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ABSTRACT

We present a performance study of a cosmic X-ray polarimeter which is based on the photoelectric effect in
gas, and sensitive to a few to 30 keV range. In our polarimeter, the key device would be the 50 µm pitch Gas
Electron Multiplier (GEM). We have evaluated the modulation factor using highly polarized X-ray, provided
by a synchrotron accelerator. In the analysis, we selected events by the eccentricity of the charge cloud of the
photoelectron track. As a result, we obtained the relationship between the selection criteria for the eccentricity
and the modulation factors; for example, when we selected the events which have their eccentricity of > 0.95, the
polarimeter exhibited with the modulation factor of 0.32. In addition, we estimated the Minimum Detectable
Polarization degree (MDP) of Crab Nebula with our polarimeter and found 10 ksec observation is enough to
detect the polarization, if we adopt suitable X-ray mirrors.
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1. INTRODUCTION

To detect polarization of cosmic X-rays provides us with very useful information which we have not succeeded
to measure so far;1 for example, 1) a detection of polarization of synchrotron X-rays makes it possible to
measure magnetic fields in the objects because the synchrotron radiation is linearly polarized to the direction
perpendicular to the magnetic fields. 2) polarization of reflected X-rays by an accretion disk has information of
an inclination of the disk since the polarization of the X-ray is parallel to the inclination. However, detection
of X-ray polarization has been limited by technologies. It is the only OSO-8 satellite that has observed X-ray
polarization in 1976.2–4 After that, there has been no significant detection until now.

2. PRINCIPLE OF POLARIZATION DETECTION

The most effective method to measure the X-ray polarization strongly depends on the X-ray energy. Bragg
reflection is used for very soft X-ray5 (less than 1 keV) and Compton scattering is used for hard X-ray6 (<30
keV). In the present paper, we focus on the intermediate energy range, a few keV to ∼30 keV, in which the
photoelectric effects play the most important role for the detection of X-ray polarization.
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Figure 1. The micrography of the surface of the 50 µm-pitch GEM. It is laser etching processed and developed at RIKEN.

How to detect the polarization with the photoelectric effect is explained in the following. The scattering
differential cross section of a photoelectron, which gives a possibility of a photoelectron moving into a certain
solid angle dσ, is written as (

dσ

dΩ

)
p

∝ sin2 θ cos 2φ

(1 − β cos θ)4
. (1)

In the equation θ is the angle between the direction of the photoelectron and that of the incident X-ray radiation.
Due to the angular dependence of the cross section, photoelectrons are stochastically emitted to the polarized
direction, when polarized X-rays are absorbed. Note that the definition of the polarization direction is the electric
field direction of the incident X-rays. Therefore, we can measure the polarization of the incident X-rays with
the determination of the photoelectron directions. Photoelectron tracks are better to be longer for tracing, so
generally the gas is used as an X-ray absorber.7–9

3. GAS ELECTRON MULTIPLIER

In order to trace a photoelectron track in the gas, we have to measure the electron distribution which is produced
by a photoelectron ionizing the gas. However, there is a significant problem; only few electrons are produced in
a single X-ray absorption. Therefore, we have to multiple electron signal without losing position information.
We make use of the Gas Electron Multiplier (GEM), which fully meets the requirement.

GEM had been developed at CERN in 1996.10 A GEM is made of a polyimide foil, which is sandwiched by
copper foils. There are a lot of holes in the foil with a pitch of ∼100µm. as shown in Figure 1. Electric fields
are induced in those holes with applied the voltage applied to the copper foils of both sides. When a electron
though a hole, it is accelerated by the field, and an electron avalanche is produced. As a result, the number of
electrons are multiplied. A smaller hole pitch GEM was required for tracing a photoelectron, and the new laser
etching technique has enabled us to develop a GEM with a 50 µm pitch.11, 12

4. COSMIC X-RAY POLARIMETER

Figure 2 shows a concepts of our X-ray polarimeter. X-ray is absorbed by low Z noble gas mixture which fill the
detector, then a photoelectron is emitted. The photoelectron takes its route with ionizing around gas atoms, so
electrons are left along the photoelectron track. The electrons are drifted under-word due to the electric field
produced by the drift plane. As soon as electrons reach the GEM, the number of electron is multiplied without
losing their position information. After that, multiplied electrons are corrected by the underneath CMOS sensor,
Acrorad/AJAT DIC-100T without a CdTe layer13, 14 (Figure 3). It is a fine pixelized (100 µm-pitch) electron
reader. The usable area is 5×5 inch2, but we used just 3/8 of the total in this time, which corresponds 252×381
pixels (2.52×3.81 cm2). Finally we can obtain the photoelectron track as a charge distribution image.
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Figure 2. The concept of our X-ray polarimeter.

Figure 3. The top-view of the CMOS sensor (left). The right picture shows the micrography of the surface of the CMOS
sensor. There are electrodes with the pitch of 100 µm.
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Figure 4. A schematic figure (left) and a picture (right) of the setup of the experiment.

5. PERFORMANCE STUDY

A performance study of our X-ray polarimeter has carried out. We evaluated the polarimetric sensitivity of our
detector using highly polarized X-ray provided by a synchrotron accelerator at High Energy Accelerator Research
Organization Photon Factory (KEK-PF15) in Japan.

5.1. Experimental Setup

The setup of the drift plane, the GEMs, and the CMOS sensor is shown in Figure 4. We used two 50 µm-pitch
GEMs in the experiment, and those two were not aligned in position each other. We flowed Ne(80%)+CO2(20%)
into the polarimeter at 1 atmosphere. The applied voltage to each GEM was 420 V, and we had knew the
electron gain reached about 4× 103 in this condition by the previous calibration study. The electric fields in the
drift region and the induction region were Ed=2.5 keV/cm and Ei=7.8 keV/cm respectively.

The X-ray beam energy was 10 keV in which was the intermediate energy the detector has sensitivity. The
X-ray beam was polarized vertically. Since polarization degree of the X-ray beam, Pbeam, was unknown, it had
been measured with another Compton polarimeter (Figure 5). The measured Pbeam was 82% at 10 keV using a
value of 0.94 as the modulation factor of the Compton polarimeter16 .

We first set our polarimeter in 0 degree against the polarization direction and took the data for 1.5 ksec with
the integration time of 0.02 sec (50 frames/sec). To study systematic effects, next we rotated the polarimeter
−45 degrees clockwise as shown Figure 5 and the data were taken for another 1.5 ksec. We also took the data
in 180 degree and 45 degree to compensate the systematic effects.

5.2. Data Analysis

5.2.1. Data reduction

We first summed up all pixel charges (ADCs) for each frame and made an ADC spectra (Figure 6). We found
that the electron gain had changed about 10% of the total in few minutes. So, in order to select the frame in
which a real single 10 keV event was, we made ADC spectra of every 1000 frames (20 seconds) and fitted the
peak of frames which contained a single event with Gaussian function. Then we selected frames in the interval
of the mean ADC ± 500 as event frames. After the reduction, about 15% of the total frames are left as event
frames.

5.2.2. Determination of photoelectron emission direction

One of selected event frames is shown in Figure 7. We determined directions of photoelectron emissions of each
event in based on Bellazzini et al. 2003,17 but in this time, we did not find the reconstructed absorption point
as they did. First we found the barycenter of the charge distribution as shown the crossed out in Figure 7
(right). We fixed the barycenter as the origin of the new coordinate system hereafter. Note that the barycentre
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Figure 5. Setup picture of the polarimeter with the beam. The square box in the center of the picture is the detector.
The behind acrylic circular board is the Compton polarimeter that is used for the beam calibration of polarization degree.
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Figure 6. ADC spectrum. Note horizontal and vertical axis represents the sum of ADCs for a frame (not a event) and
the number of frames (not events) respectively.
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1 mm

Figure 7. A single frame of the CMOS sensor with a close up of a single event image. The numbers indicate the pixel
numbers of the CMOS sensor. The barycenter (cross), the principal axis, and φ are shown on the closed up photoelectron
track, and φ is defined as the emission direction φ.

tend to be near the end of the tracks since the photoelectrons lose their energy right before they stop. Next,
using an oriented angle from the original x axis φ, we calculated the second momentum M2. Here we defined
that two angels φmin and φmax as the angles give the minimum and maximum second momentum respectively.
Those two angles within the interval [−π,π] are obtained by setting the partial differential equation respect to
φ of the second momentum is equal to 0. Obtained φ should be either φmin or φmax, and those two have to
be perpendicular each other. In order to confirm either obtained φ is φmin or φmax, we substituted obtained
φ and φ+90o (or φ − 90o) into the second momentum equation. Finally we could find φmax which gives the
largest second momentum with respect to the barycenter. The φmax and the principal axis are shown in Figure
7 (right). We defined φmax as the direction of the photoelectron emission. At the same time, we calculated the
eccentricity e of each photoelectron tracks which can be written as

ε =
Mmax

2

Mmin
2

=
1√

1 − e
. (2)

We took up e for the next event reduction.
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Figure 8. The barycentre distribution (left) and modulation (right) of all events. The expected polarization direction is
−45 deg.

5.2.3. Modulation factor

Figure 8 shows the barycentre distribution (left) and the modulation (right) of all selected events. We fitted the
moderation with the function of

f(x) = a + b cos [2 (x − c)] . (3)

We can obtain the modulation factor of our polarimeter M with the following equation,

M =
b

aPbeam
. (4)

Note that M is normalized with the polarization degree of the beam Pbeam. As a result, the moderation factor
was 0.09 when all events in −45 degree are selected.

Next we studied how the modulation factors change when we cut events with a certain e. As an example,
Figure 9 shows the barycentre distributions (left) and modulation (right) of events with e>0.95. Because smaller
e represents a shorter track event, it is reasonable that the events of their barycentore near the center of the
distribution were reducted. In addition, it is easier to determine φ with events of lager e, so the modulation
came to be better. The obtained moduration factor was 0.32 with e > 0.95 in −45 degree. This tendency is also
shown in 0 degree (Figure 10 and Figure 11).

Figure 12 gives the number of left event frames and modulation factor within a cirtain e cut. Cuts in lager
e makes modulation factor better, but excessive cuts make the factor’s errors lager due to that the left events
are few. The results of the modulation factors are different between in −45 degree and in 0 degree. We are
considering that it caused by the square shape of the CMOS sensor pixel, and the studing is currently underway.

6. MINIMUM DETECTABULE POLARIZATION

A Minimum Detectable Polarization degree (MDP) is given with the following equation,

MDP =
nσ

(AηsT )M

√
2Aη (s + b)T (5)

where nσ is the lower confidence limits in σ, s and b are count rates (c s−1) of the source and the background
respectively. A is the effective area in cm2, η is the efficiency, and T is the observation time in sec. We calculated
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Figure 9. The barycentre distribution (left) and modulation (right) of events of their e > 0.95. The expected polarization
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Figure 12. The holizontal axis signifies the cut eccentricity. The left and right vertical axes represent the number of
events (Open CIrcles) and the modulation factors (diamonds) respectively. Plots are in −45 deg (left) and 0deg (right).
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Figure 13. The relationship the modulation factor and the MDP for Crab Nebula in different observation time.

a MDP for Crab Nebula in the 2–30 keV band, in which our polarimeter is sensitive (Figure 13). Suppose to that
the polarimeter is set at the focal plane of the Suzaku X-ray Telescope,18 A = 250 cm2. η = 5×103 is estimated
in consideration the kind of gas, its pressure, and its thickness. We used 3 for nσ in this time. The count rate
of the source19 is 3.9 c s cm−2, and it is large enough to neglect the background. As a result, we obtained the
MDPs as shown in Figure 13. Using our polarimeter, the 10 ksec observation is enough to detect polarization of
Crab.

7. SUMMARY

The performance study of a cosmic X-ray polarimeter, which based on the photoelectric effect in gas, has been
carried out with the highly polarized X-ray provided by a synchrotron accelerator at KEK-PF in Japan. We have
succeeded to obtain the image of the photoelectron track as the charge distribution with the 50 µm-pitch GEMs
and the CMOS sensor. In the analysis, we have done the event selection by the eccentricity of the charge cloud of
the photoelectron track. We finally obtained the relationships between the cut eccentricity and the modulation
factor. For example, our polarimeter in −45 degree performed with the modulation factor of 0.32 by selecting the
events of the eccentricity > 0.95. We also calculated the Minimum Detectable Polarization with our polarimeter
in the case of the Crab Nebula observation, and we found it is possible to detect the Crab polarization with the
only 10 ksec observation if we use the X-ray mirrors.
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