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Abstract The 2016 Mw 6.2 Tottori earthquake occurred on 21 October 2016 and produced thousands
of aftershocks. Here we analyze high-resolution-relocated seismicity together with source properties of
the mainshock to better understand the rupture process and energy budget. We use a matched-filter
algorithm to detect and precisely locate >10,000 previously unidentified aftershocks, which delineate a
network of sharp subparallel lineations exhibiting significant branching and segmentation. Seismicity
below 8 km depth forms highly localized fault structures subparallel to the mainshock strike. Shallow
seismicity near the main rupture plane forms more diffuse clusters and lineations that often are at a high
angle (in map view) to the mainshock strike. An empirical Green’s function technique is used to derive
apparent source time functions for the mainshock, which show a large amplitude pulse 2–4 s long. We
invert the apparent source time functions for a slip distribution and observe a ~16 km2 patch with
average slip ~3.2 m. 93% of the seismic moment is below 8 km depth, which is approximately the depth
below which the seismicity becomes very localized. These observations suggest that the mainshock
rupture area was entirely within the lower half of the seismogenic zone. The radiated seismic energy is
estimated to be 5.7 × 1013 J, while the static stress drop is estimated to be 18–27 MPa. These values yield
a radiation efficiency of 5–7%, which indicates that the Tottori mainshock was extremely dissipative. We
conclude that this inefficiency in energy radiation is likely a product of the immature intraplate
environment and the underlying geometric complexity.

1. Introduction

On 21 October 2016, a Mw 6.2 earthquake (MJMA 6.6) occurred in the Tottori Prefecture of Japan
(Figure 1). This left-lateral strike-slip event produced strong ground shaking in the surrounding region,
with the largest recorded peak ground acceleration being 1.4 g (Kagawa et al., 2017). The mainshock
was preceded by 70 foreshocks over a 12 h period, including one with M 4.2. The Japanese
Meteorological Agency (JMA) detected 9,639 earthquakes over the course of this sequence between
21 October 2016 to 31 October 2016, which are shown in Figure 1. The aftershocks are notably diffuse
in character without a well-defined fault plane visible from the JMA locations; they are however concen-
trated in two main clusters.

In Southwest Japan, oblique subduction of the Philippine Sea Plate drives thrust events at the plate inter-
face, while in the intraplate regions of Shikoku and Chugoku, strike-slip events result from slip partitioning
(Figure S3). While the Median Tectonic Line in the Shikoku region is a mature strike-slip fault, recent GPS
observations revealed shear localization in the San-in Shear Zone in the Chugoku region (Nishimura &
Takada, 2017). The San-in Shear Zone, within the larger Northern Chugoku Shear Zone (Gutscher &
Lallemand, 1999), has a history of diverse earthquake activity including swarms (Shibutani et al., 2002),
deep low-frequency earthquakes (Aso & Ide, 2014; Aso et al., 2013; Ohmi & Obara, 2002), and several
moderate to large earthquakes in the last century (Kanamori, 1972; Nishida, 1990; Pulido & Kubo, 2004;
Shibutani et al., 2002), despite the low rate of strain accumulation (Nishimura & Takada, 2017). In 1943,
the Mw 7.0 Tottori earthquake occurred east of the 2016 hypocenter (yellow line, Figure 1) and ruptured
the Shikano and Yoshioka faults (Kaneda & Okada, 2002; Omote, 1943; Tsuya, 1944). In 2000, the Mw 6.7
Western Tottori earthquake occurred approximately 50 km to west of the 2016 Tottori earthquake
(Figure 1). The relocated aftershocks in this sequence form a network of complex lineations with a
(generally) northwest trend, and many of these lineations branch out from the main rupture plane at sub-
parallel angles (Fukuyama et al., 2003).
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The relationship between the earthquake source process and the internal structure of fault zones is an active
subject of research. For example, dynamic generation of brittle damage within fault zones (Li et al., 2006) may
affect the rupture process and seismic energy (Xu et al., 2015). Such processes have the potential for
enhanced nondouble couple source terms (Ben-Zion & Ampuero, 2009). Fault roughness and the degree
of localization of the primary slip surface may affect the seismic efficiency and rupture velocity (Shipton
et al., 2006; Wilson et al., 2005). Ruptures on bimaterial faults may propagate more favorably in the direction
of motion of the more compliant medium (Andrews & Ben-Zion, 1997; Weertman, 1980). However, the rela-
tionship between the rupture process of individual earthquakes and their host fault zone structure is gener-
ally difficult to establish.

In this study, we derive high-resolution earthquake hypocenters using a matched-filter algorithm for tens of
thousands of earthquakes in the 2016 Tottori sequence. An empirical Green’s function method is used to pro-
vide a detailed view of the rupture process and energy budget for the 2016 Tottori mainshock. Together, the
seismicity and source properties of the mainshock suggest that this intraplate earthquake was highly ineffi-
cient in energy radiation, which may be a product of the geometrical complexity of the underlying immature
fault structures.

2. Data

We use data from four seismic networks provided by the National Research Institute for Earth Science and
Disaster Prevention of Japan. Continuous short-period data (21 October 2016 to 31 October 2016) from
Hi-net are used at 88 stations located generally within 100 km of the mainshock hypocenter (Figure 2).
These data are decimated to 50 Hz and band-pass filtered between 2 and 15 Hz. We also use the K-NET
and KiK-net accelerograms for the Mw 6.2 mainshock and a M 4.2 foreshock (2016/10/21 12:12:23) at a total
of 70 stations (Figure 2). Finally, we use F-net broadband recordings at 68 stations. The initial seismicity
catalog of 9,639 events (Figure 1) was produced by JMA.

Figure 1. Map of Tottori, Japan region. Seismicity from JMA unified catalog shown as black dots, with the 2000 and 2016
Tottori sequences shown in purple and red, respectively. Hypocenters of the 1943, 2000, and 2016 earthquakes are
indicated by white stars. Rupture plane of the 1943 earthquake is shown in yellow (Kanamori, 1972). A significant amount of
seismicity was triggered far away from the 2000 and 2016 ruptures.
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3. Methods and Results
3.1. Matched-Filter Earthquake Detection

We use the template matching algorithm of Shelly et al. (2016), along with the modifications of Ross, Rollins,
et al. (2017), to detect previously unidentified earthquakes in the continuous data. We use all events in the
JMA catalog as template events to search for similar signals. First, an automated picking algorithm is used
(Ross et al., 2016) to try and pick P and S waves for all events at each station. When a pick is unsuccessful,
1-D predicted arrival times are determined from the model of Shibutani et al. (2005). P wave templates are
constructed from the vertical component only using window lengths up to 2.5 s (depending on the S-P time),
while S wave templates are constructed from both horizontal components using a window length of 4 s. A
signal-to-noise ratio is determined for each template waveform using an equivalent length of noise prior
to the Pwave arrival, and if less than 5.0, the template waveform is discarded. Aminimum of 12 channels with
templates are then required in order to proceed; otherwise, the template event is skipped. Then, for a given
event, each template is correlated against 24 h of continuous data. Correlation functions are migrated back in
time by an amount equal to the travel time and stacked over all phases and channels. Events are detected
using a threshold of 8 times the median absolute deviation for the day (Shelly et al., 2016), which commonly
results in thresholds in the range of 0.4–0.8. Applying this procedure results in 45,137 events, which is 4.68
times as many as listed in the JMA catalog.

For each detected event, we then recorrelate it with the 200 nearest template events to measure differential
times for relocation purposes (e.g., Hauksson et al., 2012). Here we use shorter window lengths of 1.5 s for
both the P and S waves, with both phases used on all three components. When more than one differential
time is measured for a phase at a given station, the channel with the largest cross-correlation coefficient is
selected. A minimum of six differential times are required to save a given pair, resulting in 43,999,278 total
differential times for all pairs. Then we attempt to relocate all events with the GrowClust algorithm
(Trugman & Shearer, 2017), which iteratively groups events into clusters and relocates them with the differ-
ential time data. GrowClust was selected because the algorithm has only a few sensitive parameters, and
these are relatively simple to tune. For the relocation, a minimum correlation coefficient of 0.75 is used for

Figure 2. Map of seismic stations used. The networks used are Hi-net (green), K-NET (yellow), and KiK-net (purple). Some
sites have multiple sensor types. Blue star indicates hypocenter of mainshock.

Journal of Geophysical Research: Solid Earth 10.1002/2017JB015077

ROSS ET AL. 1633



determining cluster similarity, and correlation values below 0.6 are discarded. At least six differential times
per pair are required as well. A 1-D velocity model for the region is used (Shibutani et al., 2005). A more
detailed description of the method is given in Trugman and Shearer (2017). In total, 20,039 events are
successfully relocated (44%), which is primarily due to the low signal-to-noise ratios of the newly
detected events.

Additionally, we determine moment tensor solutions for the mainshock and M 4.2 foreshock event using the
W-phase algorithm (Duputel et al., 2012; Kanamori & Rivera, 2008). For the mainshock, the best fitting strike,
dip, and rake are 339.2°, 86.5°, and 0.1° respectively. For the M 4.2 foreshock, the best fitting strike, dip, and
rake are 336.2°, 84.5°, and 11.6° respectively. Examples of waveform fits for selected stations are shown in
Figures S1 and S2 in the supporting information.

Figure 3 shows the relocated seismicity in map view. The two main clouds that were visible in the JMA hypo-
centers (Figure 1) now appear as networks of smaller faults. These structures exhibit a high degree of branch-
ing but have a dominant trend parallel to the strike of the mainshock (339°). Additionally, numerous
structures with a length generally less than 500 m were activated away from the primary seismicity cloud,
with some events being as far as 15 km away. These tiny faults also share the same northwestern trend of
the mainshock and further the regional trend of seismicity (Figure 1).

Next we examine the seismicity in a fault-normal cross section through the hypocenter (Figure 4a). In this
plot, the seismicity is restricted to events that occurred within 3 km of the plane. There is a major near-vertical
fault structure visible that contains most of the aftershocks. This structure is about 2 km wide in the upper
8 km and is rather diffuse in character. Nearly all the events below 9 km are within a ~500 m wide zone that
extends down to about 15 km. This type of behavior is reminiscent of fault zone flower structures (Ben-Zion &
Sammis, 2003) andmay reflect the increasing confining pressure with depth. The relatively deep extent of the
broader portion of the fault zone may reflect the immaturity of the fault zone. The sizable group of lineations
northeast of the hypocenter in Figure 3 is also strongly visible between 2 and 8 km distance along A-A0, and
these structures have a general depth extent of about 2 km. We also note that the depth of the top of the
seismicity decreases here toward the northeast.

Figure 4b contains a fault-parallel cross section of seismicity within 1 km of the B-B0 plane. Near the hypocen-
ter (blue star) there is a ring of seismicity approximately 10 km long and 4 km deep, which suggests some

Figure 3. Map of relocated seismicity detected with the matched-filter algorithm. Shallow seismicity (red) is more diffuse,
displays more branching and segmentation, and was triggered throughout the region. Deep seismicity (black) is highly
localized and less segmented.
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relationship to the mainshock rupture process. There are also three small shallow clouds. With a more
complete view of the fault structure in this region, we now proceed to determining earthquake source
properties for the Tottori mainshock.

3.2. Finite Fault Inversion

We use an empirical Green’s function (EGF) method to derive apparent source time functions (STF) using
high-quality accelerograms (Ross, Kanamori, & Hauksson, 2017). Here we use the term apparent source time
function to represent the source time function (moment-rate function) as viewed from the station. A smaller
M 4.2 foreshock is used as an EGF to deconvolve propagation and site effects (Figure 3). The foreshock and
mainshock are located approximately 300 m apart. First, all accelerograms are rotated to the transverse com-
ponent and windowed starting 0.5 s before the Pwave arrival and ending 30 s later. The target event and EGF
records are low-pass filtered at 0.75 Hz, and the deconvolution is performed with an iterative time-domain
deconvolution algorithm (Kikuchi & Kanamori, 1982; Ligorría & Ammon, 1999). Of the 70 STF produced, 38
explained at least 70% of the variability in the target record, and form the subset used in the subsequent ana-
lysis (Figure 5).

The STFs have several notable features that are common to all stations. First, a high-amplitude pulse with a
duration of roughly 2–4 s is present. The timing of the peak of this pulse varies azimuthally, with the shortest
values being in the 340° strike direction, and the longest values being near 160°. These observations are diag-
nostic of rupture directivity along the direction N20°W. In summary, the southeastern azimuths have STFs
that are about 4 s in duration, while the northwestern azimuths have STFs that are 2 s.
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Figure 4. Fault-normal (a) and fault-parallel (b) cross sections of seismicity. Profiles are defined in Figure 3. Mainshock
hypocenter is denoted by blue star, and foreshocks are indicated by red dots.
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Next we used the STFs in a linear slip inversion, following Ross, Kanamori, & Hauksson, 2017. The onset of
each STF was manually picked and set as the origin time. The STFs were truncated at 6.5 s based on the
observed duration in the southeastern azimuths and normalized to an area equal to the seismic moment
(2.54 × 1018 N m). The fault plane is divided into Nx by Ny subfaults that are numbered from i = 1 to N (i.e.,
N = NxNy). We set Nx = 20, Ny = 15, with grid spacing equal to 0.75 km, using the strike and dip of the main-
shock focal mechanism. Each subfault is placed at a grid point i. Let v, li, tij, and Mj(t) be the rupture velocity,
distance of the ith subfault from the hypocenter on the fault plane, travel time from the ith grid cell to the jth
station. Then, the moment-rate function at the jth station is given by

Mj tð Þ ¼ ∑
N

i¼1
mi t � li

v
þ tij

� �� �
: (1)

We determine mi(t) by minimizing the difference between Mj(t) and the observed moment-rate functions.
The tij values are calculated using the layered 1-D structure of Shibutani et al. (2005). For the inversion, we
represent the local moment-rate function as a superposition of K symmetric triangles s(t) with a half-duration
th and a unit amplitude:

mi tð Þ ¼ ∑
K

k¼1
aiks t � k � 1ð Þthð Þ: (2)

This representation allows us to perform a linear inversion to determine the amplitudes aik. The slip-rate func-
tion di(t) for the ith subfault is given by di(t) = mi(t)/μis, where μi and s are the rigidity at the subfault depth,
and the subfault area, respectively. Here we use K = 5 and th = 0.5 s to parameterize the slip rate function (e.g.,
Hartzell & Heaton, 1983). The amplitudes of these triangles are the only parameters solved for, because the
time series used here are apparent source time functions, rather than far-field displacement seismograms.
Laplacian regularization was used, with the weighting chosen using the “L-curve” approach (Aster et al.,
2012). The synthetic STFs produced from the inversion are shown in Figure 5. It can be seen that the syn-
thetics reproduce all of the main features observed in the data STFs.

Figure 6 shows the slip model (rupture velocity of 0.7vs) projected onto vertical profile B-B0 (Figure 3), along-
side the relocated seismicity. The maximum slip is 5.3 m, although the exact numerical value depends on the
grid size, choice of regularization, and rupture velocity assumed. A large slip patch approximately 4 km in dia-
meter is present and asymmetric about the hypocenter. This feature of the slip model is consistent with the
large initial pulse of the STFs in Figure 5. The second pulse visible in the STFs (Figure 5) is much more inco-
herent across the network than the large initial pulse and results in the slip from this pulse being broadly dis-
tributed rather than localized.
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Figure 5. Apparent source time functions for both data and synthetics. Stations are ordered by azimuth and display a dominant pulse 2–4 s in duration with
northwest rupture directivity characteristics. A second weak pulse is visible around the 4–6 s mark.
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Many investigations (Beroza, 1991; Beroza & Spudich, 1988; Mendoza &
Hartzell, 1988) have documented aftershock zones that appear to be
anticorrelated with slip. In a high-resolution study of a Mw 5.2 earthquake
on the San Jacinto fault in Southern California, Ross, Kanamori, &
Hauksson, 2017 found almost complete absence of aftershocks in themain
slip zone. For the Tottori earthquake, the large slip patch is also sur-
rounded by a ring of aftershocks.

Varying the rupture velocity and grid size influences themodel, but the big
slip patch is always in the same location, with nearly constant rupture
length of 4–5 km. The down-dip width of the rupture area increases with
velocity due to a lack of constraints in this direction. If we assume that
the aftershock seismicity bounds the slip patch, then a rupture velocity
of about ~0.5–0.6 vs results in a slip model that is most consistent with
the seismicity. Using the difference in pulse widths between the forward
and reverse propagation directions in a standard directivity style analysis
results in a rupture length of ~4 km and a rupture velocity of 1.89 km/s
(see Appendix A). Considering that the seismicity is about a factor of 4
more localized (in the fault-normal direction) below 8 km depth together
with the lack of shallow slip in the model, it is likely that the rupture did
not extend above 8 km.

Kubo et al. (2017) also derived a slip model for the 2016 Tottori earthquake
using the closest strong-motion records and a traditional finite-fault inver-
sion. Their model has a main asperity located generally in the same place

as ours but is distributed over an area that is more than 4 times as large. It further is symmetric with respect to
the hypocenter, with no evidence of directivity. Their inversion did not include the island stations in the for-
ward direction of the rupture (SMN018 and SMN019), which exhibit a clear narrow pulse ~2 s in duration
(Figure 5). These stations help to constrain the directivity of the main slip patch, which in turn provides an
important constraint on the rupture length.

3.3. Stress Drop and Energy Calculations

Next, the slip model is used to calculate the static stress drop, using the method of Ye et al. (2016). First, we
place our slip model in a homogeneous half-space using the same geometry as the Tottori mainshock and
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determine the stress distribution as a superposition of stress for each subfault computed with the code of
Okada (1985), (Figure 7). The average rigidity of our fault model (30 GPa) is used for the rigidity of the
half-space. Then we compute a slip-weighted stress drop, ΔσE,

ΔσE ¼ ∫ΣΔσΔuds
∫ΣΔuds

; (3)

which is directly related to the earthquake strain energy (Noda et al., 2013). Rupture velocities in the range
0.5–0.8vs (1.8–2.9 km/s) yield 18–27 MPa for the stress drop.

From here, we calculate the seismic energy, ER from the spectra of the STFs following Ross, Kanamori, &
Hauksson, 2017 and Vassiliou and Kanamori (1982).

ER ¼ KM2
0I; (4a)

K ¼ 1=15πρα5
� �þ 1=10πρβ5

� �� 	
; (4b)

I ¼ 8π2∫∞0 f
2 S fð Þj j2 df ; (4c)

where S(f) denotes the Fourier transform of the source time function, s(t), normalized to unit area, at a given
station. The spectra are derived with a multitaper algorithm (Prieto et al., 2009; Thomson, 1982). We calculate
equation (4a) for each station using values for α, β, and ρ of 6.2 km/s, 3.6 km/s, and 2,700 kg/m3, respectively.
Equation (4c) is calculated up to 0.75 Hz, which is the frequency of the low-pass filter used in the deconvolu-
tion algorithm. The final value is computed by taking the median over all stations. Using an omega-square
model (Brune, 1970) with a corner frequency of 0.48 Hz to correct for the missing energy results in
ER = 4.1 × 1013 J.

To further investigate the effect of the low-pass filter and cutoff frequency on the seismic energy, we com-
pare STFs using 0.75 Hz, 1.0 Hz, and 1.25 Hz low-pass filters in the deconvolution process. Figure 8 shows
the cumulative spectral energy for each case. The 0.75 Hz and 1.0 Hz cases have spectra that are relatively
simple, but for the 1.25 Hz case, the cumulative energy jumps dramatically around 1 Hz. This suggests that
noise in the STFs is dominating the integral. This is likely due to these frequency values approaching the
corner frequency of the EGF, which we estimate around 1.25–1.5 Hz based on flattening in the spectra of
the STFs. Using the cutoff frequency to correct for the missing energy with an omega-square model results
in ER estimates of 5.75 × 1013 J and 1.22 × 1014 J for the 1.0 Hz and 1.25 Hz cases. Choosing a low cutoff
frequency reduces the noise in STF and allows an accurate estimation of ER up to the cutoff frequency.
However, a large correction for the missing energy above the cutoff frequency must be added. In contrast,
choosing a higher cutoff frequency reduces the correction for the missing energy, but the noise in STF
leads to an overestimate of ER. We choose a cutoff frequency of 1 Hz as a compromise. Then, the
moment-scaled energy is determined to be ε = ER/M0= 2.3 × 10�5.

As the seismic energy and stress drop were independently calculated, we can use these to calculate the radia-
tion efficiency (Kanamori & Rivera, 2006)

ηR ¼
ER

ΔW0
¼ 2μ

ΔσE

ER
M0

� �
: (5)

Figure 8. Cumulative energy spectra derived from the source time functions. The frequency values displayed in the upper right corner indicate the cutoff frequency
of the low-pass filter applied before deconvolution. Around 1 Hz, the energy spectra become dominated by noise, which artificially increase the estimate of the
seismic energy.
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Here, ΔW0 = ΔσEM0/2μ is the available strain energy. Applying
equation (5) with the range of stress drops obtained previously results
in ηR = 5.1 – 7.7 % . This indicates that about 92–95% of the available
strain energy went into thermal and fracturing processes near the rup-
ture tip and off-fault. We note that the radiation efficiency is not the
same as the seismic efficiency, which also includes the energy dissipa-
tion due to sliding friction.

3.4. Comparison With the 2004 Parkfield Earthquake

To give additional context to the discussed results, we now compare the
2016 Tottori earthquake with the 2004 Mw 6.0 Parkfield earthquake. We
use accelerograms of the Parkfield earthquake recorded by 58 stations
of the California Geological Survey and United States National Strong-
Motion networks. Figure 9 contains a plot of peak ground velocity
(PGV) as a function of distance for both the Parkfield and Tottori earth-
quakes. Here we use PGV as a proxy for seismic energy. It can be seen
that, in general, PGV for both earthquakes is within the observed scatter
over the full distance range. This suggests that the seismic energy for
these events is similar. However, the rupture area for the Parkfield earth-
quake is considerably larger (Kim & Dreger, 2008), as is the length of the
aftershock zone. Estimates of the static stress drop for the Parkfield

earthquake are in the range of ~2 MPa (Allmann & Shearer, 2007; Kim & Dreger, 2008), which is about
an order of magnitude less than the stress drop estimated for the Tottori earthquake. Thus, while the
seismic energy appears to be rather similar between the two events, the large discrepancy in stress
drop implies that the Parkfield earthquake was 8–14 times as efficient in energy radiation as the
Tottori earthquake.

4. Discussion

The 2016 Mw 6.2 Tottori earthquake bears several similarities to the previous 1943 Mw 7.0 and 2000 Mw 6.7
Tottori earthquakes, and also some significant differences. The 2000 and 2016 events had left-lateral strike-
slip motion on northwest-southeast trending faults, while the 1943 event had right-lateral strike-slip motion
on an east-west trending fault (Kanamori, 1972). The 1943 event produced some surface rupture (Kaneda &
Okada, 2002; Tsuya, 1944), while the 2000 (Semmane et al., 2005) and 2016 events had no reported surface
rupture. From the model in our study, the 2016 event ruptured predominantly in a horizontal direction,
extending from a depth of 11.5 km up to a depth of about 8 km. In contrast, the 2000 earthquake nucleated
at about 14 km and primarily ruptured upward, with most of the slip being shallow (Semmane et al., 2005).
The 1943 Tottori earthquake ruptured both the Yoshioka and Shikano faults, which are separated by about
2 km on the surface (Kaneda & Okada, 2002; Tsuya, 1944). The relocated seismicity for the 2016 sequence dis-
plays similar geometric complexity to the 2000 sequence (Fukuyama et al., 2003), and both sequences have
most of the aftershocks forming networks of well-defined lineations with a high degree of segmentation
and branching.

Both the 2000 and 2016 earthquakes triggered significant off-fault seismicity as much as 15–20 km from the
primary fault plane (e.g., Fukuyama et al., 2003). While earthquake triggering is commonly observed in fault
zones around the world, the spatial extent of triggering observed in the Tottori region appears to be unu-
sually extensive; this may indicate that a property of the fault structure is making the region more susceptible
to triggering. Although the mainshock rupture area at depth is relatively localized, this may be more related
to the internal fault structure and the increased confining pressure at depth.

The spatial distribution of seismicity has an unusual pattern, in that the deeper events are very localized and
composed of sharp, subparallel lineations, while the shallow events are rather diffuse and out of plane of the
mainshock rupture. Our slip model indicates that the mainshock had about 93% of the seismic moment
below 8 km (Figure 6). These two observations seem to suggest that the deeper seismicity is on the primary
rupture plane, while the shallower events may be mostly or entirely off-fault. As the 2000 and 2016 ruptures
never reached the surface, and only a fraction of the total rupture length for the 1943 earthquake produced
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Figure 9. Comparison of peak ground velocity for the 2004 Mw 6.0 Parkfield
and 2016 Mw 6.2 Tottori earthquakes. Both earthquakes display similar
peak ground velocity over the entire distance range, suggesting that the
radiated seismic energy is similar for both earthquakes. This is in contrast to
the large difference in stress drop.
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surface rupture, the rupture behavior in the shallow material may have been controlled by the fault structure
during these events. Indeed, the San-in Shear Zone is notable for having no active faults identifiable on the
surface, despite the history of earthquake activity (Nishimura & Takada, 2017). Thus, for these faults a single
localized interface may not extend all the way to the surface; at shallow depths, the fault zone may form dis-
tributed zones of damaged rock instead. As the fault zone matures, the shallow structure may localize further
(Ben-Zion & Sammis, 2003). These factors may explain the unusual differences between the shallow and
deep aftershocks.

The factors underlying energy dissipation during earthquake ruptures are generally not well understood.
There is reason to believe that more efficient ruptures have higher rupture velocities, since more energy is
available for rupture propagation (Kanamori & Rivera, 2006). An alternative way of stating this is that since
less energy is dissipated near the crack tip, the fault zone width is narrower. Studies of particle size distribu-
tions and the gouge volume on the Punchbowl and San Andreas faults in Southern California suggest that
ruptures on these faults dissipate very little energy, and that the slip zone itself is highly localized (Chester
et al., 2005; Wilson et al., 2005). In contrast, the low radiation efficiency of the 2016 Tottori earthquake sug-
gests that the slip zone was broader than that of more mature faults, and that about 95% of the available
strain energy was dissipated as thermal and fracturing processes near the fault tip and the surrounding rock.
The 2016 Mw 5.2 Borrego Springs and 2008 Mw 5.4 Chino Hills earthquakes in Southern California, for com-
parison, were estimated to have radiation efficiency values of 15–26% and 30%, respectively (Ross,
Kanamori, & Hauksson, 2017; Shao et al., 2012). These earthquakes also occurred in geometrically complex
fault zones, although the strain rate there is considerably larger than in the Tottori Prefecture. As these are
only a small sample of events, more work is necessary to determine whether intraplate or geometrically com-
plex regions are predisposed to producing ruptures that are highly inefficient.

Appendix A

Since a slip inversion involves many parameters and complex trade-offs between them, it is often difficult to
determine which parameters are constrained well and which are not. Thus, an interpretation of the data using
a simple directivity method helps to build intuition. In the case of the 2016 Tottori earthquake, it is reasonable
to assume, from the fault geometry, that it can be approximated by a simple unilateral line source on a ver-
tical plane. Using the simple unilateral Haskell model (Haskell, 1964), and denoting, the observed pulse width,
rupture length, rupture velocity, phase speed, the azimuth of the station from the rupture direction, and the
local rise time by T, L, V, c, θ, and τ, respectively,

T θð Þ ¼ L
V
� L
c
cosθ þ τ: (A1)

Then,

L ¼ c
2
T πð Þ � T 0ð Þ½ �; (A2)

V ¼ L
1
2 T πð Þ þ T 0ð Þð Þ � τ
� 	 ; (A3)

and

T π=2ð Þ ¼ 1
2
T πð Þ þ T 0ð Þ½ �: (A4)

The most important aspects of these equations are T(0) and T(π). From the deconvolved waveforms, if we use
T(0) = 2.0 s and T(π) = 4.2 s and use c = 3.63 km/s, then from ((2)), we get L = 4.0 km. Then from ((3)), we get
V = 1.90 km/s for τ = 1.0 s. Also, we get from ((4a))–((4c)), T(π/2) = 3.1 s.

The actual data are more complex and suggest some secondary, probably scattered, patches on the fault
plane, but these values approximately represent the main slip patch. Also, the rupture speed appears a
little low, but this should apply to the initial patch. Other sets of (T(0), T(π), c, τ) may lead to minor varia-
tions around these values, but in general, the inversion results seem reasonable in light of this
simple model.
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