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Nano/micromotors are tiny synthetic devices that can effectively convert energy into 

movement and forces.[1-6] Operating on locally supplied fuels, such as hydrogen peroxide, 

acid, and even water,[7-10] these artificial motors can perform considerably complex 

tasks.[3-5] For instance, hydrogen-peroxide powered micromotors have shown a remarkable 

ability to isolate circulating tumor cells and bacteria from raw biological fluids.[11,12] 

Previous studies have also demonstrated that by attaching drug-loaded nanoparticles onto 

the outer surface of micromotors, the motors can deliver their therapeutic payloads to a 

target destination through pre-defined paths with a speed over three orders of magnitude 

higher than regular Brownian motion, reflecting the large propelling and towing forces of 

the motors.[13] Along with remarkable control over the movement directionality, these man-

made microscale devices are currently a subject of intense fundamental and practical 

research activities.[4] While still in an early stage, attempts to explore biomedical 

applications of micromotors are extremely active and encouraging.[3-5]

Delivering cargoes in a defined and fast manner represents a major application of synthetic 

micromotors.[13,14] The key challenge, however, is how to design, fabricate, and optimize 

new motors with appropriate functions for effective delivery and efficient release of their 

payloads. A reliable delivery vehicle is expected to have the capability for carrying a large 

amount of cargoes for enhanced effectiveness (e.g., therapeutic efficacy in drug delivery), 

delivering simultaneously different types of cargoes for multitasking (e.g., theranostics or 

combination therapy to overcome drug resistance), releasing payloads in a responsive 

manner (e.g., controlled drug release), and destroying itself when no longer needed.[15-18] 

To meet these critical multifunctionality requirements, we successfully constructed in the 
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present study a novel chemically-powered zinc-based micromotor that displays impressive 

cargo loading, delivery, and release capabilities.

The fully-loaded double-conical zinc micromotors are fabricated by coupling template-

electrodeposition with particle-infiltration techniques using silica and gold nanoparticles as 

model cargo analogues. As illustrated in Figure 1, the motor fabrication route involves the 

electrodeposition of zinc within the conical micropores of a polycarbonate membrane which 

are tightly packed with the cargo particles. Dissolution of the membrane template results in 

the release of the freestanding double-conical shaped micromotors, characterized with a 

remarkably high cargo packing fraction of up to 74% of the entire motor body (for mono-

sized spherical cargoes according to Kepler conjecture).[19] This loading fraction can be 

further increased by combining different sized spherical particles or using particles with 

different shapes. When the micromotors are placed in acidic fuel media, hydrogen bubbles 

are spontaneously ejected from one end, leading to a bubble thrust and a fast movement 

(Figure 1e and Movie S1). Such directional locomotion is enabled by the formation of a 

galvanic cell between the zinc and the sputtered gold contact.[20] The dissolution of the zinc 

body leads to an autonomous release of the encapsulated cargoes and eventual splitting apart 

of the motors (Figure 1f), while the motors are moving till they are almost fully dissolved.

The scanning electron microscopy (SEM) images demonstrate the morphology of the 

template-prepared Zn micromotors loaded with monodisperse SiO2 nanoparticles (diameter 

~500 nm) (Figure 2a,b). Infiltrating the cargo spheres within the micropores of the 

membrane template allows for convenient and efficient cargo encapsulation within the 

electrodeposited zinc without any chemical linking steps. The resulting cargo-loaded 

micromotors are 20 μm long and have a double-cone structure (with 2 μm diameter at both 

ends and 1 μm diameter in their center), reflecting the shape of the micropores of the 

polycarbonate membrane template. These SEM images illustrate that the SiO2 particles are 

tightly packed (with minimal gaps) and fully-loaded within the body of the zinc 

micromotors. As expected, only a small portion of the particles is visible on the outside of 

the fully-loaded Zn body (Figure 2b). The corresponding energy-dispersive X-ray 

spectroscopy (EDX) data indicates that the SiO2 particles are dispersed uniformly and 

densely throughout the entire micromotor body, with zinc deposited in the voids between 

these cargo particles (Figure 2c,d). Control experiments were carried out using zinc 

micromotors without the SiO2 particles. SEM images (Figure 2e,f) and EDX examination 

(Figure 2g,h) confirm that only elemental zinc is present in these control micromotors.

Next, we demonstrated the capabilities of the zinc micromotors for combinational cargo 

delivery and multifunctional operation. For this purpose, the micromotors were successfully 

loaded with a binary cargo mixture of different sizes and types of nanoparticles. As 

illustrated in Figure 3a, such simultaneous encapsulation of different cargo populations was 

tested using SiO2 nanoparticles of different sizes (500 nm and 250 nm in diameter), as well 

as co-encapsulation of Au nanoparticles (diameter ~20 nm) and SiO2 nanoparticles 

(diameter ~500 nm). As shown in Figure 3b and c, the top and side-view SEM images of the 

micromotors clearly indicate a homogeneous full loading of 500 nm and 250 nm SiO2 

particles within the motors. The SEM image (Figure 3d) and EDX mapping (Figure 3e-g) 

further confirm that the zinc micromotors can be fully loaded with 20 nm Au nanoparticles 
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together with 500 nm SiO2 particles. Furthermore, the EDX mapping analysis shows the 

uniform distribution of elemental Au and Si over the entire body of the micromotor. Note 

that the Au nanoparticles cannot be observed in the SEM image owing to their small size. 

The SEM image (Figure 3h) and EDX mapping (Figure 3i-k) of the control zinc 

micromotors (without particle loading) confirm the absence of Au and Si within the zinc 

body of the micromotors. Collectively, these results demonstrate that the micromotor 

preparation route allows convenient packing of multicomponent cargoes at predetermined 

sizes, compositions and proportions.

Since the maximum packing capacity for mono-sized spheres is 74% of the total container 

volume according to Kepler conjecture,19 the maximum packing capacity of 250 and 20 nm 

diameter cargo spheres within the 36.7 μm3 volume of the double-cone micromotor is 

estimated to be slightly over 3,000 and 6,000,000 particles per micromotor, respectively. 

However, as the particle size increases, the container wall has a greater influence on the 

packing arrangement of the particles and increases the void volume within the micromotor. 

By packing the micromotors with two populations of nanoparticles of greatly different sizes 

(e.g., 20 and 500 nm, as the case in Figure 3d), it is likely to have a packing fraction higher 

than 74%, because smaller cargoes can fill the voids between larger cargoes. Moreover, 

changing to non-spherical nanoparticle shapes, such as hexagons, may further increase the 

packing capacity.

Such high particle loading capacity and new functionalities do not compromise the 

locomotion behavior of the motors. For example, the time-lapse images in Figure 4a 

(corresponding to Movie S2) show the effective movement of several zinc micromotors 

fully-loaded with SiO2 nanoparticles (500 nm in diameter) in a strongly acidic environment 

and the concomitant cargo release from the motors. The cargo-loaded micromotors are self-

propelled with an average initial speed of 110 μm s-1 in a 0.7 M HCl solution while the 

speed of Zn micromotors without cargoes is around 180 μm s-1 under the same conditions. A 

hydrogen bubble tail generated from one side of the micromotor is clearly observed (Figure 

4a, 0 s). As their zinc body is oxidized and dissolved by the acid fuel, the cargoes are 

released autonomously. Such gradual zinc dissolution leads to the breaking apart of the 

motors at their narrow center region, and eventually to a complete release of the 

encapsulated cargoes (Figure 4a, 6-9 s). Within less than 15 sec, the micromotors stop their 

motion and nearly disappear (Figure 4a, 12 s). To better illustrate the cargo release process, 

we intentionally stopped the motion of the motors by reducing the fuel (acid) concentration 

and then focused on a single stationary micromotor with higher magnification. It was shown 

that the motor started to break apart 3 s after adding the acid, leading to the release of a large 

amount of cargo particles, and to complete dissolution of the motors (Figure 4b and Movie 

S3).

The speed and life time of the acid-powered micromotors are strongly dependent on the 

concentration of the surrounding acid and upon their payload loading fraction. Increasing 

speed of fully-loaded micromotors from 110 to 140 μm s-1 can be achieved by increasing 

HCl concentration from 0.7 M to 1 M, however resulting in a shorter lifetime from 15s to 5s. 

The zinc micromotors without SiO2 particle loading are self-propelled in the 0.7 M HCl 

solution at a speed of 180 μm s-1, which corresponds to a relative speed of 8 body lengths 
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s-1. In contrast, the SiO2-loaded micromotors are moving at a slower speed of 110 μm s-1 

(5.5 body lengths s-1). SiO2-loaded micromotors here is slower than Zn-polyaniline reported 

previously (100 body lengths s-1) owing to their solid structure (no opening) and being fully 

packed with SiO2 nanoparticles. We also demonstrated that lifetime of cargo-loaded 

micromotors was affected by the amount of payloads in the micromachines. The cargo-

loaded motors are fully destroyed in this solution within 15 s, as compared to the 20 s 

lifetime of the control motors which have higher zinc content.

In summary, an attractive self-propelled microscale motor has been developed that 

concurrently possesses multiple functions for potential biomedical applications, including a 

remarkably high loading capacity, combinatorial delivery of different cargoes and 

autonomous ‘on-the-fly’ release of payloads. Moreover, unlike most existing micromotors 

that are designed to withstand deterioration, these new micromotors destroy themselves 

upon completing their delivery mission. While the concept was illustrated through the 

loading of model SiO2 and Au nanoparticle cargoes, it could be readily expanded to 

simultaneous encapsulation of a wide variety of payloads possessing different biomedical 

functions such as therapy, diagnostics, and imaging. This development is thus expected to 

advance significantly the emerging field of cargo- towing nano/micromotors and to further 

expand the opportunities for biomedical applications of nano/microvehicles.

Experimental Section

Fully-Loaded Micromotors

Detailed motor fabrication and characterization protocols used in this study can be found in 

Supplementary Data 1. Briefly, cargo-loaded Zn micromotors were fabricated using a 

membrane-template directed electrodeposition method in the microparticle-infiltrated 

polycarbonate membrane. The Cyclopore polycarbonate membranes (Whatman 7060-2511) 

containing 2 μm diameter pores with a 75 nm gold sputtered film were used for cargo 

packing. Diluted 60 and 15 fold SiO2 particles were filled into the membrane pore by 

vacuum infiltration. The size of the micromotors was controlled by the pore size of the 

membrane template and the deposition charge. Cargo-loaded micromotors were synthesized 

by mechanically packing SiO2 particles (diameter of 500 nm) in the membrane 

templates,[13,14] followed by the zinc electrodeposition process using a potential of -1.2 V 

for a total charge of 8 C. Mixture of Au nanoparticles (20 nm) with SiO2 microparticles (500 

nm) or 2 different sizes of SiO2 particles (500 and 250 nm) were used for simulating multi-

cargo loaded micromotors. The micromotors were released from the template by mechanical 

polishing and membrane dissolution in methylene chloride. The samples were washed with 

methylene chloride, ethanol and water two times of each and were collected by 

centrifugation.

Micromotors characterization

The morphology of the double-conical micromotors and the distribution of embedded cargos 

were examined by Scanning electron microscopy (SEM) imaging and Energy-dispersive X-

ray (EDX) analysis. For long term storage of micromotors, they should be preserved in 

ethanol to prevent degradation. The propulsion and controlled payload release of cargo-
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loaded micromotors were examined in acidic solutions containing 0.3-1.0 M HCl (along 

with 1.7% Triton X-100). Real-time videos of propulsion of the cargo-loaded micromotors, 

autonomous release of payloads and self-destruction were recorded using an inverted optical 

microscope (Nikon Instrument Inc. Ti-S/L100), coupled with a 40x objective lens, and a 

Hamamatsu digital camera C11440 using the NIS-Elements AR 3.2 software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dual-template fabrication of the fully-loaded zinc-based micromotors. (a) sputtering 

membrane template with a gold conducting layer; (b) packing nanoparticle cargoes into the 

membrane pores; (c) electrodeposition of zinc into the biconical pores; (d) dissolution of the 

membrane template to release individual micromotors; (e-f) hydrogen-bubble propulsion in 

acid and autonomous release of the cargoes while the motors are dissolved and destroyed; 

(g) microscopic image of a bubble-propelled cargo-loaded micromotor in HCl (Movie S1).
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Figure 2. 
SEM images (a,b,e,f) and EDX analysis (c,d,g,h) of Zn micromotors. (a-d), Zn micromotors 

encapsulated with 500 nm SiO2 particles: top view (a), side view (b), and EDX analysis (c, 

d). (e-h), control Zn micromotors without the SiO2 particles. Top view (e), side view, (f) and 

EDX analysis (g, h). Scale bar, 0.5 μm (b,f), 1 μm (a,e), and 2 μm (c,d,g,h).
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Figure 3. 
Multi-cargo loaded micromotors. (a) Model depicts the encapsulation of different types of 

cargos, (b-c), SEM images display the top view (b) and side view (c) of the micromotors 

fully loaded with two differently sized SiO2 particles (500 and 250 nm in diameter). (d-g), 

SEM image (d) and EDX analysis (e-g) of the micromotors fully loaded with both SiO2 

nanoparticles (500 nm) and Au nanoparticles (25 nm). (h-k), SEM image (h) and EDX 

analysis (i-k) of a control zinc micromotor without any particle loading. All scale bars, 1 

μm.
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Figure 4. 
Time-lapse images of the SiO2–loaded micromotors. (a) Self-propulsion of multiple 

micromotors and autonomous cargo release in a 0.7 M HCl fuel solution. (b) Close-up 

images of the cargo release from a fully-loaded stationary micromotor in a 0.3 M HCl 

solution. Images (a) and (b) were taken at 3 s intervals from Movies S2 and S3, respectively. 

Scale bars, 20 μm.
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