Supporting Information

Precise Synthesis of Bottlebrush Block Copolymers from ω -End-Norbornyl Polystyrene and Poly(4-*tert*-butoxystyrene) via Living Anionic Polymerization and Ring-Opening Metathesis Polymerization

Yong-Guen Yu,^{†,‡} Chang-Geun Chae,^{†,‡} Myung-Jin Kim,^{†,‡} Ho-Bin Seo,^{†,‡} Robert H. Grubbs,^{‡,§} and Jae-Suk Lee*,^{†,‡}

[†]School of Materials Science and Engineering and [‡]Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.

[§]Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

E-mail: jslee@gist.ac.kr; Tel: (+82)-62-715-2306.

Contents

- 1. ¹H and ¹³C NMR spectra of chemical compounds
- 2. Physical data of macromonomer
- 3. Additional SEM images and photographs of films
- 3. Additional kinetic profile on ROMP of NPSt in THF at room temperature ([NPSt]₀ = 0.05 M)

1. ¹H and ¹³C NMR spectra of chemical compounds

Figure S1. ¹H NMR spectrum of 2,2,5,5-tetramethyl-1-(3-chloropropyl)-1-aza-2,5disilacyclopentane (T1) in CDCl₃ (400 MHz).

Figure S2. ¹³C NMR spectrum of 2,2,5,5-tetramethyl-1-(3-chloropropyl)-1-aza-2,5disilacyclopentane (T1) in CDCl₃ (100 MHz).

Figure S3. ¹H NMR spectrum of *N*-(carboxylhexanoyl)-*cis*-norbornene-exo-2,3-dicarboxiimide in CDCl₃ (400 MHz).

Figure S4. ¹³C NMR spectrum of *N*-(carboxylhexanoyl)-*cis*-norbornene-exo-2,3-dicarboxiimide in CDCl₃ (100 MHz).

Figure S5. ¹H NMR spectrum of *N*-(perfluorophenyl hexanoate)-*cis*-norbornene-exo-2,3dicarboxiimide (T2) in CDCl₃ (400 MHz).

Figure S6. ¹³C NMR spectrum of *N*-(perfluorophenyl hexanoate)-*cis*-norbornene-exo-2,3dicarboxiimide (T2) in CDCl₃ (100 MHz).

Figure S7. ${}^{9}F$ NMR spectrum of *N*-(perfluorophenyl hexanoate)-*cis*-norbornene-exo-2,3-dicarboxiimide (T2) in CDCl₃ (376 MHz).

Figure S8. ¹H NMR spectrum of PSt-NH₂ in CDCl₃ (400 MHz).

Figure S9. ¹H NMR spectrum of PtBOS-NH₂ in CDCl₃ (400 MHz).

Figure S10. ¹H NMR spectrum of NPSt in CDCl₃ (400 MHz).

Figure S11. ¹H NMR spectrum of NPtBOS in CDCl₃ (400 MHz).

Figure S12. ¹H NMR spectrum of P(NB-g-St)₆₃₀ in CDCl₃ (400 MHz).

Figure S13. ¹H NMR spectrum of P(NB-g-tBOS)₁₅₄ in CDCl₃ (400 MHz).

Figure S14. ¹H NMR spectrum of P(NB-g-St)₁₅₁-b-P(NB-g-tBOS)₁₄₀ in CDCl₃ (400 MHz).

2. Physical data of macromonomers

entry	MM	$M_{\rm n,NMR}$ (kDa)	$M_{\mathrm{n,obsd}}^{a}$ (kDa)	D^a	DP _n
1	NPSt	2.76	2.69	1.14	24
2	NPSt	3.23	3.37	1.07	28
3	NPtBOS	2.79	2.43	1.06	14
4	NPtBOS	3.13	3.01	1.06	16

Table S1. Characteristics of ω -norbornyl macromonomers

 ${}^{a}M_{n,obsd}$ and *D* were obtained by SEC calibration using polystyrene standard in THF containing 2% trimethylamine as the eluents at 40 °C.

Figure S15. GPC curves of the macromonomers of (a) NPSt and (b) NPtBOS

3. Additional SEM images and photographs of films of Bottlebrush block copolymers

Figure S15. Cross-sectional SEM image of P(NB-g-St)-b-P(NB-g-tBOS) with $M_w = 148$ kDa and $DP_w = 52$ (Table 2, entry 1).

Figure S16. Cross-sectional SEM images and photographs of photonic films of P(NB-*g*-St)-*b*-P(NB-*g*-*t*BOS) with (a,b) $M_w = 296$ kDa (Table 2, entry 2), (c,d) $M_w = 830$ kDa (Table 2, entry 3), and (e,f) $M_w = 1331$ kDa (Table 2, entry 4).

4. Additional kinetic profile on ROMP of NPSt in THF at room temperature ([NPSt]₀ = 0.05 M)

Figure S17. SEC traces of P(NB-*g*-St) aliquots with $[NPSt]_0/[G3]_0 = 650$ withdrawn from mixture during ROMP at time intervals (Table1, entry 3).