 0}dFi(x) ≥

∫ +∞

−∞
max{x− xRi , 0}dFi′(x).

Since
∫ +∞
xRi

(x−xRi )dF (x) is decreasing in xRi , one concludes that xRi′ ≤ xRi . Likewise,

rewrite equation (BV) as:

k =

∫ xBi

−∞
(xBi − x)dFi(x) =

∫ +∞

−∞
max{xBi − x, 0}dFi(x).
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Using the mean-preserving spread assumption again, one obtains that i < i′ implies

that:

k =

∫ +∞

−∞
max{xBi − x, 0}dFi(x) ≥

∫ +∞

−∞
max{xBi − x, 0}dFi′(x).

Since
∫ xBi
−∞(xBi − x)dF (x) is increasing in xBi , one concludes that xBi ≤ xBi′ .

It follows that [xBi′ , x
R
i′ ] ⊂ [xBi , x

R
i ].

S.3 Proof of Proposition 5

I first establish a preliminary result on the cutoff values when the conditions in

Proposition 5 hold:

Lemma S.1 (Cutoffs are linear in means). Let x be a random variable such that

x ∼ F (· − µ), E[x] = µ. Let k be the cost of inspecting the box with prizes

distributed according to F . Then, (∃b, b) : xB = µ− b, xR = µ+ b.

Proof. I prove the statement for xR, the other one follows immediately. Recall

that:

k =

∫ +∞

xR
(x− xR)dF (x− µ).

I guess and verify that xR = µ+ b, for some b > 0,

k =

∫ +∞

µ+b

(x− µ− b)dF (x− µ).

Let u = x− µ and perform a change of variables in the above expression:

k =

∫ +∞

b

(u− b)dF (u). (S.2)

It remains to show that equation (S.2) has a solution. Assumption 1 implies that if

b = 0, then k <
∫ +∞
0

udF (u). On the other hand, as b→∞,
∫ +∞
b

(u− b)dF (u)→
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0 < k. Hence, since g(b) =
∫ +∞
b

(x− b)dF is continuous and decreasing in b, there

exists b > 0, such that the equality holds. This completes the proof.

Corollary S.1. Consider the same assumptions as before. If F is symmetric

around 0 then b = b = b > 0

Proof. b > 0 follows from the condition that xB < µ < xR. Now, recall the

definition of xB:

k =

∫ xB

−∞
(xB − x)dF (x− µ).

Replacing the assumptions made, one gets that the equation can be rewritten as:

k =

∫ −b
−∞

(−b− u)dF (u),

where I changed variables by defining u = x− µ. Also,

k =

∫ +∞

xR
(x− xR)dF (x− µ) =

∫ +∞

b

(u− b)dF (u).

Now, symmetry of F implies that:

∫ +∞

b

udF (u) = −
∫ −b
−∞

udF (u).

Hence, (1−F (b))E[u|u ≥ b] = −F (−b)E[u|u ≤ −b] and −(1−F (b))b = −F (−b)b.
Hence, b = b.

I am now ready to prove Proposition 5. It follows from equation (S.1) in Section
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S.2 that:

Πij − Πji =

∫ xBi

−∞

∫ xBi

−∞
(max{xi, xj, xBj } − xBi )dFidFj +

∫ +∞

xRj

∫ +∞

xRj

(min{xi, xj, xRi } − xRj )dFidFj

= (1− Fi(xRi ))(1− Fj(xRi ))(xRi − xRj ) +

∫ xRi

xRj

∫ +∞

xi

(xi − xRj )dFjdFi

+

∫ xRi

xRj

∫ xi

xRj

(xj − xRj )dFjdFi + (1− Fi(xRi ))

∫ xRi

xRj

(xj − xRj )dFj

+ Fi(x
B
j )Fj(x

B
j )(xBj − xBi ) + Fi(x

B
j )

∫ xBi

xBj

(xj − xBi )dFj

+

∫ xBi

xBj

∫ xBi

xi

(xj − xBi )dFjdFi +

∫ xBi

xBj

∫ xi

−∞
(xi − xBi )dFjdFi.

Perform the following change of variables. Let u = xi − µi, û = xj − µj, and write

a = µi − µj ≥ 0. It follows that:

G(a) =

∫ b

b−a

∫ +∞

u+a

(u+ a− b)dF (û)dF (u) +

∫ b

b−a

∫ u+a

b

(û− b)dF (û)dF (u)

+ F (−b)
∫ b+a

b

(û− b)dF (û) + F (−b− a)

∫ −b+a
−b

(û+ b− a)dF (û)

+

∫ −b
−b−a

∫ −b+a
u+a

(û+ b− a)dF (û)dF (u) +

∫ −b
−b−a

∫ u+a

−∞
(u+ b)dF (û)dF (u).

Note that G(0) = 0. I show that (∀a)G′(0) = 0, G′′(a) = 0. All of these together

imply that G(a) ≡ 0.

G′(a) = −[

∫ b

b−a
F (−b− a)dF (u) +

∫ −b
−b−a

(F (−b+ a)− F (u+ a))dF (u)

−
∫ b

b−a
F (−u− a)dF (u)].
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Note that G′(0) = 0. Moreover,

G′′(a) = F (−b− a)f(b− a)−
∫ b

b−a
f(−b− a)dF (u) + (F (−b− a)− F (−b))f(−b− a)

+

∫ −b
−b−a

(f(−b+ a)− f(u+ a))dF (u)− F (−b)f(b− a) +

∫ b

b−a
f(−u− a)dF (u) = 0,

where I used that f(x) = f(−x), F (−x) = 1−F (x) several times to cancel terms.

This shows that G(a) ≡ 0.

S.4 Boxes for which xR ≤ xB are never inspected in the optimal policy

This last subsection shows that, if there are boxes i ∈ N such that xRi ≤ xBi , then,

without loss of generality, box i is never inspected in the optimal policy. Therefore,

for any such box i ∈ N , it is either taken without inspection upon stopping search,

or it is never used in the optimal policy. Moreover, note that only one such box can

be taken without inspection conditional on stopping search. Then, by redefining

x0 to be whatever is best between the agent’s initial outside option and the best of

the boxes for which xRi ≤ xBi , the analysis in the paper carries through by focusing

on the boxes for which xBi < xRi .

Given a set of boxes U , define:

UB<R = {i ∈ U : xBi < xRi },

UR≤B = {i ∈ U : xRi ≤ xBi }.

Given a decision node (U , z), I denote by (U ′, z′),U ′ ⊂ U , z′ = z ◦ zU\U ′ a generic

decision node in which boxes in U\U ′ have been inspected, and prizes zU\U ′ have

been sampled.

Proposition S.1. Let U be the set of boxes, and let z be a vector of realized prizes.

Assume that UR≤B 6= ∅. Then, there exists an optimal policy {ϕ∗, σ∗} such that

(∀(U ′, z′) : U ′ ⊆ U ∧ z′ = z ◦ z̃U\U ′)[ϕ∗(U ′, z′) = 1⇒ σ∗(U ′, z′) /∈ U ′R≤B].

Proof. The proof is by double induction in the cardinality of U and UR≤B. Since

UR≤B ⊂ U , then |UR≤B| ≤ |U|. Induction is in U = |U|, and n, where |UR≤B| =
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max{U, n}. Let P (U, n) denote the following predicate:

P(U,n): (∀z)(∀U) : |U| = U , UR≤B 6= ∅, |UR≤B| = max{n, U}, the optimal policy

satisfies the property in Proposition S.1.

I first show that P (1, 1) = 1, and then that if P (U ′, n′) = 1 holds for U ′ ≤ U , and

n′ ≤ n, not both with equality, then P (U, n) = 1 holds.

P(1,1)=1:

Let U = {i} and let z denote the vector of already realized prizes. Since U = n = 1,

then UR≤B = {i}. I show that: −ki +
∫

max{xi, z}dFi ≤ max{µi, z}. Suppose

that z ≥ µi. Then, since i ∈ UR≤B, xRi ≤ µi ≤ z. Then,

−ki +

∫
max{xi, z}dFi − z = −ki +

∫
z

(xi − z)dFi(xi) ≤ 0,

since z ≤ xRi (recall the derivation of equation (RV)), with equality only if z = xRi .

Now, suppose that µi > z. Then, xBi ≥ µi > z, and it follows from (BV) that:

−ki +

∫
max{xi, z}dFi − µi = −ki +

∫ z

−∞
(z − xi)dFi(xi) < 0.

P(U,n)=1:

Assume now that (∀U ′ ≤ U)(∀n′ ≤ n), not both with equality, P (U ′, n′) = 1. I

show that P (U, n) = 1. Let U be the set of boxes, |U| = U , and let z denote the

vector of already sampled prizes. Let UR≤B ⊂ U , |UR≤B| = max{U, n}. I use i to

denote a box in UR≤B, and j to denote a box in U\UR≤B, whenever the latter is

not empty.

I make two remarks. First, notice that if a box j ∈ U\UR≤B is inspected, then

one moves to decision node (U ′, z ◦ xj), where U ′ = U\{j},U ′R≤B = UR≤B, and

|U ′| = U − 1, and |U ′R≤B| = n (note that if there was j ∈ U\UR≤B, then it

can’t be the case that |UR≤B| = U). Since, by the inductive step, I know that

P (U − 1, n) = 1, then there is an optimal policy in which boxes in UR≤B are

not inspected in any continuation history. Second, if a box i ∈ UR≤B were to be

inspected, then one moves to continuation history (U ′, z ◦ xi), where U ′ = U\{i},
U ′R≤B = UR≤B\{i}, and |U ′| = U − 1, |U ′R≤B| = max{U − 1, n− 1}. Since, by the
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inductive step, I know that P (U − 1, n − 1) = 1, then there is an optimal policy

in which boxes in U ′R≤B are not inspected in any continuation history. The first

remark implies that to prove P (U, n) = 1 it remains to show that it is optimal not

to inspect a box in UR≤B at decision node (U , z). The second remark will be used

when computing the payoff of inspecting a box in i ∈ UR≤B.

Given the above, I want to show that:

max

{
z, max

i∈UR≤B
µi, max

j∈UB<R
µj, max

j∈UB<R
{−kj +

∫
V ∗(U\{j}, z ◦ xj)dFj}

}
≥ max

i∈UR≤B
{−ki +

∫
V ∗(U\{i}, z ◦ xi)dFi}, (S.3)

where the LHS of the above expression denotes the payoff the agent can get by

either stopping, and getting max{z,maxi∈UR≤B µi,maxj∈UB<R µj}, or continuing

search by inspecting a box in UB<R; the RHS denotes the payoff of inspecting a

box in UR≤B. The stars in V denote that the agent follows the optimal policy

in the continuation histories, and the two remarks above apply, by the inductive

step, to those histories. Note that I can write, for any box i ∈ UR≤B:

− ki +

∫
V ∗(U\{i}, z ◦ xi)dFi

= −ki +

∫
max

{
xi, z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xi ◦ xj)dFj}

}
dFi

= −ki +

∫
max

{
xi,max

{
z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xi ◦ xj)dFj}

}}
dFi

=

∫ +∞

xRi

xRi + max

{
0,max

{
z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xi ◦ xj)dFj}

}
− xi

}
dFi

+

∫ xRi

−∞
max

{
xi,max

{
z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xi ◦ xj)dFj}

}}
dFi,

where the first equality is by definition of the set of actions available to the agent,

and I use the second remark above; the second equality is just a rearrangement of

terms, and the third equality follows from using (RV) for box i.
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Notice that the second term in the first integrand:

max

{
0,max

{
z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xi ◦ xj)dFj}

}
− xi

}
,

is decreasing in xi: the slope of −xi is −1, and the slope of the term in the max{·}
as a function of xi is at most one (it would be 1 only if xi is better than any of

the terms in the max{·} for all xi ∈ [xRi ,+∞]). Thus, it follows that:

∫ +∞

xRi

xRi + max

{
0,max

{
z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xi ◦ xj)dFj}

}
− xi

}
dFi

≤
∫ +∞

xRi

max

{
xRi ,max

{
z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xRi ◦ xj)dFj}

}}
dFi.

Also,

∫ xRi

−∞
max

{
xi,max

{
z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xi ◦ xj)dFj}

}}
dFi

≤
∫ xRi

−∞
max

{
xRi ,max

{
z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xRi ◦ xj)dFj}

}}
dFi,

since the integrand is increasing in xi. Putting all of this together, I conclude that

for all i ∈ UR≤B, the following holds:

− ki +

∫
V ∗(U\{i}, z ◦ xi)dFi

= −ki +

∫
max

{
xi, z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xi ◦ xj)dFj}

}
dFi

≤ max

{
xRi , z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xRi ◦ xj)dFj}

}
.
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But, then one concludes that, for all i ∈ UR≤B:

max

{
z, max

i∈UR≤B
µi, max

j∈UB<R
µj, max

j∈UB<R
{−kj +

∫
V ∗(U\{j}, z ◦ xj)dFj}

}
≥ max

{
xRi , z,maxi′∈UR≤B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ◦ xRi ◦ xj)dFj}

}
≥ −ki +

∫
V ∗(U\{i}, z ◦ xi)dFi,

where the first inequality follows from xRi < µi for i ∈ UR≤B, and the fact that

taking box i without inspection and getting µi is always an option in the optimal

policy in the first line, while not in the second. Moreover, note that for i ∈ UR<B,

the first inequality is strict.

Since the above holds for each i ∈ UR≤B, it follows that (S.3) holds, and, thus,

P (U, n) = 1

S.5 Two boxes

To further the understanding of the difficulties involved when characterizing the

optimal policy when the conditions of Section 4 do not hold, this section charac-

terizes the optimal policy when there are two boxes. Hence, for the rest of the

section, N = {1, 2}, and the outside option is given by z.

Given that Proposition 0 characterizes the optimal continuation when there is

one box left for inspection, I only need to determine which of the following three

alternatives yields the highest payoff to characterize the optimal policy for two-

boxes: (i) stop, taking max{z, µ1, µ2}, (ii) inspect box 1 first, and apply the opti-

mal policy in Proposition 0 to box 2, and (iii) inspect box 2 first, and apply the

optimal policy in Proposition 0 to box 1. Let Π1 denote the payoff of (ii), and Π2

denote the payoff of (iii).4

Proposition S.2 below describes the optimal policy when N = {1, 2}:

Proposition S.2. Fix a set of boxes N = {1, 2}, and let z denote the outside

4Πi is the payoff from inspecting box i first, and: (i) if max{xi, z} > xRj stop, and

take max{xi, z}, (ii) if max{xi, z} ∈ [xBj , x
R
j ] inspect box j, and take max{xi, xj , z}, (iii) if

max{xi, z} < xBj stop, and take µj

12



option. Assume without loss of generality that xR2 < xR1 . The following is the

optimal policy:

1. If z > xB1 and z > xB2 , then the optimal policy is given by Weitzman’s rule.

2. If xB1 < xB2 , then it is optimal to inspect box 1 first. The optimal continuation

policy is given by Proposition 0.

3. If xB2 < xB1 , z < xB1 , and µ1 ≤ xR2 , it is optimal to inspect at least one box. If

Π1 > Π2, box 1 is inspected first; otherwise, box 2 is inspected first. In both

cases, the optimal continuation is as in Proposition 0.

4. Otherwise, if xB2 < xB1 , z < xB1 , and xR2 < µ1, it is optimal to inspect box

1 first if Π1 > max{Π2, µ1}, to inspect box 2 first if Π2 > max{Π1, µ1};
otherwise, box 1 is taken without inspection. If search does not stop, the

optimal continuation policy is as in Proposition 0.

Item 1 follows from Proposition 1, and item 2 follows from Proposition 4 in the

main text. When xR2 < xR1 and xB2 < xB1 , Proposition 2 allows us to simplify

the taxonomy by considering two cases: µ1 ≤ xR2 and xR2 < µ1. In the first case

(item 3), the agent only has to decide which box to inspect next, i.e. the optimal

policy is determined by max{Π1,Π2}. In the second case (item 4), the agent has

to choose either to stop, taking box 1 without inspection, or which box to inspect

next.

To determine the optimal policy in item 3 and 4 above, I now analyze the

differences Π1−Π2, Π2−µ1, and Π1−µ1. The first determines the optimal policy

in item 3, and all three determine the optimal policy in item 4.

Consider first Π1 − Π2. It is immediate, if somewhat tedious, to show that it is

given by:5

Π1 − Π2 =

∫ +∞

xR2

∫ +∞

xR2

(min{xR1 , x2, x1} − xR2 )dF2dF1 (S.4)

+

∫ xB1

−∞

∫ xB1

−∞
(max{x1, x2,max{xB2 , z}} − xB1 )dF2dF1

5Equations (S.4)-(S.6) are derived in Appendix U for completeness.
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Recall I am assuming that xR1 > xR2 , and xB1 > xB2 , so that the first term in (S.4)

is positive, and the second is negative. Equation (S.4) shows that inspecting first

box 1 has a benefit, which is given by the possibility of obtaining higher prizes,

net of inspection costs, and a cost, which is given by the possibility of obtaining

really low prizes, in which case keeping box 1 to take without inspection would act

as a buffer. A somewhat loose intuition is that the higher the backup value of box

1, or the higher the reservation value of box 2, the higher the cost of inspecting

box 1 first, and hence the optimal policy would start with box 2.6

Proposition S.3 below characterizes when Π1 ≤ (≥)Π2. In what follows, denote

by R the extended real line. In what follows, I prove the following result:

Proposition S.3. Assume N = {1, 2}. Under the assumptions of item 3 in

Proposition S.2, there exists xO ∈ R such that if xB1 ≤ xO, then box 1 is inspected

first; if xB1 > xO box 2 is inspected first.

Proof. To show the first part, use equation (S.4) to define the function fO :

[xB2 ,+∞) 7→ R as:

fO(y) =

∫ +∞

xR2

∫ +∞

xR2

(min{xR1 , x2, x1} − xR2 )dF2dF1

+

∫ y

−∞

∫ y

−∞
(max{x1, x2,max{xB2 , z}} − y)dF2dF1

Note that fO(xB1 ) = Π1 − Π2, and fO(xB2 ) > 0 since xR2 < xR1 . Now define:

xO = inf
{
y ∈ [xB2 ,+∞) : fO(y) ≤ 0

}
I now check that fO is decreasing in y. Then, using the convention that inf ∅ = +∞,

I show that xO ∈ R is well-defined. To show that fO is decreasing, consider

6The intuition is loose because some changes in xB1 (xR2 ) may change also xR1 (xB2 ).
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y′ > y ≥ xB2 :

fO(y)− fO(y′) =

∫ y

−∞

∫ y

−∞
(y′ − y)dF2dF1 +

∫ y

−∞

∫ y′

y

(y′ −max{x1, x2,max{xB2 , z}})dF2dF1

+

∫ y′

y

∫ y′

−∞
(y′ −max{x1, x2,max{xB2 , z}})dF2dF1 ≥ 0

Hence, xO is well-defined. Hence, if xB1 ≤ xO, it follows that Π1 ≥ Π2.

Equation (S.4) alone determines the optimal policy when xR2 < xR1 , x
B
2 < xB1 , µ1 ≤

xR2 . When µ1 > xR2 , by Proposition 2, the agent may find it optimal to stop, and

take box 1 without inspection. Hence, I also need to compare Π1 to µ1, and Π2 to

µ1.

Consider first the choice of whether to inspect box 2 first, or take box 1 without

inspection. It is immediate that if xR2 > µ1(> xB1 > z), then stopping cannot

be optimal: inspecting box 2 and then taking box 1 without inspection whenever

x2 < µ1 certainly dominates stopping and taking box 1 without inspection. It is

also immediate that if xR2 < xB1 , then stopping dominates inspecting box 2 first:

xR2 is the maximum prize the agent expects to get from box 2 after inspection,

while xB1 is the lowest prize the agent expects to get from box 1 when taking it

without inspection. To sharpen this intuition, note that the difference Π2 − µ1 is

given by:

Π2 − µ1 = −k2 +

∫ +∞

xB1

∫ +∞

−∞

(
max{x2,min{xR1 ,max{x1, x2}}}
−min{xR1 ,max{x1, xB1 }}

)
dF1dF2 (S.5)

When x2 < xB1 , box 1 is taken without inspection, after inspecting box 2, and

this determines the integration limits in the outer integral in (S.5). Recall from

equation (2) that when taking box 1 without inspection, the agent expects to gain

no more than xR1 , and no less than xB1 , and this determines the second term in

the integrand. The first term is the gain from inspecting box 2 first, followed

by inspecting box 1: by not taking box 1 without inspection, the agent gets the

possibility of getting the prize inside box 2, though this comes at the cost of paying

k2.
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Equation (S.5) resembles the equation that determines the reservation value for

box 2, but where now the outside option is µ1. As the previous intuition suggests,

as long as it is worth inspecting box 2 (i.e., xR2 is high compared to xB1 ), the above

expression should favor inspecting at least one box.

Finally, it remains to compare Π1 and µ1. The difference Π1−µ1 can be written

as:

Π1 − µ1 =

∫ xR2

−∞

∫ +∞

−∞
min{xR2 ,max{x1, x2,max{xB2 , z}}} −max{x1, xB1 }dF2dF1(S.6)

The difference between Π1 and µ1 is that by inspecting box 1 first, the agent

retains the option of inspecting box 2 (the first term in the integrand), while

he loses the option to take box 1 without inspection (the second term in the

integrand). The equation resembles the computation of the backup value of box

1, but with an inspection cost of 0. When the agent inspects box 1 first, he gives

up the backup value of box 1; hence, if box 2 is sufficiently good for search, the

possibility of searching with box 2 may compensate for this. This, in turn, favors

inspecting at least one box over stopping, and taking box 1 without inspection.

Proposition S.4 below characterizes formally the optimal policy in item 4:

Proposition S.4. Under the assumptions of item 4 in Proposition S.2, there exist

xO, x
S
1 , x

S
2 ∈ R such that the following is the optimal policy:

1. If xB1 ≤ min{xS2 , xO}, then box 1 is inspected first.

2. If xO < xB1 ≤ xS2 , box 2 is inspected first.

3. If xS2 < xB1 ≤ xO, inspect box 1 if xR2 ≥ xS1 , take box 1 without inspection,

otherwise.

4. If xB1 > max{xS2 , xO}, take box 1 without inspection.

In case search does not stop, the continuation policy is as in Proposition 0.

Proof. To prove Proposition S.4, I need to consider Π2−µ1, and Π1−µ1. In order
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to determine the sign of Π2 − µ1, use (S.5) to define the function f2S(y):

f2S(y) = −k2 +

∫ +∞

y

∫ +∞

−∞

(
max{x2,min{xR1 ,max{x1, x2}}}
−min{xR1 ,max{x1, y}}

)
dF1dF2

Note that f2S(xB1 ) = Π2 − µ1. Define xS2 as follows:

xS2 = inf{y ∈ (−∞, xR2 ] : f2S(y) ≤ 0} (S.7)

I show that: (i) f2S(y) is decreasing in y, and (ii) f2S(xR2 ) < 0. Then, one can

conclude that xS2 is well-defined. To show (i), consider y′ > y:

f2S(y)− f2S(y′) =

∫ +∞

y′

∫ +∞

−∞
min{xR1 ,max{x, y′}} −min{xR1 ,max{x1, y}}dF1dF2

+

∫ y′

y

∫ +∞

∞
max{x2,min{xR1 ,max{x1, x2}} −min{xR1 ,max{x1, y}}dF1dF2 ≥ 0

where the inequality follows from: max{x2,min{xR1 ,max{x1, x2}} ≥
max{y,min{xR1 ,max{x1, y}}} ≥ min{xR1 ,max{x1, y}} when x2 ≥ y. In order to

show (ii), evaluate f2S at y = xR2 and use equation (RV) to write:

f2S(xR2 ) = −k2 +

∫ +∞

xR2

∫ +∞

−∞

(
max{x2,min{xR1 ,max{x1, x2}}}
−min{xR1 ,max{x1, xR2 }}

)
dF1dF2

= −
∫ +∞

xR2

(x2 − xR2 )dF2 +

∫ +∞

xR2

∫ +∞

−∞

(
max{x2,min{xR1 ,max{x1, x2}}}
−min{xR1 ,max{x1, xR2 }}

)
dF1dF2

=

∫ +∞

xR1

∫ +∞

xR2

(xR2 −min{xR1 , x1})dF1dF2 +

∫ xR1

xR2

∫ +∞

xR2

(xR2 −min{x2, x1})dF1dF2 < 0

The proofs of (i) and (ii) show that xS2 is well-defined. Hence, as long as xB1 ≤ xS2 ,

it follows that Π2 − µ1 ≥ 0.

Use (S.6) to define the function f1S(y), given by:

f1S(y) =

∫ y

−∞

∫ +∞

−∞
min{y,max{x1, x2,max{z, xB2 }}} −max{x1, xB1 }dF2dF1.
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Define xS1 to be:

xS1 = sup{y ∈ [xB1 ,+∞) : f1(y) ≤ 0} (S.8)

I now show that f1S is increasing in y, for y ≥ xB1 . Then, following the convention

that sup ∅ = −∞, I obtain that xS1 is well-defined. To show f1S is increasing

whenever y ≥ xB1 , consider y′ > y ≥ xB1 :

f1S(y′)− f1S(y) =

∫ y′

y

∫ +∞

−∞
min{y′,max{x1, x2,max{z, xB2 }}} −max{x1, xB1 }dF2dF1

+

∫ y

−∞

∫ +∞

−∞
min{y′,max{x1, x2,max{xB2 , z}}} −min{y,max{x1, x2,max{xB2 , z}}}dF2dF1

and note the above difference is non-negative. Note that whenever xR2 ≥ xS1 , we

obtain that Π1 − µ1 ≥ 0.

The result in Proposition S.4 follows from the above observations.

Equations (S.4)-(S.6) and the discussion above show that, even in the caseN = 2,

it is not always simple to determine the optimal policy by just looking at the boxes’

cutoff values. This, in turn, highlights the value of the conditions in Section 4,

which allow us to characterize the optimal policy by only looking at these cutoffs,

and thus retain tractability which is useful for applications.

T Examples

T.1 Cutoffs don’t determine the optimal policy if N ≥ 2

Examples 1 and 2 demonstrate the claim made in Section S.1:

Example 1. Suppose N = {1, 2}, and X1 = X2 = {0, 2, 10}. Assume first that

P (X1 = 2) = P (X2 = 2) = 0.2, and P (X1 = 10) = 0.7, P (X2 = 10) = 0.5, so that

F1 >FOSD F2. Assume that k1 = k2 = 1. It can be shown that xB1 = 14
3
> xB2 = 2.8,

and xR1 = 60
7
> xR2 = 8. Note that after inspecting box i, search always stops: the

agent takes the inspected box when xi = 10, and takes box j without inspection

whenever xi ≤ 2. Since µ1 < xR2 , inspecting box 2 first dominates taking box 1
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without inspection; moreover, inspecting box 2 first dominates inspecting box 1

first since: 8.62 = 0.7× 10 + 0.3× µ2 < 0.5× 10 + 0.5× µ1 = 8.7.

Example 2. Modify the above example as follows. Box 1 is the same as before.

Instead, box 2 is such that X2 = {0, 9}, P (X2 = 9) = 921
1250

, and k2 = 14
9

. It is

immediate to show that cutoffs are exactly the same as the ones above. However,

the optimal policy now inspects box 1 first; search stops if X1 = 10, and the agent

gets X1 = 10, while box 2 is taken without inspection when X1 ≤ 2.

T.2 Example footnote 3 in Section 1

Below, I present an example where, unlike Problem 2 in Section 1, the worst prize

in both boxes is the same, and where, like Problem 2, the agent inspects first the

box with the lowest reservation value.

Example 3. Assume the agent has an outside option z = 0. Table 1 describes

the prize distribution, and inspection costs of boxes A and B:

A Prize 0 1 5
Probability 0.10 0.80 0.10

Inspection cost
0.10

B Prize 0 0.5 4.3
Probability 0.2 0.55 0.25

Inspection cost
0.10

Table 1: Prize distribution for each box

It can be verified that xRA = 4 > xRB = 3.9, xBA = 1 > xBB = 1
2
, and µ2 = 1.35 >

µ1 = 1.3. Thus, in Weitzman’s model, the agent inspects box A first; if xA = 5,

search stops, and, if xA < 5, he inspects box B, and takes max{xA, xB}.
In the model considered here, by Proposition 0, after inspecting box A, the agent

inspects box B only when xA = 1; if xA = 5, search stops and the agent takes

xA, and when xA = 0 he takes box B without inspection. If, instead, he starts

with box B, box A is never inspected: if xB = 4.3, search stops, and he takes xB,

while if xB ∈ {0, 0.5}, he takes box A without inspection. That is, he takes box

A without inspection when xB ≤ 1
2

even if box A may contain a prize worse than
1
2
. This is because the agent assigns a high probability to xA = 1; this is reflected

in box A’s backup value. The combined effect of saving on inspection costs when

19



box B has a low enough prize and the “certainty” of a not so low prize from box

A imply inspecting box B first is optimal.

T.3 Assumption 1: example.

I use the example in Problem 1 in Section 1 to illustrate Assumption 1 in the main

text. It is worth noting that the analysis after the statement of Proposition 0 in

Section 2.2 provides an alternative way of deriving Assumption 1, and it makes

explicit that the value of the information for the agent is maximal at z = µ.

Example 4. Consider again Problem 1. School A has prizes XA = {1, 2, 5}, where

P (XA = 1) = P (XA = 5) = 1
4
. Contrary to Section 1, I consider an arbitrary cost

k of visiting school A.

Consider first calculating the reservation value. If xRA ≥ 2, then it solves:

k =
1

4
(5− xRA)⇔ xRA = 5− 4k.

Note that it has to be that k ≤ 3
4

for xRA ≥ 2. Otherwise, xRA solves:

k =
1

4
(5− xRA) +

1

2
(2− xRA)⇔ xRA =

9− 4k

3
.

Since xRA must satisfy that xRA ≥ 1, then k ≤ 3
2
.

Similarly, one can calculate school A’s backup value. Analogous steps to the

above yield:

xBA =

{
4k + 1 if k ≤ 1

4
5+4k
3

if k ∈ (1
4
, 5
2
]
.

Figure 1 below plot the backup and reservation values of school A as a function

of k. It is worth noting that three properties of the figure are true beyond the

specifics of the example: (i) xB is increasing in k, (ii) xR is decreasing in k, and

(iii) when they coincide, they do so at µ. That (i) holds follows from noting that,

the more expensive the information from a box is, the more incentives the agent

has to leave it to take without inspection. Similarly, this implies that (ii) holds.
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Property (iii) follows from the observation made in Section ??.

k

xBA

xRA

µA

5
8

Figure 1: Reservation (red, dashed) and backup (blue, dotted) values as a function
of k.

Note that for k = 5
8
, xRA = xBA = µA = 5

2
. It is easy to calculate that 5/8 =

1
2
(µA − 2) + 1

4
(µA − 1), where the latter is the upper bound for k in Assumption

1. For k < 5
8
, it follows that xBA < µA < xRA, and for k > 5

8
, xRA < µA < xBA.

When k > 5
8
, and xRA < xBA, regardless of the value of z, school A is never visited.

To see this, note that when z > µ, it also holds that z > xRA, and hence it is

optimal to stop and take z; likewise, when z ≤ µ, it also holds that z < xBA, and

hence it is optimal to stop and accept school A without first visiting it.

U Equations S.4-S.6

I derive equation (S.4) for the case z < xB2 and z < xB1 ; the case xB2 < z < xB1 is

analogous. Given the assumptions, it follows that:

Πi = −ki +

∫ xBj

−∞
µjdFi(xi) +

∫ xRj

xBj

(
−kj +

∫
max{xi, xj}dFj

)
dFi(xi) +

∫ +∞

xRj

xidFi(xi)
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When x1 ∈ [xB2 , x
R
2 ], and x2 ∈ [xB1 , x

R
1 ] both policies give payoff max{x1, x2}−k1−

k2. Hence, this part cancels when taking the difference:

Π1 − Π2 =

∫ +∞

xR1

(
−k1 +

∫ +∞

xR2

(x1 − x2 + k2)dF1 +

∫ xB2

−∞
(µ2 − x2 + k2)dF1

)
dF2

+

∫ xR1

xB1

(∫ +∞

xR1

k2dF1 +

∫ xR1

xR2

(x1 −max{x1, x2}+ k2)dF1 +

∫ xB2

−∞
(µ2 − x2 + k2)dF1

)
dF2

+

∫ xB1

−∞

(
−k1 +

∫ +∞
xR2

(x1 − µ1 + k2)dF1 +
∫ xR2
xB2

max{x1, x2} − µ1dF1

+
∫ xB2
−∞(µ2 − µ1 + k2)dF1

)
dF2

Replace k1 =
∫ +∞
xR1

(x1 − xR1 )dF1 to obtain:

Π1 − Π2 =

∫ +∞

xR1

(∫ +∞

xR1

(xR1 − x2 + k2)dF1 +

∫ xR1

xR2

(x1 − x2 + k2)dF1 +

∫ xB2

−∞
(µ2 − x2 + k2)dF1

)
dF2

+

∫ xR1

xB1

(∫ +∞

xR1

k2dF1 +

∫ xR1

xR2

(x1 −max{x1, x2}+ k2)dF1 +

∫ xB2

−∞
(µ2 − x2 + k2)dF1

)
dF2

+

∫ xB1

−∞

 ∫ +∞
xR1

(xR1 − µ1 + k2)dF1 +
∫ xR1
xR2

(x1 − µ1 + k2)dF1

+
∫ xB1
xB2

max{x1, x2} − µ1dF1 +
∫ xB2
−∞(µ2 − µ1 + k2)dF1

 dF2

Replace µ1 =
∫ +∞
xR1

xR1 dF1 +
∫ xR1
xB1

x1dF1 +
∫ xB1
−∞ x

B
1 dF1 to obtain:

Π1 − Π2 =

∫ +∞

xR1

( ∫ +∞
xR1

(xR1 − x2 + k2)dF1 +
∫ xR1
xR2

(x1 − x2 + k2)dF1

+
∫ xB2
−∞(µ2 − x2 + k2)dF1

)
dF2

+

∫ xR1

xB1

(∫ +∞

xR1

k2dF1 +

∫ xR1

xR2

(x1 −max{x1, x2}+ k2)dF1 +

∫ xB2

−∞
(µ2 − x2 + k2)dF1

)
dF2

+

∫ xB1

−∞

(∫ +∞

xR2

k2dF1 +

∫ xB1

xB2

(max{x1, x2} − x1)dF1 +

∫ xB2

−∞
(µ2 − xB1 + k2)dF1

)
dF2
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The above can be written as:

Π1 − Π2 =

∫ +∞

xR1

(1− F1(x
R
2 ))k2 +

( ∫ +∞
xR1

(xR1 − x2)dF1 +
∫ xR1
xR2

(x1 − x2)dF1

+
∫ xB2
−∞(µ2 − x2 + k2)dF1

)
dF2

+

∫ xR1

xB1

(
(1− F1(x

R
2 ))k2 +

∫ xR1

xR2

(x1 −max{x1, x2})dF1 +

∫ xB2

−∞
(µ2 − x2 + k2)dF1

)
dF2

+

∫ xB1

−∞

(
(1− F1(x

R
2 ))k2 +

∫ xB1

xB2

(max{x1, x2} − x1)dF1 +

∫ xB2

−∞
(µ2 − xB1 + k2)dF1

)
dF2,

and replacing k2 =
∫ +∞
xR2

(x2 − xR2 )dF2, it follows that:

Π1 − Π2 =

∫ +∞

xR1

(∫ +∞

xR1

(xR1 − xR2 )dF1 +

∫ xR1

xR2

(x1 − xR2 )dF1 +

∫ xB2

−∞
(µ2 − x2 + k2)dF1

)
dF2

+

∫ xR1

xR2

(
−(x2 − xR2 ) +

∫ xR1

xR2

(x1 −max{x1, x2})dF1 +

∫ xB2

−∞
(µ2 − x2 + k2)dF1

)
dF2

+

∫ xR2

xB1

(∫ xB2

−∞
(µ2 − x2 + k2)dF1

)
dF2

+

∫ xB1

−∞

(∫ xB1

xB2

(max{x1, x2} − x1)dF1 +

∫ xB2

−∞
(µ2 − xB1 + k2)dF1

)
dF2.

Finally, replace µ2 = −k2 +
∫

max{x2, xB2 }dF2 to obtain:

Π1 − Π2 =

∫ +∞

xR1

(∫ +∞

xR1

(xR1 − xR2 )dF1 +

∫ xR1

xR2

(x1 − xR2 )dF1

)
dF2

+

∫ xR1

xR2

(
−(x2 − xR2 ) +

∫ xR1

xR2

(x1 −max{x1, x2})dF1

)
dF2

+

∫ xB1

−∞

(∫ xB1

xB2

(max{x1, x2} − x1)dF1 +

∫ xB2

−∞
(max{x2, xB2 } − xB1 )dF1

)
dF2.

Rearranging terms one obtains equation (S.4).
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To obtain equation (S.5), use the expression for Π2 to obtain:

Π2 − µ1 = −k2 +

∫ +∞

xR1

x2dF2 +

∫ xR1

xB1

(−k1 +

∫
max{x1, x2}dF1)dF2 +

∫ xB1

−∞
µ1dF1 − µ1

= −k2 +

∫ +∞

xR1

(x2 − µ1)dF2 +

∫ xR1

xB1

( ∫ +∞
xR1

xR1 dF1 +
∫ xR1
−∞max{x1, x2}dF1

−
∫

min{xR1 ,max{x1, xB1 }}dF1

)
dF2

= −k2 +

∫ +∞

xR1

(x2 − µ1)dF2 +

∫ xR1

xB1

(∫
min{xR1 ,max{x1, x2}} −min{xR1 ,max{x1, xB1 }}dF1

)
dF2

= −k2 +

∫ (∫
max{x2,min{xR1 ,max{x1, x2}}} −min{xR1 ,max{x1, xB1 }}dF1

)
dF2,

where the second equality comes from canceling µ1 when x2 < xB1 , replacing k1 =∫ +∞
xR1

(x1−xR1 )dF1 in the second term, and replacing µ1 =
∫

min{xR1 ,max{x1, xB1 }}dF1,

and the rest follows from rearranging terms.

Equation (S.6) follows similar steps as above, but I replace µ1 = −k1+
∫ +∞
xR1

x1dF1+∫ xR1
−∞max{x1, xB1 }dF1 in the first step to cancel the term −k1 +

∫ +∞
xR2

x1dF1 in Π1.
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