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S SUPPLEMENTARY MATERIAL

The supplementary material is organized as follows. Section S.1 shows that no
index rule is optimal in the search problem considered in the main text. Section
S.2 contains the proof of Propositions 4and Corollary 1, while Section S.3 contains
the proof of Proposition 5. Section S.4 shows that Assumption 1 is without loss
of generality. Section S.5 solves for the optimal policy when N = 2 and shows
how Propositions 1-3 in the main text help simplify the taxonomy of the problem.
Section T contains examples referenced in the main text, while Section U provides

step-by-step derivations of expressions used in the analysis.

S.1  Indezability

I discuss formally why, unlike Weitzman’s, the optimal policy in my model is not
an index policy. To do so, I define the notion of an index, and an index rule. I
then show that, under Assumption 1, no index rule is optimal even when N = 1.
I finish the section with two remarks for the case of N > 1, which follow from the
suboptimality of index rules. To keep the presentation simple, I assume that X;,
box 7’s set of possible prize realizations, is finite.

Formally, each box can be used to define a Markov decision process, with pa-
rameters as follows. Let 6 € [0,1] denote the discount factor. The set of states
is S; = {0} U X;, where {0} represents that box i is uninspected, and z; that
prize z; € X; has been realized. The set of controls is A; = {0,1}, where
a; = 0 corresponds to taking box ¢ without inspection. Transition probabilities
are given by: P(s; = xils; = 0,a; = 1) = fi(x;), P(s; = 4|s; = 0,a; = 0) = 0,
P(s; = x4|s; = x},a;) = 1]z} = x;]. That is, if the agent inspects box i, it tran-
sitions to state z; with probability f;(x;); it does not transition when it is taken
without inspection. Moreover, for all x; € X, state x; is absorbing . Finally,
payoffs are given by (i) v(,0) = (1 — ), (i) v(0,1) = —k;, v(z;, 1) = (1 — 8)y,
and (iii) v(x;,0) = K, for some K < min{z; : z; € X;}. That is, (i) taking a
box without inspection yields a payoff of u;, (ii) when the agent inspects the box,
he pays its inspection cost, and when he returns to the box, he receives z;, and

(iii) when the agent inspects the box, he can’t take it without inspection, so I
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assign a low payoff to a; = 0 when the box is inspected. The agent maximizes his
discounted expected sum of payoffs.

An index for box 7 is a function that depends on the state of box ; I denote it
v; + S; — R. An index policy for a set of boxes N is a policy that at each state
chooses the box with the highest index.

In the environment under consideration, a slightly different definition of an in-
dex policy is needed. One needs to know both which box to choose next, and also
whether to inspect it, or take it without inspection. Let v;,, : S; — R denote the
index for box ¢ for action a;. An index policy chooses at each state the box with
the highest max{v. ¢, .1}, and applies to it the action with the highest index.

Assume now that N = 1, and the box is uninspected. Let Z denote the outside
option. Suppose that 2P < z1t. If an index policy is optimal, then two things must
be true. First, for 7 < x, v51(0) > 111(0) should hold, since box 1 should be
taken without inspection. Second, for z € (2,21, v11(0) > vo1(0), since box 1
should be inspected. Hence, it follows that 4 1(0) = v41(0). Then, an index policy
would imply that the agent is indifferent between inspecting box 1, and taking it
without inspection, but this is not always the case. When the box is uninspected,
what action is optimal depends on Z (recall Proposition 0), but, by definition, the
index cannot condition on this information.

Interestingly, when 2 < 2P an index does exist, since for any Z, should the
box be chosen, it can only be optimal to take it without inspection. To see this,
define 11 = p, and 117 < p. Also, since Z can be interpreted as a box with
zero inspection cost, and probability 1 of yielding a prize of Z, one can define
vz = Wz = 2. In this case, the index policy is optimal. In fact, Glazebrook
[1] shows that a sufficient condition for a stoppable superprocess!' to be solvable
by an index policy is that the optimal action with which to continue with box 1
does not depend on the value of z, i.e., that 2 < 2B. However, if this holds for
all boxes, the optimal policy is trivial: search finishes immediately, and the agent

takes max{Z, max;en ft; }

Remark S.1. When N = 1, the reservation and backup values, and the initial

outside option, are enough to determine the optimal policy. However, the proof

!'The Markov decision process defined above is a special case of a stoppable superprocess.
Superprocesses are instances of restless bandits, which are shown to be PSPACE-hard in [2].



that no index rule is optimal when N = 1 suggests why the cutoffs are not enough
to determine the optimal policy when N > 1.2 The reason why more than the
cutoff values matter to determine the optimal policy is that they don’t necessarily
determine the full “value” of a box. By the previous discussion, the value of a
box depends on whether the box will be inspected, or taken without inspection.
To see this, consider Problem 2 in Section 1. If only school A is available, it is
optimal to accept school A without inspection. Now add school B, and note that
it is worse than school A both to inspect and to take without inspection.® One
would then expect that the optimal policy remains the same when adding school
B. However, this is not the case, because what dominates taking school A without
inspection is inspecting school B and then choosing, given x g, whatever is best
between inspecting or taking school A without inspection. Thus, the boxes’ cutoffs

alone are not enough to determine the optimal policy.

Remark S.2. A second difference between Weitzman’s model and the one consid-
ered here is that, contrary to the stopping rule in Weitzman, stopping and taking a
box without inspection is not a one-step look ahead rule. More precisely, in Weitz-
man’s model stopping is optimal at decision node (U, z) if, and only if, for every
i € U, it is optimal to stop at ({i}, z). Clearly, if it is optimal to stop at (U, z),
the agent should not find it optimal to inspect any box i € U, i.e., stopping being
optimal at ({i}, ) is a necessary condition for stopping to be optimal at (I, z). In
Weitzman’s model, it is also sufficient. However, in this search problem, it could
be that for all ©+ € U, stopping and taking a box without inspection is optimal at
({i},2), and yet this is not the optimal policy at (U, z). To see this, consider again
Problem 2. Using equation (BV), it follows that z = 0 < min;e4 py 2. However,
the optimal policy has the student visit school B first. This follows from the same
observation as in Remark S.1: what dominates taking either school without in-
spection is the possibility of, after visiting school B, choosing optimally whether

to use school A as an option to inspect, or to take without inspection.

2Section T.1 shows that two sets of boxes can share the same cutoffs, and yet have different
optimal policies.
3Equations (RV)-(BV) can be used to show that 2% > 28 > 28 > 2B,



S.2  Proof of Proposition 4 and Corollary 1

Proposition 4. Fix a set N' = {1,...,n} of boxes. Assume that boxes can be
labelled so that [zP, 27| forms a monotone decreasing sequence in the set inclusion

order. Then, for all 4, j € N, such that ¢ < j, II;; > max{II;;, ; }, and the optimal

policy is an in Theorem 1.

Proof. Proposition 2 implies that, for ¢ < j, max{Il;,II;;} > p,;. It remains to
show that II;; > II,;. Section U shows that:

+oo +oo
Hij — sz- = /R /R (mln{xf, I’Z‘,ZL’]‘} — ZL‘f)dF]dE

-
+ / / (max{wx;, z;, xf} — 2P)dF;dF;. (S.1)
Hence, [z7,2f] C [z, 2] implies that IT;; > IIj;. O

Corollary 1. Assume {F;};cn is such that if i < i, then F; is a mean-preserving
spread of Fy. Moreover, assume Vi € N k; = k. Then, (Vi,i' € N), i < i’ implies

that (27, 2% C [2B, 2F].

il ! i

Proof. Tt suffices to show that if i < ¢, then |27 2] C [2P,2F]. To see this,

rewrite equation (RV) for box ¢ as:

+o0 Foo
k= / (x — 2M)dFy(z) = / max{z — 27, 0}dF;(x),
xf‘ —00

and, note that, if F; is a mean-preserving spread of Fj/, then:

+00 +oo
k= / max{z — z7, 0}dF;(x) > / max{z — 2, 0}dFy (z).

R

. —+oo . . . . .
Since [ (z—x*)dF(x) is decreasing in *, one concludes that )} < zff. Likewise,

rewrite equation (BV) as:

k= / (zF — 2)dF;(z) = /+OO max{z? — z,0}dF;(x).

—00 —00



Using the mean-preserving spread assumption again, one obtains that i < i’ implies
that:

—+00

+oo
k= / max{z’ — x,0}dF;(x) > / max{z’ — x,0}dFy ().

(e} —00

B

7

It follows that [, =] C [28, 2f]. O

7 7 10

B
. X . . . .
Since [ (2P — x)dF(x) is increasing in x7, one concludes that 7 < z7.

S.3  Proof of Proposition 5

I first establish a preliminary result on the cutoff values when the conditions in

Proposition 5 hold:

Lemma S.1 (Cutoffs are linear in means). Let x be a random variable such that
x ~ F(-—p),Elzr] = p. Let k be the cost of inspecting the box with prizes
distributed according to F. Then, (3b,b) : 2% = u — b, 2% = p + b.

Proof. 1 prove the statement for 2%, the other one follows immediately. Recall
that:

k= /+Oo(x — 2™)dF(x — p).

R

I guess and verify that 2/t = p + b, for some b > 0,

k:/%o(x—,u—g)dF(x—,u).

+b
Let uw = x — v and perform a change of variables in the above expression:

k= /b+00(u — b)dF (u). (S.2)

It remains to show that equation (S.2) has a solution. Assumption 1 implies that if
b=0, then k < [ udF(u). On the other hand, as b — oo, [; ~ (u— b)dF(u) —



0 < k. Hence, since g(b) = |, (x — b)dF is continuous and decreasing in b, there

exists b > 0, such that the equality holds. This completes the proof. O

Corollary S.1. Consider the same assumptions as before. If F' is symmetric
around 0 then b=b=0> 0

Proof. b > 0 follows from the condition that ¥ < pu < z®. Now, recall the

definition of zZ:

xB
k= / (28 — 2)dF(x — p).
—00
Replacing the assumptions made, one gets that the equation can be rewritten as:

-b
b= [ b-wir),

o

where I changed variables by defining u = = — u. Also,

k= /;oo(x —2™MdF(z — p) = /b+oo(u — b)dF (u).

R

Now, symmetry of F' implies that:

/b () = — /_ O: wdF (1),

Hence, (1—F(b))Eulu > b] = —F(—b)E[ulu < —b] and —(1— F(b))b = —F(—b)b.
Hence, b = b. O]

I am now ready to prove Proposition 5. It follows from equation (S.1) in Section



S.2 that:
x? xf “+o00 “+o0
I; — 1L = / / (max{z;, z;, 27} — aP)dF,dF; + / / (minf{z;, x;, #'} — 2f)dF,dF;

mf +o0o
=(1—E@fﬂﬂ—FK#5Mﬁtﬂﬁ)+/;t/}(%—xfﬂﬂdﬂ

/ / MdF;dF; + (1 — Fy(x ﬁ))/j(g;j—xf)dﬁg

B

T F (D) Fy(aP) (o >+F<>[Ww—ﬁﬂﬂ

/ / =X dFdF+/ / BYdF;dF;.

Perform the following change of variables. Let u = x; — 1;, 4 = x; — p;, and write
a = ; — p; > 0. It follows that:

_/ba/w (u+a—b)dF(a /b/ (i)dF (u)

b+a

b+a
+ (- b)/ (@ — b)dF (i) + F(—b — )/ (@ +b— a)dF(a)

+/ /u+z+au+b—a)dF /b/ (u + b)dF () dF ().

Note that G(0) = 0. I show that (Va)G'(0) = 0,G"(a) = 0. All of these together
imply that G(a) =0

G'(a) = —[/b F(—=b—a)dF(u) + / (F(=b+a) — F(u+a))dF(u)

—b—a



Note that G'(0) = 0. Moreover,

b
G"(a) = F(=b—a)f(b—a)— [ f(=b—a)dF(u)+ (F(=b—a) — F(=b))f(—=b—a)

b—a

—-b b
—i—/ (f(=b+a)— f(u+a))dF(u) — F(=b)f(b—a)+ f(—u—a)dF(u) =0,
—b—a b—a

where I used that f(x) = f(—x), F(—z) = 1 — F(x) several times to cancel terms.
This shows that G(a) = 0.

S.4  Bozxes for which xf* < 2P are never inspected in the optimal policy

This last subsection shows that, if there are boxes i € N such that zf* < 2B, then,
without loss of generality, box 7 is never inspected in the optimal policy. Therefore,
for any such box 7 € N, it is either taken without inspection upon stopping search,
or it is never used in the optimal policy. Moreover, note that only one such box can
be taken without inspection conditional on stopping search. Then, by redefining
T to be whatever is best between the agent’s initial outside option and the best of
the boxes for which 2t < 2P, the analysis in the paper carries through by focusing
on the boxes for which 27 < zF.

Given a set of boxes U, define:

Ut =fied: 2P < af'},

Ut =liedd  zff <zP}.

Given a decision node (U, ), I denote by (U',2"),U' C U,z = z 0 zyy a generic
decision node in which boxes in ¢\’ have been inspected, and prizes 2, have

been sampled.

Proposition S.1. LetU be the set of boxes, and let z be a vector of realized prizes.
Assume that URSB £ (). Then, there exists an optimal policy {o*,c*} such that
VYU, 2) U CUNZ =zo0 )" U, ) =1= (U, ) ¢ UFRSB].

Proof. The proof is by double induction in the cardinality of 4 and UF<5. Since
URSB C U, then [URSB| < |U|. Induction is in U = |U|, and n, where [URSB| =



max{U,n}. Let P(U,n) denote the following predicate:

P(U,n): (V2)(VU) : [U| = U, UR=E £ 0, [UR<B| = max{n, U}, the optimal policy
satisfies the property in Proposition S.1.

[ first show that P(1,1) = 1, and then that if P(U’,n’) = 1 holds for U’ < U, and
n’ < mn, not both with equality, then P(U,n) = 1 holds.

P(1,1)=1:

Let U = {i} and let z denote the vector of already realized prizes. Since U = n = 1,
then UF=P = {i}. I show that: —k; + [ max{z;, z}dF; < max{u;,z}. Suppose
that Z > p;. Then, since 1 € URSP | xR <y <Z. Then,

since 7 < xft (recall the derivation of equation (RV)), with equality only if z = x[%.
Now, suppose that p; > Z. Then, 22 > p; > %, and it follows from (BV) that:

z

—ki + /max{xi,i}dF,- — i =—k; +/ (Z — x;)dF;(x;) < 0.

P(U,n)=1:

Assume now that (VU < U)(Vn' < n), not both with equality, P(U",n') = 1. 1
show that P(U,n) = 1. Let U be the set of boxes, |U| = U, and let z denote the
vector of already sampled prizes. Let URSP C U, [URSB| = max{U,n}. I use i to
denote a box in U=B and j to denote a box in U\UTSE whenever the latter is
not empty.

I make two remarks. First, notice that if a box j € U\UF=B is inspected, then
one moves to decision node (U’,z o z;), where U’ = U\{j},U'F<B = YR=B and
U'| = U — 1, and [U'SB| = n (note that if there was j € U\UTSB, then it
can’t be the case that |[UF*<B| = U). Since, by the inductive step, I know that

P(U — 1,n) = 1, then there is an optimal policy in which boxes in Yf<5B

uRﬁB

are
not inspected in any continuation history. Second, if a box i € were to be
inspected, then one moves to continuation history (U’, z o x;), where U’ = U\{i},

U'RSB = YR<B\ [}, and [U'| = U — 1, [U'F<B| = max{U — 1,n— 1}. Since, by the



inductive step, I know that P(U — 1,n — 1) = 1, then there is an optimal policy
in which boxes in U'#<8 are not inspected in any continuation history. The first
remark implies that to prove P(U,n) = 1 it remains to show that it is optimal not
to inspect a box in UR=E at decision node (U, z). The second remark will be used
when computing the payoff of inspecting a box in i € UR=B.

Given the above, I want to show that:

icYR<B jGZ/{B<R j€uB<R

max{?, max /i, max [, max {—kj+/V*(U\{j},zoxj)dl7j}}

> max {—k; +/V*(U\{i},zoxi)dﬂ-}, (8.3)

iEURSB

where the LHS of the above expression denotes the payoff the agent can get by
either stopping, and getting max{Zz, max;cr<s jt;, maxX;cyn<r jt;}, or continuing
search by inspecting a box in UP<%; the RHS denotes the payoff of inspecting a
box in UFSB. The stars in V denote that the agent follows the optimal policy
in the continuation histories, and the two remarks above apply, by the inductive

step, to those histories. Note that I can write, for any box i € UF<5:

—ki+/V*(Z/{\{i},zoxi)dFi

= —ki + / max Tiy 2, MAXy gr<p\ (i) ity MAXjeyB<R fj, dF;
) maXﬂGUB<R{_kJ+fv*(U\{Z,j},zoxzoxj)d}7j} 1

_ —k‘*—l—/max Ts. TIAX Ea maXi’EL{RSB\{i} Mg, MAXjcpyB<R [, dF.
’ max;cye<r{—k; + [ V*(U\{i,j}, z 0 x; 0 x;)dF}}

- /+OO rF 4+ max { 0, max M QURSE\() H.la}.(jeuB@ o —x; p dF;
R max;cys<n{—k; + [ V*(U\{i,j}, z 0 x; 0 x;)dF}}
o _
+ / " max Zi, max i H.la)_{jeukR ok dFs,
oo max;ee<n{—k; + [ V*(U\{i, j}, 2z 0 x; 0 2;)dF}}
where the first equality is by definition of the set of actions available to the agent,
and I use the second remark above; the second equality is just a rearrangement of

terms, and the third equality follows from using (RV) for box i.
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Notice that the second term in the first integrand:

max { 0. max 57 maXi/euRgB\{i} i maneuB<R /L], —
7 max;es<r{—k; + [ V*(U\{i,j}, z 0 x; 0 z;)dF};} 7
is decreasing in x;: the slope of —x; is —1, and the slope of the term in the max{-}

as a function of x; is at most one (it would be 1 only if x; is better than any of

the terms in the max{-} for all z; € [z, +00]). Thus, it follows that:
/+°° zF 4+ max < 0, max Hmaxeursei) i H.la).(jGUB<R o —x; p dF;
2R max;cys<n{—k; + [ V*U\{i,j}, z 0 x; 0 2;)dF}}

< /+oo max ,jL‘R’ max E, maXileuRgB\{i} Hir, MaX ey B<R [Lj, dFZ
 JaR ! maxey<r{—k; + [ V*(U\{i,j}, z 0zl o x;)dF;}
Also,

R

i Z, MaX; gyr<B\ (3} it , MAXjeyyB<R [Lj,
max ¢ &;, max o dF;
—oo max;cys<n{—k; + [ V*(U\{i,j}, z 0 x; 0 2;)dF}}

R

< / X max { ', max & maieurse\(i p, T jequRMj’ dF;,
0 max;cys<n{—k; + [ V*U\{i,j}, z 0 xff o x;)dF;}

since the integrand is increasing in x;. Putting all of this together, I conclude that
for all i € UR=B | the following holds:

_k;i_|_/V*(Z/[\{i},zomi)dFi

= —k; + / max iy 2, MAXy qr<p\ (3} P, MAXjeyB<R L, dF;
max;es<r{—k; + [ V*(U\{i,j}, z 0 x; 0 z;)dF};}

- max o 7, maxyqrem gy po A ey 1, |
maxeys<r{—k; + [ V*(U\{i,j}, z 0 aff o x;)dF;}

11



But, then one concludes that, for all i € UF<E:

max{?, max fi, Max fi;, max {—kj—l—/V*(U\{j},zoxj)dFj}}

icUYR<B jEZ/{B<R jEL{B<R

> max rf Z, maxy e ;) pit, Ty 1
max;eys<r{—k;j + f V*U\{i,j},z0xlo x;)dF;}

> kit [ V@A) o m)dE,

where the first inequality follows from z2 < u; for i € UR<P  and the fact that
taking box ¢ without inspection and getting pu; is always an option in the optimal
policy in the first line, while not in the second. Moreover, note that for i € UF<5,
the first inequality is strict.

Since the above holds for each i € U%=B it follows that (S.3) holds, and, thus,
P(U,n) =1 O

S.5 Two boxes

To further the understanding of the difficulties involved when characterizing the
optimal policy when the conditions of Section 4 do not hold, this section charac-
terizes the optimal policy when there are two boxes. Hence, for the rest of the
section, N' = {1,2}, and the outside option is given by Z.

Given that Proposition 0 characterizes the optimal continuation when there is
one box left for inspection, I only need to determine which of the following three
alternatives yields the highest payoff to characterize the optimal policy for two-
boxes: (i) stop, taking max{z, u1, 2}, (ii) inspect box 1 first, and apply the opti-
mal policy in Proposition 0 to box 2, and (iii) inspect box 2 first, and apply the
optimal policy in Proposition 0 to box 1. Let II; denote the payoff of (ii), and Il
denote the payoff of (iii).*

Proposition S.2 below describes the optimal policy when N' = {1, 2}:
Proposition S.2. Fiz a set of bozes N = {1,2}, and let Z denote the outside

4TL; is the payoff from inspecting box 4 first, and: (i) if max{x;,zZ} > 2% stop, and

J
take max{wx;,z}, (i) if max{z;,z} € [2P 2] inspect box j, and take max{w;, x;,z}, (iii) if

Jri
max{z;,z} < xF stop, and take y;

12



option. Assume without loss of generality that x¥ < xft. The following is the

optimal policy:
1. If 2> a8 and z > 28, then the optimal policy is given by Weitzman’s rule.

2. If 2B < xB, then it is optimal to inspect box 1 first. The optimal continuation

policy is given by Proposition (.

3. Ifx8 < 2Pz < B, and py < 2, it is optimal to inspect at least one box. If
[Ty > Il,, box 1 is inspected first; otherwise, box 2 is inspected first. In both

cases, the optimal continuation is as in Proposition 0.

4. Otherwise, if ¥ < 2B, z < aP, and 2§ < p, it is optimal to inspect box
1 first if TI; > max{Ily, u1}, to inspect box 2 first if Iy > max{Ily, 1},
otherwise, box 1 is taken without inspection. If search does mot stop, the

optimal continuation policy is as in Proposition (.

Item 1 follows from Proposition 1, and item 2 follows from Proposition 4 in the
main text. When zf < zff and 28 < 2P, Proposition 2 allows us to simplify
the taxonomy by considering two cases: pu; < z& and zf < p;. In the first case
(item 3), the agent only has to decide which box to inspect next, i.e. the optimal
policy is determined by max{II;,IIs}. In the second case (item 4), the agent has
to choose either to stop, taking box 1 without inspection, or which box to inspect
next.

To determine the optimal policy in item 3 and 4 above, I now analyze the
differences II; — Ily, IIs — 1, and II; — 1. The first determines the optimal policy
in item 3, and all three determine the optimal policy in item 4.

Consider first IT; — II5. It is immediate, if somewhat tedious, to show that it is

given by:’
+oo +oo
Hl - HQ == /R /R (min{xf,xg, 1‘1} - xf)ngdFl (S4)
T2 Z2

of  rep
+ / / (max{z, Ty, max{zy Z}} — 2P)dFhd Fy

®Equations (S.4)-(S.6) are derived in Appendix U for completeness.

13



Recall T am assuming that zf > 2 and xP > 28| so that the first term in (S.4)
is positive, and the second is negative. Equation (S.4) shows that inspecting first
box 1 has a benefit, which is given by the possibility of obtaining higher prizes,
net of inspection costs, and a cost, which is given by the possibility of obtaining
really low prizes, in which case keeping box 1 to take without inspection would act
as a buffer. A somewhat loose intuition is that the higher the backup value of box
1, or the higher the reservation value of box 2, the higher the cost of inspecting
box 1 first, and hence the optimal policy would start with box 2.

Proposition S.3 below characterizes when I1; < (>)II,. In what follows, denote

by R the extended real line. In what follows, I prove the following result:

Proposition S.3. Assume N = {1,2}. Under the assumptions of item 3 in
Proposition S.2, there exists 1o € R such that if P < z0, then box 1 is inspected
first; if xB > 2o box 2 is inspected first.

Proof. To show the first part, use equation (S.4) to define the function fo :
(28, 4+00) = R as:

+o0o +o0
fot) = [ [ (min{alna,} ~ afdruary
vy
+ / / (max{z,, xo, max{z? z}} — y)dFydFy
Note that fo(xP) =11} — Iy, and fo(2¥) > 0 since 2 < 2. Now define:
ro = inf {y € [v5,+00) : fo(y) <0}

I now check that fo is decreasing in y. Then, using the convention that inf () = 400,

I show that zo € R is well-defined. To show that fo is decreasing, consider

6The intuition is loose because some changes in ¥ (z£) may change also zft (25).
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y >y > ab:

Y Y Yy Yy
fO(y) - fO(y/) - / / (y/ — y)dFQdFl —|—/ / (yl o max{xl,$2,maX{$2B’E}})dF2dF1
—00 J —00 —o0 Jy
y/ y/
+ / / (v — max{zy, zs, maX{l’f,?}})ngdFl >0
Yy —0o0

Hence, zo is well-defined. Hence, if xf < zp, it follows that II; > Ils. O

Equation (S.4) alone determines the optimal policy when 28 < 2 28 < 28 1, <
x¥. When p; > 2, by Proposition 2, the agent may find it optimal to stop, and
take box 1 without inspection. Hence, I also need to compare I1; to p, and Il; to
H1-

Consider first the choice of whether to inspect box 2 first, or take box 1 without
inspection. It is immediate that if z& > u;(> P > Zz), then stopping cannot
be optimal: inspecting box 2 and then taking box 1 without inspection whenever
To < 7 certainly dominates stopping and taking box 1 without inspection. It is
also immediate that if 2% < 2, then stopping dominates inspecting box 2 first:
2l is the maximum prize the agent expects to get from box 2 after inspection,
while 22 is the lowest prize the agent expects to get from box 1 when taking it
without inspection. To sharpen this intuition, note that the difference Iy — iy is

given by:

+o0o 400 ; R
My oy = —ky + /B / ( max{zy, min{xy*, max{xy, 2} }} > dF\dF, (S.5)

— min{zf, max{z, 27}}

When z, < 2B, box 1 is taken without inspection, after inspecting box 2, and
this determines the integration limits in the outer integral in (S.5). Recall from
equation (2) that when taking box 1 without inspection, the agent expects to gain
no more than z, and no less than 2, and this determines the second term in
the integrand. The first term is the gain from inspecting box 2 first, followed
by inspecting box 1: by not taking box 1 without inspection, the agent gets the
possibility of getting the prize inside box 2, though this comes at the cost of paying

ks.
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Equation (S.5) resembles the equation that determines the reservation value for
box 2, but where now the outside option is p1. As the previous intuition suggests,
as long as it is worth inspecting box 2 (i.e., % is high compared to x¥), the above
expression should favor inspecting at least one box.

Finally, it remains to compare Il; and p;. The difference I1; — p1; can be written

as:
:rg “+oo
I — g = / / min{x max{z,, v, max{zr? z}}} — max{z, 27 }dF,d F{S.6)

The difference between II; and pu; is that by inspecting box 1 first, the agent
retains the option of inspecting box 2 (the first term in the integrand), while
he loses the option to take box 1 without inspection (the second term in the
integrand). The equation resembles the computation of the backup value of box
1, but with an inspection cost of 0. When the agent inspects box 1 first, he gives
up the backup value of box 1; hence, if box 2 is sufficiently good for search, the
possibility of searching with box 2 may compensate for this. This, in turn, favors
inspecting at least one box over stopping, and taking box 1 without inspection.

Proposition S.4 below characterizes formally the optimal policy in item 4:

Proposition S.4. Under the assumptions of item 4 in Proposition S.2, there exist

ro,xY, 25 € R such that the following is the optimal policy:
1. If 2P < min{a5, 20}, then box 1 is inspected first.
2. If 1o < 2B < 25, box 2 is inspected first.

3. If x5 < aP < g, inspect box 1 if 2l > a7, take box 1 without inspection,

otherwise.
4. If 2B > max{x3, x0}, take box 1 without inspection.

In case search does not stop, the continuation policy is as in Proposition 0.

Proof. To prove Proposition S.4, I need to consider Iy — p1, and I1y — pq. In order
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to determine the sign of IIy — uq, use (S.5) to define the function fos(y):

fasle) = —ka + /+oo /+oo ( max{ e, min{xf max{z, ro}}} ) P, dF,

— min{xf max{z,y}}

Note that fog(zP) = Il — p;. Define 5 as follows:
zy = inf{y € (—o0,257 : fas(y) < 0} (S.7)

I show that: (i) fos(y) is decreasing in y, and (ii) fos(zZ) < 0. Then, one can

conclude that x5 is well-defined. To show (i), consider ' > y:

+o0 +oo
st) = fas) = [ [ il max{e ) mingol max{on ) AR,
Y too
+/ / max{zy, min{z? max{z,, ro}} — min{z? max{z,,y} }dF1dF, > 0
Y )

where the inequality follows from: max{z,, min{x max{x,, x5}} >
max{y, min{zf max{zy,y}}} > min{zf, max{z,,y}} when x5 > y. In order to

show (ii), evaluate fog at y = o and use equation (RV) to write:

faslel) — kot /+oo /+oo ( max{zy, min{xf max{zy, v.}}} > JF\dF,

—min{z® max{z, 2%}}

_ _/ (x2 _1:2 dF2+/+oo /+oo ( max{mg,min{xf“,max{xl,xg}}} )dFldFQ
R

; — min{z®, max{z, z%}}

+oo —+o00 x{{ +00
= /R /R (28 — min{ay’, 21 })dF dFy + /R /R (zF — min{x, 21 })dF1dF, < 0
1 T2 zf b

The proofs of (i) and (ii) show that 5 is well-defined. Hence, as long as 22 < a3,
it follows that Il — puy > 0.
Use (S.6) to define the function fi5(y), given by:

+oo
fis(y / / min{y, max{x,, zo, max{z, 251} } — max{z,, 25 VdF,dF,.
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Define 7 to be:
vy = sup{y € [27, +00) : fi(y) < 0} (8.8)

I now show that fig is increasing in y, for y > . Then, following the convention
that sup@ = —oo, I obtain that x7 is well-defined. To show fg is increasing

whenever y > 2P, consider v >y > 2:

“+oo
fis(y") — fis(y / / min{y/, max{z,, zo, max{z, 7} }} — max{z,, 25 YdFdF,

+oo
+ / / min{y’, max{z,, zo, max{x? z}}} — min{y, max{z, ro, max{z? z}} }dFydF,

and note the above difference is non-negative. Note that whenever ¥ > z¥, we
obtain that II; — uy > 0.

The result in Proposition S.4 follows from the above observations. O

Equations (S.4)-(S.6) and the discussion above show that, even in the case N = 2,
it is not always simple to determine the optimal policy by just looking at the boxes’
cutoff values. This, in turn, highlights the value of the conditions in Section 4,
which allow us to characterize the optimal policy by only looking at these cutoffs,

and thus retain tractability which is useful for applications.

T EXAMPLES

T.1 Clutoffs don’t determine the optimal policy if N > 2

Examples 1 and 2 demonstrate the claim made in Section S.1:

Example 1. Suppose N = {1,2}, and X; = X5 = {0,2,10}. Assume first that
P(X;=2)=P(Xy=2)=0.2, and P(X; = 10) = 0.7, P(X, = 10) = 0.5, so that
F| >rosp Fy. Assume that k; = ky = 1. It can be shown that 27 = % > g8 =218,
and 2 = % > ¢t = 8. Note that after inspecting box i, search always stops: the
agent takes the inspected box when x; = 10, and takes box j without inspection

whenever x; < 2. Since u; < z¥, inspecting box 2 first dominates taking box 1
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without inspection; moreover, inspecting box 2 first dominates inspecting box 1
first since: 8.62 =0.7 x 10+ 0.3 X s < 0.5 x 10+ 0.5 x pu; = 8.7.

Example 2. Modify the above example as follows. Box 1 is the same as before.
Instead, box 2 is such that X, = {0,9}, P(X;, = 9) = 2= and ky = 4. It is
immediate to show that cutoffs are exactly the same as the ones above. However,
the optimal policy now inspects box 1 first; search stops if X; = 10, and the agent

gets X; = 10, while box 2 is taken without inspection when X; < 2.

T.2  Ezample footnote 3 in Section 1

Below, I present an example where, unlike Problem 2 in Section 1, the worst prize
in both boxes is the same, and where, like Problem 2, the agent inspects first the

box with the lowest reservation value.

Example 3. Assume the agent has an outside option z = 0. Table 1 describes

the prize distribution, and inspection costs of boxes A and B:

A Prize 0 1 5 Inspection cost
Probability 0.10 0.80 0.10 0.10

B Prize 0 05 4.3 Inspection cost
Probability 0.2 0.55 0.25 0.10

Table 1: PRIZE DISTRIBUTION FOR EACH BOX

It can be verified that 25 =4 > 2§ = 3.9, 2§ =1 > 2f = 3, and py = 1.35 >
1 = 1.3. Thus, in Weitzman’s model, the agent inspects box A first; if x4 = 5,
search stops, and, if x4 < 5, he inspects box B, and takes max{x4,zg}.

In the model considered here, by Proposition 0, after inspecting box A, the agent
inspects box B only when x4 = 1; if x4 = 5, search stops and the agent takes
x4, and when z4 = 0 he takes box B without inspection. If, instead, he starts
with box B, box A is never inspected: if xp = 4.3, search stops, and he takes xp,
while if 5 € {0,0.5}, he takes box A without inspection. That is, he takes box
A without inspection when zp < % even if box A may contain a prize worse than
%. This is because the agent assigns a high probability to x4 = 1; this is reflected

in box A’s backup value. The combined effect of saving on inspection costs when
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box B has a low enough prize and the “certainty” of a not so low prize from box

A imply inspecting box B first is optimal.

T.3 Assumption 1: ezample.

I use the example in Problem 1 in Section 1 to illustrate Assumption 1 in the main
text. It is worth noting that the analysis after the statement of Proposition 0 in
Section 2.2 provides an alternative way of deriving Assumption 1, and it makes

explicit that the value of the information for the agent is maximal at z = p.

Example 4. Consider again Problem 1. School A has prizes X, = {1, 2,5}, where
P(X4=1)=P(X4=5) = 1. Contrary to Section 1, I consider an arbitrary cost
k of visiting school A.

Consider first calculating the reservation value. If 2ff > 2, then it solves:
1 R R

Note that it has to be that £ < % for xff > 2. Otherwise, % solves:

1 1 9 — 4k
k:—(5—xf})+§(2—x§)<:>x§:T.
Since % must satisfy that =¥ > 1, then k < 3.
Similarly, one can calculate school A’s backup value. Analogous steps to the

above yield:

5 4k +1 if k<4
IA -

—524’“ if k e (i, g]

Figure 1 below plot the backup and reservation values of school A as a function
of k. It is worth noting that three properties of the figure are true beyond the

B is increasing in k, (ii) 2% is decreasing in k, and

specifics of the example: (i) x
(iii) when they coincide, they do so at u. That (i) holds follows from noting that,
the more expensive the information from a box is, the more incentives the agent

has to leave it to take without inspection. Similarly, this implies that (ii) holds.
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Property (iii) follows from the observation made in Section ?7.

pa fo--y

Figure 1: Reservation (red, dashed) and backup (blue, dotted) values as a function
of k.

Note that for k£ = g, ol =2l = py = g It is easy to calculate that 5/8 =

2(#a —2) + 3(pa — 1), where the latter is the upper bound for k£ in Assumption
1. For k < 2, it follows that 2% < pa < 2%, and for k > 2, % < s < 2%,

When k > 2, and 2% < 2§, regardless of the value of Z, school A is never visited.
To see this, note that when z > p, it also holds that z > 2%, and hence it is
optimal to stop and take Z; likewise, when z < p, it also holds that z < 2, and

hence it is optimal to stop and accept school A without first visiting it.

U EQUATIONS S.4-S.6

I derive equation (S.4) for the case z < z¥ and z < z; the case 28 <z < 28 is

analogous. Given the assumptions, it follows that:

zB B —+o00
I, = —kH_/ J widFi(z;) +/ ’ <_kj +/max{xi,xj}dFj) dF;(z;) —|—/ x;dFy(x;)
xP R
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When z; € [28, 28], and x5 € [z, 21! both policies give payoff max{z;, x5} —k; —

ko. Hence, this part cancels when taking the difference:

B

400 +o0 Ty
Hl — HQ = / <—k1 + / (.Z'l — T2 + kg)dFl +/ (/,62 — T9 + kg)dF1> dFQ

R R
1 2 —o0

xf/ +oo x{{ CEQB
—|—/ (/ deFl -+ / (£C1 — maX{xl,xQ} —+ kg)dFl + / (IU/Q — I9 + kg)dF1> dF2

B R R
1 1 2 —0o0

-

=B 400 g
+/ ( —ki+ [in (01— + k2)dFy + [ max{wy, 22} — pdFy > iR
+B 2 2
—oo + [T (2 — p + ko) dFy

Replace ki = [+ (z1 — 2f)dF; to obtain:

+o0o +o00 x{? IQB
H1 _H2 I/ (/ (l’f—$2+/{72)dF1+/ (131 —.I’2+]€2)dF1+/ (M2—$2+k2>dF1> ng

R R R

1 1 T3 —00
aft +oo af zB
+ /B (/ ]ngFl —|—/ (LEl — max{xl,a:Q} + ]{ZQ)dFl + / (/Jg — T2 + k’Q)dF1> dF2
Ty aft ey —00
0o =R
oL @R ko)A Fy 4 [ (21— o+ ko) dFy
T b 2 B dF,
—oo \ T ffé max{wy, ro} — pudFy + 72 (pa — pn + k2)dFy

Replace py = fa}oo x{%dFl + f;lé{ T1dF) + ff{i xleFl to obtain:

~+o00 too R :z:{2 _
I, — 11, = / ( fz{% (21" — 22 +xl;32)dF1 + f:v2R (x1 — 29 + ko)dFy ) iF,
o +L§O<N2 — Ty + kp)d I

R

Ty +00 x{% $QB
+ / (/ k’ngl —|—/ (131 — max{xl, 1‘2} + k‘g)dFl + / (/1/2 — T + k?Q)dF1> dFQ

B R R
1 1 2 -
B

Ty —+o00 leg zQB
+ / (/ k?ngl —|—/ (max{xl,xg} — ZL’l)dFl + / (,UQ - .TlB + kQ)dF1> dFQ

R B
- 2 2 -
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The above can be written as:

R
1

00 xh

f;{; (J?{% — ZEQ)dFl + fxé ($1 — l’Q)dFl ) dF

B 2
+ J72 (2 — 2 + ko)dFy

1, I, = /mu B (2B + <

it it o3
+f ((1 - RN+ [ (o - maxon)dF b [ - k2>dﬂ) P,
:1:{3 x§ —00
of of 5
+ / ((1 - Fl(l'g))kg + / (maX{xl, CL’Q} - I1>dF1 + / (/,LQ - l'lB + ]{fg)dFl) dFQ,
—00 IQB —o0

—+00

and replacing ky = fz§ (v9 — 2B)dF,, it follows that:

B

+oo +oo z{% Ty
Hl — HQ = / (/ (ZE{% — $§)dF1 —|—/ (231 — [L’g)dFl —|—/ (M? — X9 + kQ)dF]_) dF2

R R R
1 1 T2 o0

R

x] CE{% sz
+ / —(.1'2 — I?) +/ (%1 — max{a:l, xz})dFl +/ (,u2 — I9 + k’g)dF1> sz
zF zB —00
of [ raB
+ / / (/.1/2 — T2 + kQ)dF]_) dFQ
zB —00
oy oy z3
-+ / / (max{xl,xg} — iL‘l)dFl + / (,UQ - xf’ + k‘Q)dF1> dFQ
—0 zQB —o0

Finally, replace 1o = —ks + [ max{zs, 28 }dF; to obtain:

R

“+oo +00 Ty
Hl—Hg—/R (/R (Ifb—l‘g)dFl—i‘/R (ZEl—Ig)dFl) ng

1 1
R R

+/ <—(.7)2 — .Tg) +/ (131 - max{xl,x2})dF1> dF2
B xl

2 2

B
R

oy oy
—l—/ (/ (max{xy,z2} — x1)dF} +/ (max{wy, z5} — x?)dﬂ) dF,.
—0 IQB —o0

Rearranging terms one obtains equation (S.4).
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To obtain equation (S.5), use the expression for Iy to obtain:

R B
+00 1 Ty

HQ — U1 = —]{?2 +/ .Z‘Qng +/ (—kl + /max{xl,:z:g}dFl)dFQ +/ /vbldFl — M1
o T

B
1 —0o0

o o (R eldE 4 [ dF
= —ky +/ (xg — p1)dFy -|-/ ( fz{* edFy + [71 max{xy, 22 }dFy diF,

r 2B — [min{zf, max{x, 2P} }dF,

R

R
Ty
B
1 1

+o0
= —ky +/ (2o — p1)dFy + / (/ min{zf, max{z,, 7,}} — min{zf, max{xr,, x{g}}dFl) dr,
= —ky +/ </ max{zy, min{zf max{z,, s} }} — min{xfz,max{xl,xf}}dﬂ) dFs,

where the second equality comes from canceling y; when z, < 2P, replacing k; =
f;%oo(xl—:vf)dﬂ in the second term, and replacing y; = [ min{z%, max{z, 2P} }dF,
and the rest follows from rearranging terms.

Equation (S.6) follows similar steps as above, but I replace 11 = —k;+ f;%oo rdF+
fffo max{z, 2P }dF} in the first step to cancel the term —k; + f;;oo r1dFy in I1;.
2
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