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Supporting Videos description 

Supporting Video S1. Slow motion of a magnetic nanowire motor with a 1.0 µm drug-loaded 
PLGA microparticle. Conditions, as in Figure 1.  

Supporting Video S2. Pick-up of different sizes of drug-loaded PLGA microparticles using 
magnetic nanowire motors. Conditions, as in Figure 2.  

Supporting Video S3. Microchannel drug delivery to HeLa cells using magnetic nanomotors 
in cell culture media. Conditions, as in Figure 5. 
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SI Figure 1. The magnetic field setup in the experiments. H0 is a longitudinal constant 
component of the magnetic field generated by a Helmholtz pair: coils a & b, carrying an 
constant electrical current I; H1 is a transverse rotating magnetic field generated by two 
Helmholtz pairs: coils c & d and coils e & f, carrying the sinusoidal currents I1 and I2, 
respectively. I1 and I2 have a 90 degree phase shift). 
 

Elastohydrodynamics at low Reynolds number 

In this supporting information, we briefly describe the derivation of the elastohydrodynamic 
equations in the main article (Equations 1 and 2). The calculation is an extension of our 
unloaded swimmer in Ref [16] in the main text. We model the fluid-body interaction by 
resistive force theory, which linearly relates the viscous force acting on a slender 

filament visf
r

to the local velocity of the filament u
r

 relative to any background flow, 

[ ] unnttf
rrrrrr

⋅+−= ⊥ξξ //vis , 

where the local tangent and normal vectors are denoted by t
r

 and n
r

 respectively, and //ξ  and 

⊥ξ   are the drag coefficients of a slender filament moving parallel and perpendicular to its 

axis respectively. 
The elastic bending force of the filament is given by 

4

4

elastic s

r
Af

∂
∂ r

r

−= , 

where A is the bending stiffness of the filament, and)(sr
r

 is the position vector as a function 

of the arclength along the filaments. 
In the microscopic fluidic environment, inertial forces are negligible and we have a simple 

force balance 0elasticvis =+ ff
rr

, which leads to the equation governing the 

elastohydrodynamics of the filament 
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We are in the regime where the motion of the nanowire is synchronous with the rotating 
magnetic field. Therefore, we situate ourselves in a rotating reference frame where the 
magnetic field is fixed and the nanomotor has a non-changing shape in time. Therefore, we 

have bvUu
rrr −= , where U

r

 is the swimming velocity of the nanomotor and bv
r

is any 

background flow. Observing the motion in such a rotating reference frame induces a 

background flow given by )0,,( xyvR −Ω=r
, where Ω is the rotational frequency of the 

magnetic field. In our previous work[16], this is the only background flow present in the 

analysis, i.e. Rb vv
rr = .  Here, we include another flow field Sv

r
created by a spinning sphere of 

radius ar centered at z = L+ar, i.e. SRb vvv
rrr += , 

where )0,,(])([ 2/32223 xyzaLyxav rrS −−+++Ω= −r
.  

We nondimensionalized lengths and time by using the length of silver filament, L, and the 
inverse of the angular frequency, 1/Ω, respectively, and the dimensionless 
elastohydrodynamic equation is given by 
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where /// ξξγ ⊥= , and 4/1)/(Sp AL Ω= ⊥ξ  is called the sperm number, a dimensionless 

parameter comparing the viscous to elastic forces. The same symbols are used for 
dimensionless variables for simplicity. 
To make analytical progress, we consider small deformation, hence sz ≈ , and we expand the 

transverse deformation ))(),(()( zyzxzr =⊥
r

and swimming speed in powers of h (ratio of the 

amplitude of the transverse and longitudinal magnetic field): 

L
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2
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1 UhUhU  
Integrating the )(hO  local viscous force in the z-direction over the entire swimmer yields 

01 =U , and swimming occurs at )( 2hO . Therefore, the )(hO local velocity of the filament 

relative to the background flow is given by  
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where Laa r /=  is the dimensionless radius of the spinning sphere. Balancing the local 

viscous and elastic forces in the transverse directions leads to the equations governing the first 
order deformation ))(),(( 11 zyzx : 
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where Laa r /=  is the dimensionless radius of the spinning sphere. Note that when there is no 

background flow set up by the sphere (0=a ), the above equations reduce to those in Ref [16]. 
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Upon solving the above equations for ))(),(( 11 zyzx subject to different boundary conditions in 

the main text, we can obtain the dimensionless second order swimming speed[16] as 
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where LLl mm /= is the dimensionless length of the nickel segment, and //// /ξξα m= is the 

ratio of the drag coefficients of moving the nickel segment parallel to its axis to the same drag 
coefficeint of the silver segment. 
 
 


