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Abstract

The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine/threonine residues of 

proteins is a ubiquitous post-translational modification found in all multicellular organisms. Like 

phosphorylation, O-GlcNAc glycosylation (O-GlcNAcylation) is inducible and regulates a myriad 

of physiological and pathological processes. However, understanding the diverse functions of O-

GlcNAcylation is often challenging due to the difficulty of detecting and quantifying the 

modification. Thus, robust methods to study O-GlcNAcylation are essential to elucidate its key 

roles in the regulation of individual proteins, complex cellular processes, and disease. In this 

chapter, we describe a set of chemoenzymatic labeling methods to (1) detect O-GlcNAcylation on 

proteins of interest, (2) monitor changes in both the total levels of O-GlcNAcylation and its 

stoichiometry on proteins of interest, and (3) enable mapping of O-GlcNAc to specific serine/

threonine residues within proteins to facilitate functional studies. First, we outline a procedure for 

the expression and purification of a multi-use mutant galactosyltransferase enzyme (Y289L GalT). 

We then describe the use of Y289L GalT to modify O-GlcNAc residues with a functional handle, 

N-azidoacetylgalactosamine (GalNAz). Finally, we discuss several applications of the copper-

catalyzed azide-alkyne cycloaddition “click” reaction to attach various alkyne-containing chemical 

probes to GalNAz and demonstrate how this functionalization of O-GlcNAc-modified proteins can 

be used to realize (1) – (3) above. Overall, these methods, which utilize commercially available 

reagents and standard protein analytical tools, will serve to advance our understanding of the 

diverse and important functions of O-GlcNAcylation.
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1. Introduction

O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is a dynamic, inducible 

post-translational modification (PTM) found on thousands of intracellular proteins (Hart, 

Slawson, Ramirez-Correa, & Lagerlof, 2011). Only two are enzymes responsible for O-
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GlcNAc cycling in metazoans: O-GlcNAc transferase (OGT), which catalyzes the addition 

of O-GlcNAc, and O-GlcNAcase (OGA), which catalyzes its removal (Hart et al., 2011). 

The O-GlcNAc modification plays a key role in many important cellular functions, including 

transcription (Rexach et al., 2012), nutrient sensing (X. Yang et al., 2008), metabolism (Yi et 

al., 2012), mitochondrial dynamics (Pekkurnaz, Trinidad, Wang, Kong, & Schwarz, 2014), 

and autophagy (Guo et al., 2014). Furthermore, dysregulation of O-GlcNAcylation has been 

strongly implicated in a number of human diseases such as diabetes (Copeland, Bullen, & 

Hart, 2008), cancer (Slawson & Hart, 2011), and neurodegenerative disorders (A. C. Wang, 

Jensen, Rexach, Vinters, & Hsieh-Wilson, 2016; Yuzwa & Vocadlo, 2014). However, the 

regulatory nature of the modification (e.g., dynamic, low cellular abundance) and its unique 

chemical characteristics (e.g., low immunogenicity of the neutral sugar, chemically labile) 

represent a central challenge in its detection and study. These features have necessitated the 

development of customized methods to visualize and quantify this PTM (Hart et al., 2011).

One of the first techniques developed to detect O-GlcNAcylation used bovine milk 

galactosyltransferase to transfer [3H]-galactose to terminal GlcNAc residues on proteins 

(Whiteheart et al., 1989). Along with metabolic labeling using [3H]-glucosamine 

(Roquemore, Chou, & Hart, 1994), this method facilitated early studies of O-GlcNAcylated 

proteins. Another common detection method took advantage of the specificity of wheat-

germ agglutinin (WGA) lectin, which binds to all terminal GlcNAc sugars as well as sialic 

acid (Kelly & Hart, 1989). Several antibodies have also been produced using various O-

GlcNAcylated proteins and peptide fragments, including the C-terminal domain of RNA 

polymerase II (CTD110.6) (Comer, Vosseller, Wells, Accavitti, & Hart, 2001) and the pore 

complex-lamina fraction from rat liver nuclear envelopes (RL-2) (Holt, Snow, Senior, 

Haltiwanger, & Hart, 1987; Snow, Senior, & Gerace, 1987). A comprehensive list of O-

GlcNAc-specific antibodies has been recently described in detail elsewhere (Ma & Hart, 

2014). However, the relatively poor immunogenicity of the neutral O-GlcNAc sugar has 

limited the availability of highly selective antibodies, and in particular, site-specific O-

GlcNAc antibodies. Finally, metabolic oligosaccharide engineering (MOE) has emerged as a 

powerful method to label cellular glycans, including O-GlcNAc (Chuh & Pratt, 2015; 

Palaniappan & Bertozzi, 2016). Here, a non-natural, peracetylated sugar such as N-

azidoacetylglucosamine (Vocadlo, Hang, Kim, Hanover, & Bertozzi, 2003) is incubated with 

live cells and incorporated into O-GlcNAcylated proteins by the cell’s native biosynthetic 

machinery. The bioorthogonal azide group can then be used for downstream detection and 

enrichment.

Although many of these detection methods have been widely adopted, they have some key 

limitations. Labeling of proteins with bovine milk galactosyltransferase requires handling of 

expensive, radioactive materials and often necessitates exposure times of days to months 

(Khidekel et al., 2003). While antibodies offer a convenient and faster means of detection, 

they exhibit a preference for specific sequence or structural motifs and thus only detect a 

subset of the O-GlcNAcylated proteins (Ma & Hart, 2014). Moreover, like tritium-based 

methods, both antibody- and lectin-based techniques are often not sensitive enough to detect 

O-GlcNAc modifications in cases of low abundance or where sample is limiting. 

Additionally, the lack of specificity of some detection reagents like the CTD110.6 antibody 

can lead to misinterpreted results. For example, the increase in O-GlcNAc levels observed 
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upon nutrient deprivation by Western blotting with CTD110.6 was later found to be due to 

an increase in truncated N-glycans (Isono, 2011; Reeves, Lee, Henry, & Zachara, 2014). O-

GlcNAc detection using antibodies and lectins has also resulted in conflicting reports on the 

levels of total protein O-GlcNAcylation in similar systems. For example, an increase in O-

GlcNAcylation in Alzheimer’s disease brain tissue was observed by immunoblotting with 

the CTD110.6 antibody (Förster et al., 2014), whereas the opposite finding was observed 

using the RL-2 antibody (Liu et al., 2009). MOE methods also suffer from specificity issues, 

with reports of N-azidoacetylglucosamine incorporation into cell-surface N- and O-linked 

glycans (B. W. Zaro, Yang, Hang, & Pratt, 2011) that have prompted efforts to develop more 

selective probes (Chuh, Zaro, Piller, Piller, & Pratt, 2014; Balyn W. Zaro, Batt, Chuh, 

Navarro, & Pratt, 2017). Furthermore, the addition of relatively high concentrations of 

monosaccharide precursors for MOE labeling may alter O-GlcNAc cycling and artifically 

change physiological levels of O-GlcNAcylation in cells. Finally, MOE cannot achieve 

complete labeling due to competition with natural sugars, which limits its detection 

sensitivity and hinders the quantification of O-GlcNAc stoichiometry. Nevertheless, all of 

these methods can be effectively used for O-GlcNAc detection and remain key tools in the 

study of O-GlcNAcylation.

Given the above limitations, methods that are (1) highly sensitive and specific, (2) unbiased 

towards certain subsets of proteins, (3) able to easily and accurately assess changes in O-

GlcNAcylation levels, and (4) compatible with traditional techniques for protein analysis are 

paramount to expanding our understanding of O-GlcNAcylation dynamics and function. 

Herein, we describe a chemoenzymatic labeling approach that utilizes engineered bovine 

β-1,4-galactosyltransferase 1 (Y289L GalT) to tag O-GlcNAcylated proteins with an N-

azidoacetylgalactosamine (GalNAz) group (Figure 1A). When combined with peptide:N-

glycosidase F (PNGase F) treatment to remove GlcNAc-containing N-linked glycans 

(Whelan & Hart, 2006), this method allows for the specific, unbiased, and global labeling of 

O-GlcNAcylated proteins. The appended azide handle can subsequently be reacted with a 

wide variety of alkyne-modified chemical probes, facilitating multiple downstream analyses. 

Here, we describe four distinct workflows that take advantage of the copper-catalyzed azide-

alkyne cycloaddition (CuAAC) “click” reaction to attach biotin, 5-

carboxytetramethylrhodamine (TAMRA), high-molecular-weight poly(ethylene glycol) 

(PEG), or cleavable Dde-biotin probes to O-GlcNAcylated proteins (Figure 1A).

Biotinylation or TAMRA-labeling enables rapid, sensitive detection of O-GlcNAcylated 

proteins by Western/streptavidin blotting or direct in-gel fluorescence (Clark et al., 2008; Yi 

et al., 2012). Importantly, these approaches allow for unbiased protein detection (Figure 1B) 

and a significant enhancement in detection sensitivity (>380-fold relative to tritium labeling 

in the case of α-crystallin) compared to traditional methods (Figure 1C) (Clark et al., 2008; 

Khidekel et al., 2003). Thus, detection of novel O-GlcNAcylated proteins is more readily 

possible, such as CREB (Rexach et al., 2012) and PFK1 (Yi et al., 2012). The biotin and 

TAMRA tags also allow for the selective enrichment of O-GlcNAcylated proteins by using 

streptavidin or anti-TAMRA antibody affinity chromatography. Such an enrichment step can 

greatly improve the detection of O-GlcNAcylated peptides by mass spectrometry (MS) as 

the presence of unmodified peptides often suppresses the ionization of their O-

GlcNAcylated counterparts (Z. Wang et al., 2010). To improve further the efficiency of 
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enrichment and detection, we developed a chemically cleavable Dde-biotin probe (Figure 

1A) (Griffin et al., 2016). This probe allows for the mild, quantitative elution of O-

GlcNAcylated proteins from streptavidin beads and produces a positively charged amine 

upon cleavage to enhance ionization/MS-based detection.

Biotin or defined PEG mass tags can be used to monitor O-GlcNAcylation dynamics and 

stoichiometry by quantitative Western blotting. The ability to study changes in O-

GlcNAcylation in response to cellular stimuli or across disease states is critical to 

understanding the specific functions of the O-GlcNAc modification. Chemoenzymatic 

labeling with biotin enables the rapid, global assessment of O-GlcNAcylation and has the 

advantage of detecting many more proteins than antibody-based methods (Figure 1B). Thus, 

it can be readily used to monitor changes in O-GlcNAcylation on either specific proteins or 

the total O-GlcNAcylated protein population in response to cellular stimuli. On the other 

hand, labeling with PEG tags of defined molecular mass provides the powerful ability to 

reveal O-GlcNAcylation states (i.e., mono-, di-O-GlcNAcylated, etc.) and quantify in vivo 

O-GlcNAcylation stoichiometries on proteins of interest (Figure 1D). Such information 

cannot be readily obtained using other methods. When combined with site-directed 

mutagenesis, the PEG tagging approach can also determine O-GlcNAc occupancy levels and 

cycling at specific serine/threonine sites in a protein (Rexach et al., 2012; Rexach et al., 

2010; Yi et al., 2012). Quantitative comparisons of O-GlcNAcylation states and their 

stoichiometries following cellular stimulation or during disease progression are important 

for identifying the most physiologically relevant O-GlcNAcylation events.

We begin this chapter with an updated method for the purification of Y289L GalT (Section 

2). We next describe how to use this enzyme to label O-GlcNAcylated proteins efficiently 

with GalNAz in a complex cellular lysate (Section 3). After attaching this azide handle, we 

outline a general method to install a variety of functional tags through CuAAC and detail 

how the four representative chemical probes can be used to detect, quantify, and measure the 

dynamics of O-GlcNAcylation both on individual proteins and on the total O-GlcNAcylated 

proteome (Sections 4, 5, and 6). Lastly, we briefly discuss methods to localize the O-

GlcNAc modification to particular serine/threonine residues of proteins to facilitate in-depth 

functional analyses (Section 7).

2. Expression and Purification of Y289L GalT

The first step of the chemoenzymatic approach is the selective labeling of O-GlcNAcylated 

proteins with GalNAz. This is achieved using Y289L GalT, which is robustly expressed in E. 
coli, purified from inclusion bodies, and refolded to obtain active enzyme (Ramakrishnan & 

Qasba, 2013). The below procedure is a streamlined protocol for making large quantities of 

Y289L GalT. The enzyme can be stored for up to 1 year as the active protein or for several 

years in the unfolded form or cell pellet. We also describe procedures to test the purity and 

activity of the enzyme prior to its use. These checks are necessary before proceeding with 

the remaining techniques in this chapter.

2.1. Equipment

1. 37°C incubator with shaker
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2. UV-Vis spectrophotometer

3. Refrigerated centrifuge

4. Sonicator (Vibra-Cell VCX 130; Sonics & Materials)

5. Centricon Plus-70 Centrifugal Filter, 10-kDa nominal molecular weight limit 

(NMWL) (UFC700308, EMD Millipore)

6. Spectra/Por 4 Standard RC Dialysis Tubing, 12-14-kDa molecular weight cut-off 

(132706, Spectrum Labs)

7. Standard equipment for sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and Coomassie staining

8. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS 

instrumentation

a. Other MS methods such as liquid chromatography-electrospray 

ionization MS (Khidekel et al., 2003) also work well.

2.2. Materials

1. Y289L GalT expressing plasmid (Ramakrishnan & Qasba, 2002)

2. 2-Nitro-5-(Sulfothio)-Benzoate (NTSB) (Thannhauser, Konishi, & Scheraga, 

1984)

a. To prepare 10 mL of NTSB, dissolve 0.1 g of 5,5′-dithiobis(2-

nitrobenzoic acid) in 10 mL of 1 M Na2SO3 at 37°C. Adjust the pH to 

7.5 with NaOH and bubble air through the solution until the color 

changes from deep orange-red to pale yellow (~1-2 hours).

b. Make fresh or store at −20°C immediately after production.

3. Electro- or chemically competent BL21(DE3) E. coli

4. Luria-Bertani agar (LA) plates containing 100 μg/mL of ampicillin

5. Luria-Bertani (LB) broth containing 100 μg/mL of ampicillin

6. 100 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) in H2O

7. Phosphate-buffered saline (PBS) pH 7.4 (10 mM Na2HPO4, 1.8 mM KH2PO4, 

137 mM NaCl, 2.7 mM KCl), 1 mM ethylenediaminetetraacetic acid (EDTA)

8. 25% (w/v) Sucrose, 0.1% Triton-X100, and 1 mM EDTA in PBS pH 7.4

9. 5 M Guanidine hydrochloride in H2O*

10. 5 M Guanidine hydrochloride and 0.3 M sodium sulfite in H2O*

11. Refolding buffer: 0.5 M L-arginine, 50 mM tris(hydroxymethyl)aminomethane 

HCl (Tris) pH 8, 5 mM EDTA, 4 mM cysteamine, and 2 mM cystamine*

12. Dialysis buffer: 50 mM Tris pH 8, 5 mM EDTA, 4 mM cysteamine, and 2 mM 

cystamine*
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13. 100 pmol/μL of Click-iT O-GlcNAc Peptide LC/MS Standard (Click-iT peptide) 

(C33374, Invitrogen)

14. 100 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.9

15. 10 mM uridine 5′-diphospho-2-acetonyl-2-deoxy-α-D-galactose (UDP-ketogal) 

(Khidekel et al., 2003) or 10 mM uridine 5′-diphospho-2-azidoacetylamino-2-

deoxy-α-D-galactose (UDP-GalNAz) (Hang, Yu, Pratt, & Bertozzi, 2004) in 

H2O

a. Store at −80°C and thaw on ice just before use.

16. 100 mM MnCl2

17. C18 ZipTips (ZTC18M096, EMD Millipore)

18. MS grade acetonitrile (ACN)

19. MS grade H2O

20. 1% trifluoroacetic acid (TFA) in H2O

21. Super-DHB (sDHB) MALDI matrix (50862, Sigma-Aldrich)

* Make fresh on the day of use.

2.3. Procedure

1. Transform 50 μL of electro- or chemically competent BL21(DE3) E. coli with 1 

μL of Y289L GalT expressing plasmid (10 ng/μL), plate onto LA plates 

containing 100 μg/mL of ampicillin, and incubate overnight at 37°C.

2. Pick two colonies, add individually to 100 mL of LB containing 100 μg/mL of 

ampicillin, and incubate overnight with shaking (250 RPM) at 37°C.

3. Distribute the two 100-mL flasks equally between six 1-L volumes of LB 

containing 100 μg/mL of ampicillin.

4. Incubate with shaking (250 RPM) at 37°C until the optical density at 600 nm 

reaches 0.7.

5. Add IPTG to a final concentration of 1 mM to induce protein production.

6. Incubate with shaking (250 RPM) for another 4 hours at 37°C.

7. Harvest the cells by centrifugation at 8000 × g for 10 minutes.

a. The bacterial pellets can be frozen at −80°C for at least 2 years.

8. Resuspend bacteria from 1 L of culture medium in 10 mL of PBS containing 1 

mM EDTA and sonicate thoroughly (10-15 × 30 seconds, with 10-second rest) at 

40% amplitude on ice.

a. From now on, the volumes correspond to the purification of Y289L 

GalT from 1 L of bacterial culture; we generally purify Y289L GalT 

from 1-2 L of bacterial culture at a time and save the remaining pellets 
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for future purification. Alternatively, the purification can be performed 

up to step 2.3.19 below and frozen at −80°C for at least 2 years.

b. Unless otherwise noted, all steps from this point onward should be 

performed on ice or at 4°C, and all reagents should be ice cold.

9. Dilute the bacterial lysate to 80 mL with PBS containing 1 mM EDTA and 

centrifuge at 14,000 × g for 30 minutes.

10. Discard the supernatant and resuspend the pellet in 25% (w/v) sucrose in PBS 

containing 1 mM EDTA and 0.1% Triton X-100.

11. Repeat the previous step 5 times.

a. It is important to ensure that the pellet is completely resuspended with 

each wash step to ensure efficient purification of Y289L GalT. With 

repeated washes, the color of the pellet should change from yellow to 

ivory white.

b. If necessary, the pellet can be stored overnight at 4°C at any point.

12. After the last centrifugation, resuspend the pellet in 50 mL of PBS containing 1 

mM EDTA and centrifuge for 30 minutes at 14,000 × g.

13. Discard the supernatant, and repeat this step once more to remove any residual 

detergent.

14. Discard the supernatant, and resuspend the pellet in 20 mL of 5 M guanidine 

hydrochloride with 0.3 M sodium sulfite at room temperature.

15. Add 2 mL of S-sulfonating agent, NTSB, and stir the reaction vigorously until it 

has turned pale yellow in color.

a. When NTSB (pale yellow) is added to the mixture, the solution should 

turn red-orange. The reaction is complete when the solution has turned 

back to pale yellow, which usually takes approximately 45 minutes.

16. Add 180 mL of ice-cold H2O to precipitate the protein and centrifuge at 10,000 × 

g for 10 minutes.

17. Discard the supernatant, resuspend the pellet in 10 mL of H2O, and centrifuge 

the sample at 10,000 × g for 10 minutes.

18. Repeat two more times to remove any remaining sulfonating agent.

19. Resuspend the pellet in 5 M guanidine hydrochloride to a protein concentration 

of 1 mg/mL.

a. We typically use absorbance at 280 nm on a NanoDrop® 2000 UV-Vis 

Spectrophotometer (ThermoFisher Scientific) to determine the protein 

concentration.

b. If desired, the unfolded, sulfonated protein can be frozen and stored at 

−80°C for at least 2 years.
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20. Dilute the protein solution 10-fold over the course of 15 minutes in refolding 

buffer.

a. Add the refolding buffer in 10 portions over the course of 15 minutes 

while mixing the solution (by hand or with an orbital shaker).

b. Some protein will precipitate as the refolding buffer is added.

21. Dialyze the solution 3 × 12 hours with 4 L of dialysis buffer.

a. A large amount of protein will precipitate during the dialysis process.

22. After dialysis, remove the precipitated protein by centrifugation at 10,000 × g for 

15 minutes.

23. Concentrate the Y289L GalT to 2 mg/mL (determined as previously described) 

using Centricon Plus-70 10-kDa NMWL Centrifugal Filter Units and store at 

4°C.

a. This typically requires more than 100-fold concentration.

b. Protein can be stored for at least 1 year at 4°C; use the assay described 

below to ensure activity of older protein stocks before use.

24. Check the quality of the Y289L GalT by performing SDS-PAGE followed by 

staining with Coomassie blue (Figure 2A).

25. Check that the purified Y289L GalT labels an O-GlcNAcylated peptide using 

UDP-ketogal or UDP-GalNAz. Set up a dilution series of enzyme as follows:

a. Add 0.75 μL of 100 mM MnCl2; 1.5 μL of 100 mM HEPES (pH 7.9); 

0, 0.375, or 0.75 μL of 2 mg/mL Y289L GalT; 0.75 μL of 10 mM UDP-

ketogal or UDP-GalNAz; and 1.5 μL of 100 pmol/μL Click-iT peptide 

to 10.5, 10.125, or 9.75 μL of H2O (pipetting up and down after each 

condition to mix). The final reaction conditions are outlined in Table 1.

b. Incubate the above reactions at 4°C for 16 hours.

26. After incubating for 16 hours, quench the reaction by adding 1.5 μL of 1% TFA 

and purify the peptides using ZipTips per the manufacturer’s instructions.

27. Analyze the peptides from each reaction by MALDI-TOF MS using a sDHB 

matrix (Tsarbopoulos et al., 1994).

28. After MALDI-TOF analysis, look for the complete conversion of the unlabeled 

peptide to the labeled peptide to confirm quantitative labeling (Figure 2B).

a. With UDP-ketogal, look for the labeled and unlabeled peptides at an 

m/z of 1320.5 and 1118.5 Da, respectively, in positive ionization mode. 

Often times their sodium adducts are also seen at 1342.5 and 1140.5 

Da. If UDP-GalNAz is used, the labeled peptide will be observable at 

1362.5 Da. A peak at [M-28], corresponding to the loss of N2, is also 

usually observed. Note that using reflector mode detection may 
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complicate analysis when using UDP-GalNAz (Yejia Li, Hoskins, 

Sreerama, & Grayson, 2010).

2.4. Notes

We usually obtain 5-10 mL of active Y289L GalT at a concentration of 2 mg/mL from the 

purification procedure described above. It is important to note that some protein will 

continue to precipitate over the first few days to weeks of storage. Although the precipitation 

of protein is usually not enough to significantly affect the concentration, it is important to re-

check both the protein concentration and activity periodically to ensure consistent labeling in 

subsequent procedures. Overall, if stored properly at 4°C, the Y289L GalT should retain 

almost 100% of its activity for more than 1 year.

3. Labeling of O-GlcNAcylated Proteins with GalNAz

The Y289L GalT (hereafter referred to as ‘GalT’) produced in Section 2 can be used to label 

O-GlcNAcylated proteins with UDP-ketogal or UDP-GalNAz. Here, we focus on the use of 

UDP-GalNAz to add an azide handle to O-GlcNAcylated proteins in cell lysates for further 

functionalization with an alkyne-modified chemical probe by CuAAC (Sections 4–6).

3.1. Equipment

1. Centrifuge

2. Vortex mixer

3. End-over-end rotator

4. Spectrophotometer

5. Sonicator (Vibra-Cell VCX 130; Sonics & Materials)

3.2. Materials

1. 20 mM Thiamet-G (TMG) stock in DMSO

2. 50× cOmplete EDTA-free Protease Inhibitor Cocktail (11873580001, Sigma 

Aldrich) stock in H2O

3. Lysate containing protein(s) of interest

a. We generally use the following lysis buffer for most applications: 2% 

SDS, 100 mM Tris pH 8, 1× protease inhibitor cocktail, and 50 μM 

TMG.

b. Other non-denaturing methods of lysis are also compatible with this 

protocol; however, it is important that OGA inhibitors, such as TMG 

(Yuzwa et al., 2008), be included at all steps until the protein is 

completely denatured to prevent the potential loss of protein O-

GlcNAcylation.
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c. Purified protein obtained by recombinant expression or 

immunoprecipitated from cell lysate can also be used. In this case, 

reduce and alkylate the protein, and start at step 8 below.

4. Dithiothreitol (DTT)

5. Iodoacetamide (IAA)

6. IGEPAL CA-630 (I8896-50ML, Sigma-Aldrich)

7. Milli-Q (or equivalent) purified H2O

8. PNGase F (glycerol-free) (P0705S, New England Biolabs)

9. BCA Protein Assay Kit (23225, ThermoFisher Scientific)

10. Methanol

11. Chloroform

12. 1% SDS in 20 mM HEPES pH 7.9

13. 2.5× GalT labeling buffer: 50 mM HEPES pH 7.9, 125 mM NaCl, 5% IGEPAL 

CA-630*

14. 100 mM MnCl2 in H2O*

15. 500 μM UDP-GalNAz in 10 mM HEPES pH 7.9*

a. Store at −80°C and thaw on ice just before use.

16. 2 mg/mL GalT*

a. Keep on ice.

* These materials are also commercially available as part of the Click-iT O-GlcNAc 

Enzymatic Labeling System (C33368, ThermoFisher Scientific).

3.3. Procedure

1. Lyse the cells in boiling lysis buffer, boil for 5 minutes, and sonicate the lysate 3 

× 10 seconds to sheer DNA.

2. Centrifuge the sample for 5 minutes at 21,130 × g and transfer the supernatant to 

clean 1.5-mL microcentrifuge tubes.

3. Measure the protein concentration of the sample using the BCA assay and dilute 

the sample to 1-2 mg/mL prior to reduction and alkylation.

4. Add 25 mM (final concentration) of DTT, boil for 5 minutes, and allow the 

sample to return to room temperature.

5. Add 50 mM (final concentration) of IAA and incubate with end-over-end 

rotation at room temperature in the dark for 60 minutes.

a. Reduction and alkylation of the protein lysate is very important for 

preventing side reactions between free cysteine residues and the alkyne 

probes (Conte et al., 2011; Hoogenboom, 2010; Yiming Li, Pan, Li, 
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Huang, & Guo, 2013). These side reactions produce nonspecific 

background and artificially increase the O-GlcNAcylation 

stoichiometry.

6. Dilute cell lysate containing 150 μg of protein with H2O to a total volume of 200 

μL.

a. This amount is a good starting point for detecting specific O-

GlcNAcylated proteins of interest from cell lysates; however, the 

reaction can be easily scaled depending on the application.

7. Precipitate the protein to remove it from endogenous UDP-sugars in the cell 

lysate:

a. Add 600 μL of methanol and vortex the sample.

b. Add 200 μL of chloroform and vortex.

c. Add 450 μL of H2O, vortex, and centrifuge at 21,130 × g for 5 minutes 

to separate the aqueous and organic phases.

i. The protein will be a thin solid layer at the aqueous-organic 

interface.

d. Remove the top, aqueous layer carefully without disturbing the pellet.

e. Add 450 μL of methanol and invert gently to produce a single organic 

layer.

f. Remove all solvent and resuspend the pellet gently in another 450 μL of 

methanol.

8. Remove all solvent, and allow the pellet to air-dry until it is translucent (~10-20 

minutes).

a. Do not over-dry the pellet as it becomes much more difficult to 

redissolve.

9. Resuspend the protein in 40 μL of 1% SDS, 20 mM HEPES pH 7.9.

a. Usually the protein will redissolve completely after ~15-30 minutes; 

however, the samples can be boiled or sonicated for up to 5 minutes if 

necessary.

10. After the protein has redissolved, add (in order) 45 μL of H2O, 4 μL of 50× 

protease inhibitor cocktail, 80 μL of 2.5× GalT labeling buffer, and 11 μL of 100 

mM MnCl2.

11. Vortex the sample to mix and transfer to ice.

12. Add 10 μL of 500 μM UDP-GalNAz and 10 μL of 2 mg/mL GalT or H2O. The 

final reaction components are outlined in Table 2.

a. Adding H2O in place of GalT is a suitable and important negative 

control for all of the workflows presented hereafter.
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b. If total O-GlcNAcylation levels or the O-GlcNAcylation level of a 

transmembrane protein is being measured, it is important to remove N-

glycans as they may contain terminal GlcNAc residues that can be 

labeled by GalT. To achieve this for the reaction described above, add 

only 42 μL of H2O and 3 μL of 500 U/μL PNGase F after adding GalT.

i. Ovalbumin can serve as a useful positive control for PNGase F 

treatment, see (Whelan & Hart, 2006).

13. Rotate the reaction end-over-end at 4°C for 16 hours.

14. Precipitate the proteins using the methanol/chloroform/H2O method as described 

above and dry the pellet as before.

a. If necessary, at this point, the pellets can be stored in methanol at 

−80°C for up to 6 months.

4. CuAAC “Click” Reaction with Small Molecule Alkyne Probes

After labeling protein(s) with GalNAz, they are ready to be further functionalized with 

chemical probes and analyzed. In this section, we provide a workflow using CuAAC to 

append a biotin, TAMRA, or chemically cleavable biotin probe to GalNAz-labeled proteins. 

However, this general method can be used with a wide variety of alkyne-containing 

molecules with minimal modifications. Labeling of O-GlcNAcylated proteins with biotin or 

TAMRA provides a robust and sensitive method for quantifying the total levels of O-

GlcNAcylation by streptavidin/Western blotting or direct in-gel fluorescence (Section 4.4). 

Moreover, biotin-labeled proteins of interest can be captured using streptavidin resin to 

determine the fraction of labeled proteins and approximate their O-GlcNAcylation 

stoichiometry (Section 6.3.1). TAMRA labeling followed by immunoprecipitation using an 

anti-TAMRA antibody can also be used for these same purposes (Section 6.3.2). Finally, 

labeling with Dde-biotin-alkyne provides a convenient method for the efficient capture and 

release of O-GlcNAcylated proteins under mild conditions; this may be especially useful for 

proteins whose O-GlcNAc sites have proven difficult to map (Section 6.3.3).

4.1. Equipment

1. Centrifuge

2. Vortex mixer

3. End-over-end rotator

4. Standard equipment for SDS-PAGE and Western blotting

4.2. Materials

1. GalNAz-labeled protein pellet (step 3.3.14)

2. 1% SDS, 20 mM HEPES pH 7.9

3. 50 mM CuSO4-5H2O in H2O*

4. 100 mM sodium ascorbate (NaAsc) in H2O*
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a. Prepare fresh immediately before use and protect from light.

5. Milli-Q (or equivalent) purified H2O

6. Methanol

7. Chloroform

8. 10 X PBS pH 7.4 (100 mM Na2HPO4, 18 mM KH2PO4, 1.37 M NaCl, 27 mM 

KCl)*

9. Alkyne-functionalized chemical probe

a. 5 mM Biotin-PEG4-alkyne in DMSO (TA105-25, Click Chemistry 

Tools)

b. 5 mM Dde-biotin-alkyne in DMSO (1137-10, Click Chemistry Tools)

c. 5 mM TAMRA alkyne in DMSO (TA108-5, Click Chemistry Tools)

10. 10 mM Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA) in DMSO* 

(1010-100, Click Chemistry Tools)

11. SDS-PAGE loading buffer: 2% SDS, 50 mM Tris pH 6.8, 100 mM DTT, 0.1% 

(w/v) bromophenol blue, and 10% glycerol

* As an alternative, commercial kits are also available as the Click-iT Biotin or 

Tetramethylrhodamine (TAMRA) Protein Analysis Detection Kits (C33372 and C33370, 

ThermoFisher Scientific). Furthermore, the Click-iT Protein Buffer Kit (C10276, 

ThermoFisher Scientific) provides all necessary components except for the alkyne probe for 

reaction customization.

4.3. Procedure

1. Redissolve the protein pellet with 37.5 μL of 1% SDS, 20 mM HEPES pH 7.9.

a. As before, this step may take an extended amount of time and can be 

facilitated by boiling or sonication.

2. After the protein is completely dissolved, add (in order) 87 μL of H2O, 15 μL of 

10× PBS, 3 μL of the 5 mM alkyne probe (if using other probes/volumes, adjust 

the volume of H2O accordingly), 1.5 μL of 10 mM THPTA, and 3 μL of 50 mM 

CuSO4 with vortex mixing after each addition. The final reaction conditions are 

outlined in Table 3.

3. Incubate the solution with end-over-end rotation for 1 hour at room temperature.

4. Precipitate the protein as previously described and wash three times with 1 mL of 

methanol to remove any unreacted alkyne probe.

5. Dry the pellet as previously described and redissolve in 40 μL of 20 mM HEPES 

pH 7.9 containing 1% SDS.

a. At this point, the redissolved, functionalized proteins can be frozen and 

stored for later analysis or subjected directly to SDS-PAGE (see Section 
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4.4 below). Labeled proteins can also be enriched (Section 6) for further 

analysis and quantification.

4.4. Quantifying total O-GlcNAcylation levels

After labeling O-GlcNAcylated proteins from a cellular lysate with biotin or TAMRA, the 

total levels of protein O-GlcNAcylation can be quantified. Typically, we resolve the labeled 

proteins (along with a negative control subjected to the same workflow but without the 

addition of GalT) by SDS-PAGE, transfer the gel to a PVDF membrane, and blot with an 

anti-TAMRA antibody (A6397, ThermoFisher Scientific) or streptavidin-conjugated dye 

(S32358, ThermoFisher Scientific or 32230, LI-COR Biosciences). The total levels of O-

GlcNAcylation can then be assessed using densitometry. Alternatively, TAMRA-labeled 

proteins can be resolved by SDS-PAGE and subjected to direct in-gel fluorescence analysis. 

These approaches are particularly useful for monitoring changes in protein O-

GlcNAcylation in response to cellular stimuli (Figure 1B). Moreover, the captured O-

GlcNAcylated proteins can be excised from the gel, subjected to proteolytic digestion, and 

identified by MS analysis (Clark et al., 2008). Together, these probes provide a robust, 

unbiased method for comparing total O-GlcNAcylation levels under various conditions and 

may avoid previously reported issues with O-GlcNAc antibodies.

5. CuAAC “Click” Reaction with PEG Alkyne

Using a similar procedure to that described in Section 4, it is also possible to add an alkyne-

functionalized PEG tag of defined molecular mass (e.g., 2-kDa or 5-kDa) to O-

GlcNAcylated proteins. The PEG-labeled lysates can be resolved by SDS-PAGE and 

immunoblotted for specific proteins of interest (Figure 1D). This provides a rapid, 

convenient way to monitor the O-GlcNAcylation state and stoichiometry across different 

conditions with minimal manipulation after labeling. Tagging O-GlcNAcylated proteins with 

alkynyl PEG is our method of choice for most applications, including: (a) monitoring O-

GlcNAcylation in different tissues or in response to various treatments (Rexach et al., 2012; 

Yi et al., 2012), (b) confirming sites of O-GlcNAcylation (Rexach et al., 2012), and (c) 

detecting O-GlcNAc on proteins of interest in a more rapid, parallel fashion (Rexach et al., 

2010).

5.1. Equipment

1. Centrifuge

2. Vortex mixer

3. End-over-end rotator

4. 37°C incubator

5. Standard equipment for SDS-PAGE and Western blotting

5.2. Materials

1. GalNAz labeled protein pellet (step 3.3.14)

2. 1% SDS, 50 mM Tris pH 8
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3. Milli-Q (or equivalent) purified H2O

4. Methanol

5. Chloroform

6. 50 mM CuSO4 in H2O

7. 100 mM Tris(2-carboxyethyl)phosphine (TCEP) in H2O

a. Prepare fresh immediately before use and protect from light.

8. 10 mM PEG alkyne in 200 mM Na2HPO4 pH 8

a. We typically use 2-kDa or 5-kDa mPEG alkyne (PLS-2035 or 

PLS-2034, Creative PEGWorks).

b. Prepare fresh immediately before use.

c. For proteins with a very high molecular weight (MW), it may be 

possible to use a higher MW PEG (Deiters & Schultz, 2005). Polymers 

up to 30-kDa are available from Creative PEGWorks. However, we find 

that longer reaction times are necessary for efficient labeling with larger 

PEG molecules.

d. Inspect the quality of any PEG compound prior to use by MALDI-TOF 

MS. High-quality PEG will present a narrow set of peaks centered on 

the reported MW.

9. 500 mM Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA) in DMSO

10. SDS-PAGE loading buffer: 2% SDS, 50 mM Tris (pH 6.8), 100 mM DTT, 0.1% 

(w/v) bromophenol blue, and 10% glycerol

5.3. Procedure

1. Redissolve the protein pellet in 50 μL of 1% SDS, 50 mM Tris pH 8.

a. As before, this step may take an extended amount of time and can be 

facilitated by boiling or sonication.

2. Add 46 μL of H2O and vortex briefly.

3. Pre-mix THPTA, CuSO4, and PEG stock solutions:

a. Add 0.5 μL of 500 mM THPTA to 5 μL of 50 mM CuSO4, mix, and 

incubate for 1-2 minutes.

b. Add 100 μL of 10 mM PEG alkyne to the CuSO4-THPTA mixture and 

incubate for 1 minute.

4. Add (in order) 100 μL of the THPTA-CuSO4-PEG solution and 4 μL of 100 mM 

TCEP (vortex briefly to mix after each addition). The final reaction conditions 

are outlined in Table 4.

a. The solution should turn bright yellow after vortex mixing, but will 

slowly turn clear over the next 1-2 minutes.
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b. We have found that TCEP works better than sodium ascorbate for click 

reactions incubated for extended periods of time. This is likely due to 

the presence of unwanted side reactions between proteins and sodium 

ascorbate decomposition products (Hong, Presolski, Ma, & Finn, 2009).

5. Incubate the reaction in the dark at 37°C for 18-24 hours with end-over-end 

rotation.

a. If using 5-kDa PEG, sometimes incubating for an additional 24 hours 

(48 hours total) may improve labeling efficiency. Furthermore, for the 

potential use of higher MW PEG, we have found that many proteins are 

stable for at least 60 hours under these conditions.

6. Precipitate the protein as previously described and wash three times with 1 mL of 

methanol to remove unreacted PEG.

7. Redissolve the protein in the desired volume of loading buffer for SDS-PAGE 

and analysis by Western blotting (see Section 5.4 below).

5.4. Quantification of protein O-GlcNAcylation stoichiometry

The lysates are resolved by SDS-PAGE and analyzed by Western blotting using antibodies 

against the protein(s) of interest. For standard cell lysates, we typically use 50 to 100 μg of 

total protein for analysis, depending on the abundance of the protein. For other applications, 

such as detecting O-GlcNAcylation of purified or overexpressed proteins, the amount 

needed depends on the O-GlcNAcylation stoichiometry and resolution capacity of the gel. 

Successful PEG labeling will reveal a mass-shifted band corresponding to the MW of the 

PEG tag for each O-GlcNAc group on the protein. The relative abundance of each O-

GlcNAcylated form and the total O-GlcNAcylation stoichiometry can be obtained by 

quantifying the ratio of the signals for the mass shifted band(s) to the total, protein-specific 

band (Rexach et al., 2012; Rexach et al., 2010). See Figure 1D for typical results using an 

antibody against cAMP response element binding protein (CREB) (4820, Cell Signaling 

Technologies). In general, we have found that CREB serves as an excellent positive control 

that is expressed in many mammalian cell lines with an O-GlcNAcylation stoichiometry of 

approximately 20-30%. Although other well-characterized O-GlcNAcylated proteins can be 

used, we recommend against using highly O-GlcNAcylated proteins as a positive control 

because they often show a mass shift even when the labeling is incomplete. It is important 

that the labeling be complete for an accurate assessment of O-GlcNAcylation stoichiometry. 

Notably, this method can also be used to study the interplay between O-GlcNAcylation and 

other PTMs such as phosphorylation using phosphorylation state-specific antibodies 

(Rexach et al., 2012). Finally, in all of the above cases, it is important to employ a 

quantitative Western blotting system, such as the Odyssey Imaging System (LI-COR 

Biosciences). Overall, this method provides the only direct way to measure O-

GlcNAcylation stoichiometries without the use of laborious MS methods. Moreover, this 

approach utilizes standard techniques for protein analysis without the need for advanced 

instrumentation or radiolabels.
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6. Biotin/TAMRA Immunoprecipitation

This section describes our workflow for streptavidin capture or TAMRA 

immunoprecipitation of O-GlcNAcylated protein(s) from a complex cell lysate. Upon 

release, the O-GlcNAcylated protein(s) can be subjected to detection and quantification 

(Section 6.4) or MS analysis (Section 7). These methods are most useful for initial detection 

of O-GlcNAcylation on a protein of interest or for MS-based detection and site-mapping of 

O-GlcNAcylated peptides (Section 7).

6.1. Equipment

1. Centrifuge

2. Vortex mixer

3. End-over-end rotator

4. Magnetic separator

5. Standard equipment for SDS-PAGE and Western blotting

6.2. Materials

1. Biotin or TAMRA-labeled proteins (step 4.3.5)

2. Neutralization buffer: 6% IGEPAL CA-630, 100 mM Na2HPO4 pH 8, 150 mM 

NaCl

3. Dilution buffer: 100 mM Na2HPO4 pH 8, 150 mM NaCl

4. Streptavidin magnetic beads (Pierce, for biotin IP)

5. Protein A/G magnetic beads (Pierce, for TAMRA IP)

6. TRITC polyclonal antibody (A-6397, ThermoFisher)

a. Alternatively, a TAMRA monoclonal antibody (MA1-041, 

ThermoFisher) can also be used.

7. High Capacity NeutrAvidin agarose (Pierce, for cleavable biotin IP)

8. TAMRA wash buffer: 1% IGEPAL CA-630, 100 mM Na2HPO4 pH 8, 150 mM 

NaCl

9. Biotin low salt wash buffer: 100 mM Na2HPO4 pH 7.5, 150 mM NaCl, 1% 

Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS

a. While cleavage of the Dde-biotin-alkyne in buffers containing SDS has 

been previously reported (Y. Yang & Verhelst, 2013), we have found 

that it is stable in up to 1% SDS at room temperature (Griffin et al., 

2016).

10. Biotin high salt wash buffer: 100 mM Na2HPO4 pH 7.5, 500 mM NaCl, 0.2% 

Triton X-100
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11. Biotin elution buffer: 50 mM Tris pH 6.8, 2.5% SDS, 100 mM DTT, 10% 

glycerol, and 2 mM biotin (add 0.1% (w/v) bromophenol blue if to be used 

directly for Western blotting)

12. TAMRA wash buffer: 50 mM Tris pH 7.4, 150 mM NaCl, 1% Triton X-100

13. TAMRA elution buffer: 2% SDS, 50 mM Tris pH 6.8, 100 mM DTT, and 10% 

glycerol (add 0.1% (w/v) bromophenol blue if to be used directly for Western 

blotting)

14. PBS pH 7.4 (10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl)

15. 2% (w/v) hydrazine monohydrate in H2O

a. Make this solution fresh immediately before use.

16. Acetone

17. 1% SDS in 20 mM HEPES pH 7.9

6.3. Procedure

1. Save 1/10 (4 μL) of the biotin or TAMRA-labeled protein solution as input to 

confirm effective enrichment or to quantify the O-GlcNAcylation stoichiometry 

of labeled proteins.

2. To avoid denaturing proteins on the affinity resins, neutralize the SDS in the 

protein sample with an equivalent volume of neutralization buffer.

3. Dilute the sample to 500 μL with dilution buffer.

4. Wash the beads twice with 1 mL of wash buffer. Typically, we use the following 

amounts for the applications discussed:

a. 40 μL of streptavidin magnetic beads (Section 6.3.1)

b. 50 μL of Protein A/G magnetic beads (Section 6.3.2)

c. 25 μL of high capacity NeutrAvidin agarose (Section 6.3.3)

5. Add the diluted protein solution to the washed beads.

6.3.1. Non-cleavable biotin

Rotate end-over-end for 2 hours at room temperature.

After the precipitation is complete, remove the flowthrough, resuspend the beads in 1 

mL of biotin low salt wash buffer, and rotate end-over-end for 5 minutes at room 

temperature

a. A portion of the flowthrough can be retained and analyzed to ensure 

complete precipitation by the affinity resin.

Remove the wash buffer and repeat four more times with 1 mL of low salt wash 

buffer and five times with 1 mL of high salt wash buffer to remove non-O-

GlcNAcylated proteins.
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a. In applications where there tends to be high background (e.g., protein 

overexpression), the wash conditions can be made more stringent by 

replacing the low salt wash buffer with 100 mM Na2HPO4 pH 7.5, 150 mM 

NaCl, 1-3% SDS. However, this may elute some biotinylated proteins as 

well.

After the last wash, centrifuge the beads briefly (5-10 seconds) at 500 × g and remove 

any residual wash buffer.

Resuspend the beads with 30 μL of biotin elution buffer and boil for 15 minutes with 

occasional vortex mixing.

Centrifuge the tube briefly and transfer the elution buffer to a new tube.

a. The eluent can be safely stored indefinitely at −80°C.

b. For endogenous proteins, we typically resolve the entire eluent in a single 

gel lane. However, for overexpressed proteins, it is usually sufficient to run 

as little as 1/10 of the eluent.

6.3.2. TAMRA

1. Add 10 μL of TRITC polyclonal antibody to the mixture.

2. Rotate end-over-end overnight at 4°C.

3. Remove the flow-through and wash the beads by rotating end-over-end for 5 

minutes at 4°C with 1 mL of TAMRA wash buffer.

4. Remove the wash buffer and repeat four additional times.

5. After the final wash, elute TAMRA-labeled proteins by boiling with 30 μL of 

TAMRA elution buffer for 15 minutes and proceed as described for the biotin 

samples.

a. These conditions are used to quantitatively release TAMRA-labeled 

proteins, but they will also elute the antibody, which can interfere with 

Western blot quantification. We suggest the use of a conformation-

specific secondary antibody for detection during Western blotting (e.g., 

3678S, Cell Signaling Technology).

b. Alternatively, 100 mM glycine pH 2.5 can be used to elute the protein 

in cases where co-elution of TAMRA antibody is problematic and/or 

stoichiometric elution is not required.

6.3.3. Cleavable Dde-biotin

1. Rotate end-over-end for 2 hours at room temperature.

2. Transfer the beads to a spin filter and wash the beads as described for the non-

cleavable biotin.

3. Wash the beads twice more with 0.5 mL of PBS.
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4. Resuspend the beads with 50 μL of 2% (w/v) hydrazine monohydrate and 

incubate with end-over-rotation for 1 hour at room temperature.

5. Collect the eluent via centrifugation at 2,000 × g for 30 seconds.

6. Resuspend the beads in 50 μL of PBS and incubate with end-over-end rotation 

for 5 minutes at room temperature.

7. Collect this wash by centrifugation as before and combine with the eluent.

8. Precipitate the eluted proteins by the addition of 4 volumes (400 μL) of −20°C 

acetone and incubate for 2 hours to overnight at −20°C.

a. Do not use the methanol/chloroform/H2O method here as it is 

extremely difficult to form a pellet with low quantities of protein. The 

precipitated proteins can be stored for up to 6 months in acetone at 

−80°C.

9. Centrifuge the precipitated proteins at 21,130 × g for 10 minutes at 4°C, remove 

the acetone, and dry the pellet as before.

10. For analysis by SDS-PAGE, resuspend the pellet in 40 μL of SDS-PAGE loading 

buffer.

a. For direct analysis by MS, redissolve the proteins in a buffer compatible 

with an in-solution digestion method, such as 8 M urea, 50 mM Tris pH 

8.

6.4. Detection and quantification of enriched O-GlcNAcylated proteins

Western blotting of the eluted solution can provide putative evidence for O-GlcNAcylation 

of specific proteins. It is important to run a negative control simultaneously in which GalT 

has been omitted from the GalNAz labeling step (as described earlier) to corroborate these 

results. Approximate O-GlcNAcylation stoichiometries can be determined following biotin 

labeling by resolving the eluted sample (step 6.3.1.6) by SDS-PAGE along with a portion of 

the retained input sample (step 6.3.1) and calculating the fraction of eluted O-GlcNAcylated 

protein to the total protein signal (Yi et al., 2012). Furthermore, the method can be used to 

monitor changes in the O-GlcNAcylation levels of individual proteins across different 

physiological conditions. Although this method cannot reveal the presence of multiple O-

GlcNAcylation sites, it does have some advantages over labeling proteins with PEG alkyne. 

Specifically, (1) enrichment allows for the detection of low O-GlcNAcylation 

stoichiometries, (2) O-GlcNAcylation of high MW proteins can be readily measured without 

relying on a mass shift, and (3) some antibodies may not recognize mass-shifted proteins. 

Regardless, after observing that a given protein is likely O-GlcNAcylated, MS-based 

methods can be used as further, more definitive verification and to identify the exact site(s) 

of O-GlcNAcylation.

7. O-GlcNAc Site Identification

The identification of specific serine/threonine residues that are modified by O-GlcNAc is 

often critical to interrogate its functional relevance. Accordingly, several techniques have 
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been developed for this purpose. Originally, O-GlcNAcylated peptides were labeled with 

[3H]-galactose and sequenced by Edman degradation (Whelan & Hart, 2006). However, with 

the rise of powerful MS-based methods for peptide/protein sequencing, many techniques 

have been developed to map O-GlcNAc sites on proteins (Alfaro et al., 2012; Griffin et al., 

2016; Haynes & Aebersold, 2000; Khidekel, Ficarro, Peters, & Hsieh-Wilson, 2004; 

Trinidad et al., 2012; Vosseller et al., 2006; Z. Wang et al., 2010); a thorough review of 

current methods for O-GlcNAc site mapping can be found elsewhere (Ma & Hart, 2014). 

Here we describe a general approach for O-GlcNAc site mapping and its enhancement using 

chemoenzymatic labeling. Unlike MS analysis of immunoprecipitated protein alone, 

chemoenzymatic labeling has the specific advantages of providing 1) an effective method for 

enrichment of O-GlcNAcylated peptides/proteins to greatly improve the detection 

sensitivity, 2) a positively charged amine left by the cleavable biotin tag to facilitate O-

GlcNAc site mapping, and 3) a unique ion fragment signature upon MS/MS analysis for 

conclusive identification of the O-GlcNAc modification. Once modification sites are 

discovered, the tools outlined in the previous sections can be used to investigate how O-

GlcNAcylation at individual sites changes in response to stimuli.

7.1. Mapping of O-GlcNAc sites using MS

To map the O-GlcNAc sites on a protein of interest, a tagged form of the protein can be 

overexpressed in HEK 293T cells (or any other easily transfectable cell line). TMG can be 

added to the cells to enhance the overall levels of O-GlcNAcylation. The protein of interest 

is then immunoprecipitated, subjected to SDS-PAGE, and excised from the gel. After 

reduction, alkylation, and proteolytic digestion in gel, the extracted peptides are analyzed by 

MS (Shevchenko, Tomas, Havli, Olsen, & Mann, 2007). The use of electron-transfer 

dissociation tandem MS (ETD-MS/MS) has become a powerful technique for mapping O-

GlcNAc sites due to its ability to fragment peptides without breaking the glycosidic linkage 

between serine/threonine residues and GlcNAc (Ma & Hart, 2014). Indeed, we and others 

have used this workflow to successfully map O-GlcNAc sites on multiple occasions 

(Khidekel et al., 2007; Pekkurnaz et al., 2014; Rexach et al., 2012; Yi et al., 2012).

Recently, we used a similar workflow in conjunction with a cleavable Dde-biotin-alkyne 

probe to identify two known and four novel O-GlcNAcylation sites on OGT (Griffin et al., 

2016). The Dde-biotin moiety allows for efficient capture and release of O-GlcNAcylated 

peptides and generates a positively charged amine functionality on the glycopeptide to 

improve its ionization efficiency (Figure 1A). We believe that this new probe has significant 

potential to facilitate the identification of O-GlcNAc sites. In this case, overexpressed, 

immunoprecipitated protein could be subjected to the workflow described in Section 6.3 

using Dde-biotin-alkyne as the azide-reactive probe. The eluted O-GlcNAcylated protein is 

then purified by SDS-PAGE and processed as outlined above. Alternatively, the eluent can 

be processed directly by in-solution digestion or with filter-aided sample preparation 

(Wiśniewski, Zougman, Nagaraj, & Mann, 2009).

Labeled O-GlcNAcylated peptides can be easily identified using higher-energy collisional 

dissociation (HCD) MS/MS fragmentation by the presence of up to three fragmented linker 

ions at 300.1, 318.1, and 503.2 m/z. These fragment ions correspond to cleavage of the 
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glycosidic bond between GlcNAc and GalNAz and its water adduct (300.1 and 318.1 m/z, 

respectively) and cleavage between GlcNAc and the serine/threonine residue (503.2 m/z). 

For subsequent ETD-MS/MS analysis, we typically use LTQ-Velos, Orbitrap Elite, and/or 

Orbitrap Fusion instruments (ThermoFisher Scientific), but any instrument capable of 

performing ETD-MS/MS would be sufficient. Regardless, it is important to account for the 

variable addition of the mass tag (502.202341 Daltons) to serine and threonine residues in 

the analysis (Griffin et al., 2016). In summary, we believe that the procedure outlined may 

aid in the detection of low-abundance or otherwise hard to identify O-GlcNAc sites.

8. Integrated Workflow for Discovery and Biological Assessment of Novel 

O-GlcNAcylated Proteins

Together, chemoenzymatic tagging methods provide a powerful approach for the detection 

and analysis of novel O-GlcNAcylated proteins. In our lab, we follow an integrated 

workflow when assessing the importance of a putatively modified protein. First, we use 

biotin or TAMRA labeling followed by immunoprecipitation and Western blot detection 

(Sections 4 and 6.3.1 or 6.3.2) to provide direct evidence of protein O-GlcNAcylation. 

Importantly, we perform a negative control experiment without adding GalT to ensure that 

the observed signal is specific for the O-GlcNAcylated structure. Next, we map the 

modification site(s) by either direct MS analysis of a FLAG-tagged, immunoprecipitated 

protein of interest (Section 7.1) or labeling and enrichment with the Dde-biotin-alkyne probe 

prior to MS analysis (Sections 4 and 6.3.3). If the protein has multiple sites, expression of 

alanine mutants lacking specific O-GlcNAcylation sites in cells, followed by analysis of 

their stoichiometries using PEG or biotin labeling, can sometimes be used to determine the 

major sites (Sections 5 and 6). Moreover, these mutants can be expressed in the presence of 

TMG or other stimuli to uncover which sites are dynamic or rapidly cycled. Finally, cells 

with the endogenous protein or overexpressed mutants can be subjected to physiologically 

relevant treatments such as serum starvation, hypoxia, or KCl-mediated depolarization 

followed by PEG labeling to measure changes in the levels of each O-GlcNAcylation state in 

response to biological stimuli. Again, we have found CREB to be an excellent positive 

control for the strategies outlined in this section. As an example, the increase in O-

GlcNAcylation of CREB stimulated by TMG treatment can be seen in Figure 3. Using PEG 

labeling, mono-O-GlcNAcylation of CREB was also found to increase in neurons after KCl-

induced depolarization (Figure 1D). Ultimately, the collective results of this integrated 

workflow will provide strong evidence for novel O-GlcNAcylation events and guide 

subsequent functional studies.

9. Conclusions and Future Directions

The O-GlcNAcylation of intracellular proteins is emerging as a major regulator of key 

cellular processes in both health and disease. Effective methods to characterize the presence 

and dynamics of this post-translational modification will greatly propel studies of its 

functional significance. Traditional methods such as tritium labeling and the use of certain 

O-GlcNAc-specific antibodies suffer from a lack of sensitivity and specificity. Moreover, 

using such methods to detect changes in O-GlcNAcylation levels and stoichiometry reliably 
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in a complex lysate can be very difficult or in some cases impossible. Although the rapid 

proliferation of MS-based techniques has alleviated some of these concerns, MS-based 

approaches require specialized expertise and access to expensive instrumentation. Thus, 

highly accessible, cost-effective approaches that can be readily performed in most 

laboratories on a routine basis remain vital to elucidate the physiological importance of O-

GlcNAcylation.

The protocols above provide a practical platform that is easy to implement in many research 

settings. GalT labeling and the CuAAC reaction provide an efficient means to install a 

variety of functional tags for diverse downstream applications. The commercial availability 

of the reagents and the simplicity of the experimental approach should facilitate adoption of 

this methodology by non-specialists. In the future, further development of these techniques 

in conjunction with MS will pave the way for more quantitative, high-throughput methods to 

study O-GlcNAcylation dynamics on individual proteins as well as on a global scale. 

Combining the techniques with established methods such as stable isotope labeling by 

amino acids in cell culture (SILAC) (Ong et al., 2002), isobaric tag for relative and absolute 

quantitation (iTRAQ) (Ross et al., 2004), or tandem mass tags (TMT) (Thompson et al., 

2003) should allow for direct comparison of the O-GlcNAcome across diverse physiological 

conditions. Together, we hope that these advances will illuminate the broad importance of 

O-GlcNAcylation and lead to new discoveries at the frontiers of biology and human health.
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Figure 1. 
Chemoenzymatic labeling strategies for the study of O-GlcNAcylated proteins. (A) 

Incubation of O-GlcNAcylated proteins with Y289L GalT and UDP-GalNAz installs a 

chemical handle that can be further functionalized with alkyne-containing biotin, TAMRA, 

PEG, or Dde-biotin probes using CuAAC. The Dde-biotin probe is cleaved by hydrazine to 

provide a positively charged amine at the site indicated (dotted line). (B) Attachment of 

either an alkynyl biotin or alkynyl TAMRA probe allows for the assessment of total O-

GlcNAcylation dynamics in response to cellular stimuli. HEK 293T cells were treated for 6 

hours with 50 μM of the OGA inhibitor thiamet-G (TMG) or vehicle and subjected to the 

workflow in Sections 3 and 4. Total O-GlcNAcylation levels were visualized by blotting 

with AlexaFluor 680-conjugated streptavidin. Robust, unbiased labeling of proteins is 

observed by chemoenzymatic labeling. Note the marked difference in the number and 

molecular weight of O-GlcNAcylated proteins detected as compared to the anti-O-GlcNAc 
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antibodies RL-2 and CTD110.6. (C) Attempts to detect O-GlcNAcylated α-crystallin by 

various methods show the sensitivity advantage afforded by functionalization with biotin-

PEG4-alkyne. In all cases, 0.75 μg of bovine lens α-crystallin was resolved on SDS-PAGE 

(after chemoenzymatic labeling, as described in Section 3, or tritium labeling, as described 

in (Khidekel et al., 2003)) and detected as indicated. (D) Labeling proteins with alkynyl 

PEG (2-kDa) allows for the observation of multiple O-GlcNAcylation states (mono-, di-O-

GlcNAcylated, etc.) and their corresponding stoichiometries. Mouse primary cortical 

neurons were treated with 60 mM KCl for 2 hours and subjected to the workflow in Sections 

3 and 5. CREB O-GlcNAcylation was detected by immunoblotting with an anti-CREB 

antibody.
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Figure 2. 
GalT Characterization. (A) Coomassie stained gel of purified Y289L GalT. (B) 

Representative MALDI-TOF spectra of the peptide labeling reaction with 0 mg/mL (left) or 

0.1 mg/mL (right) Y289L GalT. The blue arrows indicate the unlabeled peptide (1118.23) 

and its sodium adduct (1140.23). The red arrows indicate the labeled peptide (1319.98) and 

its sodium adduct (1342.15).
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Figure 3. 
Streptavidin capture of O-GlcNAcylated proteins labeled with biotin can allow for the 

detection and dynamic monitoring of novel O-GlcNAcylated proteins. HEK 293T cells were 

treated with 50 μM TMG or vehicle for 6 hours and subjected to the workflow outlined in 

Sections 3 and 6. Immunoblotting with an anti-CREB antibody revealed a robust increase in 

O-GlcNAcylation of CREB upon TMG treatment.

Thompson et al. Page 31

Methods Enzymol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thompson et al. Page 32

Table 1

Reaction conditions for testing Y289L GalT activity.

Reaction Componentsa Volume (μL) Final Concentration

H2O 10.5, 10.125, or 9.75

100 mM MnCl2 0.75 5 mM

100 mM HEPES pH 7.9 1.5 10 mM

2 mg/mL Y289L GalT 0, 0.375, or 0.75 0, 0.05, or 0.1 mg/mL

10 mM UDP-ketogal or UDP-GalNAz 0.75 500 μM

100 pmol/μL Click-iT Peptide 1.5 10 pmol/μL

Final Volume 15

a
Flick tubes to mix and spin down briefly after each addition.
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Table 2

Reaction conditions for GalNAz labeling.

Reaction Components Volume (μL) Final Concentration

Protein mixture (3.75 mg/mL in 1% SDS, 20 mM HEPES pH 7.9) 40 0.75 mg/mL

H2Oa 45

50× protease inhibitor cocktail 4 1×

2.5× GalT Labeling bufferb 80 1×

100 mM MnCl2 11 5.5 mM

500 μM UDP-GalNAz 10 25 μM

2 mg/mL GalTc 10 0.1 mg/mL

Final Volume 200

a
If using PNGase F, add only 42 μL, and add 3 μL PNGase F (500 U/μL) after GalT.

b
Vortex gently to mix after this step.

c
Use H2O for negative control.

Methods Enzymol. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thompson et al. Page 34

Table 3

Reaction conditions for CuAAC with small molecule alkyne probes.

Reaction Componentsa Volume (μL) Final Concentration

Protein mixture (4 mg/mL in 1% SDS, 20 mM HEPES pH 7.9) 37.5 1 mg/mL

H2O 87

10× PBS 15 1×

5 mM alkyne probe 3 100 μM

100 mM sodium ascorbate 3 2 mM

10 mM THPTA 1.5 100 μM

50 mM CuSO4 3 1 mM

Final Volume 150

a
Vortex briefly to mix after each addition.
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Table 4

Reaction conditions for CuAAC with PEG alkyne.

Reaction Componentsa Volume (μL) Final Concentration

Protein mixture (3 mg/mL in 1% SDS, 50 mM Tris pH 8) 50 0.75 mg/mL

H2O 46

PEG-CuSO4-THPTA mixtureb 100

 0.5 μL 500 mM THPTA 1.2 mM

 5 μL 50 mM CuSO4 1.2 mM

 100 μL 10 mM PEG alkyne 4.75 mM

100 mM TCEP 4 2 mM

Final Volume 200

a
Vortex briefly to mix after each addition.

b
Prepared according to instructions in text.
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