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Abstract Measuring the physical properties of geological materials is important for understanding
geologic history. Yet there has never been an instrument with the purpose of measuring mechanical
properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder
Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While
the objective of the drill system is not to make scientific measurements, the drill's performance is directly
influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that
uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance
of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this
investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to
maintain a prescribed rate of penetration and correlate that to rock strength.

Plain Language Summary The one tool that personifies the field geologist is a rock hammer. The
field geologist will use his/her hammer to expose fresh rock surfaces allowing examination of unweathered
rock. He/she will also use it to determine qualitative rock strengths in the field. While Curiosity does not
carry a traditional rock hammer, it does have a drill system. The ability to fail rock with a hammering
mechanism and the ability to use the performance data from the drill system presented the authors with
an innovative concept. The drill could be used as an instrument to indicate the strength of rocks, except that
the drill's measurement is better. Where the field geologist has only his/her tactile senses, Curiosity is
instrumented with sensors that measure rates of penetration, percussive energy, and weight on bit allowing a
quantifiable measurement of rock strength. The article describes the methodologies that allow the drill
system aboard the Mars Science Laboratory rover to also serve as a scientific instrument and reports the
compressive strength of the rocks drilled on Mars using these methods.

1. Introduction

The Mars Science Laboratory (MSL) rover, Curiosity, arrived at Bradbury Landing in Gale crater on 6 August
2012, with a payload designed to identify and evaluate the geologic, environmental, and habitability histories
of Gale crater (Grotzinger, 2014). To help accomplish this, Curiosity was equipped with a rotary-percussive
drill system (Anderson et al., 2012) that, to date, has collected and processed 15 samples from sedimentary
rocks of the Yellowknife Bay, Kimberley, Murray, and Stimson formations (Arvidson, 2016).

The MSL Powder Acquisition Drill System (PADS) is located on the turret assembly at the end of the rover’s
arm (Figure 1a). PADS produces powdered drill cuttings for analysis by the SAM (Sample Analysis at Mars)
and CheMin (Chemistry and Mineralogy) instruments (Figure 1b) (Mahaffy et al., 2012 and Blake et al,
2012). PADS utilizes a 5/8 inch (~16 mm), tungsten carbide commercial hammer-drill bit optimized for per-
cussive drilling. The chisel face, where the bit interfaces the rock, remains unmodified (Anderson et al.,
2012). Under normal use, preload on the bit is maintained by the Drill Translation Mechanism, which pushes
the drill bit into the rock independently of the stabilizers allowing the robotic arm to remain fixed.

Percussive energy delivered to the drill bit is provided by a voice coil mechanism that uses a magnetic
field to oscillate a free mass. The free mass acts as a hammer and transfers percussion energy to the drill
bit. The voice coil mechanism is decoupled from the rotary drive, adding the capability of varying the
percussion energies into the rock regardless of spindle rotational velocity. Onboard software during
the drilling process chooses a discrete Voice Coil Level (VCL). VCLs 1 through 6 provide single-impact
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Figure 1. (a) The Powder Acquisition Drill System (PADS) imaged by Mastcam shows the rover’s drill just after completion of a drilling operation at Telegraph Peak on
sol 908. The drill bit assembly can be seen between the drill stabilizers (image: NASA/JPL-Caltech/MSSS). (b) Diagram of the Mars Science Laboratory (MSL)
Powder Acquisition Drill System (PADS) and the Collection and Handling for In-situ Martian Rock Analysis (CHIMRA) subsystem, where the sample is sieved and
portioned into a predetermined aliquot before delivery to SAM and/or CheMin (image: NASA/JPL-Caltech). (c) Vehicle System Test Bed (VSTB) in the Mars Yard at Jet
Propulsion Laboratory drilling into Ridge Basin Mudstone A. (d) Close-up of the VSTB drill bit and stabilizers shortly after drilling 16 mm diameter hole into the
Ridge Basin Mudstone A (image: NASA/JPL-Caltech).

energies ranging from 0.05 to 0.8 J (VCL 1 = 0.05 J, VCL 2 = 0.20 J, VCL = 0.31 J, VCL 4 = 045 J, VCL
5 =061 J, and VCL 6 = 0.80 J). The percussion rate remains 30.1 Hz regardless of VCL. In order to
allow autonomous drilling, the system automatically adjusts the percussion level to maintain the
prescribed rate of penetration (ROP) and weight on bit (WOB) between parameterized thresholds. The
percussion level, determined prior to launch, has been held to a maximum of VCL-4 for all MSL drill
campaigns to date.

The MSL Mission has employed two sets of control algorithms for drilling operations. The first four drilling
campaigns at outcrops John Klein on Sol 182, Cumberland on Sol 279, Windjana on Sol 621, and
Confidence Hills on Sol 759 were conducted using a drilling configuration designed prior to launch that mini-
mizes the total drilling duration by biasing toward the highest VCL necessary to make progress into the sam-
ple (Helmick et al., 2013). This original operational profile, called the standard percussion algorithm, worked
to maintain between 50 and 80 N of force on the bit and started at the highest allowable percussion energy at
VCL-4. The percussion energy was stepped down to lower VCLs if the drill could not maintain WOB greater
than 50 N. The ROP is limited to a maximum of 0.25 mm/s during normal drilling operations. An inability
to maintain WOB above 50 N at the maximum ROP indicates that the rock is being fractured too aggressively.
If the system fell below 0.16 mm/s ROP, the percussion energy was stepped back up successively to increase
ROP to the prescribed rate.
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Starting the drilling operation at the highest allowable percussion level created some problems under certain
conditions. Rocks that were poorly embedded or too weak moved or fractured under the initial higher per-
cussion levels. Following an abandoned drill opportunity at the Bonanza King target on Sol 724, when the
rock moved under percussion of a presampling operation (minidrill), the engineering team worked to
develop a second, more adaptive “reduced percussion” configuration. Weeks of testing in terrestrial rocks
resulted in the development of the reduced percussion algorithm, which monitors ROP and WOB thresholds,
guiding the VCL control algorithm toward the lowest VCL possible while still maintaining adequate ROP into
the rock. Reduced percussion initiates the drill operation sequence at the lowest percussion level of VCL-1
and only increases percussive energy when the ROP falls below 0.05 mm/s. The system will continue to
increase VCL up to a maximum of VCL 4 and will eventually stop the drilling process (i.e., fault out) if the
ROP falls below 0.025 mm/s while at VCL-4.

After a minidrill attempt on Sol 867 at the Mojave target resulted in a fractured slab, the decision was made to
put the reduced percussion algorithm into service. During the next drill attempt, on Sol 882, reduced percus-
sion was successfully used to sample the Mojave 2 target. Since then, reduced percussion has been used to
drill 10 additional rocks. The last full depth drilling operation that used the reduced percussion algorithm
took place on Sol 1462 at the Quela outcrop.

The drilling performance in the 11 rocks drilled using reduced percussion is used herein to indicate the
strengths of the rocks at Gale. Reduced percussion presented a major advantage to this investigation. In
the first four drill campaigns, John Klein, Cumberland, Windjana, and Confidence Hills, standard percussion
may have allowed significant portions of the rocks to be drilled at higher percussive energies than needed.
Knowing how much energy is delivered, even when rock fails under the bit, is not the same as knowing
how much energy was needed to fail the rock. During reduced percussion, the drill begins at the lowest per-
cussion energy and then reacts to stronger rocks by incrementally increasing VCL until the rocks begins to fail
under the bit at the prescribed ROP. Similarly, to determine the strengths of rocks, geotechnical instruments
deliver increasing force in a systematic manner (Bieniawski & Bernede, 1979). For instance, the pressure at
which the rock fails in compression determines the compressive strength of a rock. If more force than neces-
sary were immediately delivered, one would only know that the strength of the rock had been exceeded. Yet,
rock strength would not be quantifiable. A systematic lead-up to failure is essential for both typical rock
strength measurements in the laboratory and when using drill performance as an indicator of rock strength.

During reduced percussion, the drill ultimately reaches a VCL that maintains the prescribed ROP. As the
percussive energy is systematically increased, where rocks are composed of equitable sedimentary
assemblage, one can know if one rock on Mars is stronger than another just by knowing that it had necessi-
tated a higher VCL to maintain the prescribed ROP. Of course, with only four VCLs available, there is little
resolution. There have been multiple rocks that have caused the system to fall within the prescribed ROP
at the same percussion level. Therefore, the specific percussion energy necessitated by each rock at the high-
est VCL achieved is calculated and used to indicate rock strength. Rocks requiring more percussive energy at
the highest VCL achieved are stronger than those requiring less percussive energy within the respective -
highest-VCL-achieved.

In order to normalize the data, the energy (J) is calculated over the volume (cm?) of rock comminuted during
the generation of the borehole. Prior to reaching the VCL that maintains the prescribed ROP, the system
works at lower VCLs; percussive energy is expended, but there is little to no progress into the rock.
Therefore, no significant volume is excavated from the borehole, resulting in disproportionately high
energies per unit volume.

Drill performance herein is reported for full-depth drilling operations only. Prior to drilling, a hole-start opera-
tion is performed. During “hole start,” a divot of 5 mm depth is created. This safeguards concentricity to the
projected hole by ensuring that the tapered end of the bit is fully engaged into the rock. As such, the cross
section of the drill bit remains constant as does the volume-per-unit-depth excavated throughout the drilling
operation post hole start.

During drilling operation, as the system works to maintain the WOB, the time spent at each VCL is known, as is
the ROP and the depth drilled. The diameter of the bit remains constant, so as bore depth is achieved, the
volume of rock that was processed under the bit is calculated at 0.18 cm?® of rock excavated per millimeter
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of depth drilled. The specific percussive energy (Epercus) Can be calculated from the time (t) in seconds, the
energy per blow of the VCL (Eyc), and the rate of percussion (30.1 Hz) over the volume of material (vol)
removed using:

30.1-t-E |
Epercus = e towl (1

vol

At the time of this writing, 11 outcrops on Mars have been drilled using the reduced percussion algorithm.
Seven of these sites represent Murray formation outcrops, with four representing the Stimson formation.
The Murray formation is composed of mudstones, interpreted as lacustrine, characterized by fine-scale planar
laminations and grains sizes that range from very fine sand to coarse silt, with Krumbein values of 3(¢) (125
um) to 5(¢) (300 pum) (Sloss, 1963) (Sacks et al., 2016). The Stimson formation is an eolian sandstone inter-
preted as dune formation. Stimson outcrops are found locally and unconformably atop of the Murray. The
Stimson formation is dominated by very fine sand grains, 1(¢) (0.5 mm) to 4(¢) (63 um). The Stimson and
Murray rocks are lithified fine sandstones and coarse silty mudstones, respectively, with varying compressive
strengths. Thomson et al. (2013, 2014) illustrated that the energy per unit volume needed to break the bonds
of a volume of rock correlates to uniaxial compressive strength (UCS).

Even with a chisel style drill bit optimized for percussion, it is understood that rotation contributes to
comminution, especially in weaker rocks. Yet specific percussion energy, as opposed to total drill energy,
was used to calculate rock strengths herein. Indention into the surfaces of rocks under a load is the origin
of all rock comminution processes (Teale, 1965). In the case for PADS, the dominant factor for rock
comminution is high-impact velocity focused along the edge of the drill bit that produces concentrated
forces pulverizing the rock in a zone extending several times greater than the depth of the indentation
(Han et al., 2005).

During this research, rocks were drilled at Earth ambient pressures for comparison to rocks drilled on Mars.
Atmospheric pressure does not have a significant effect on the manner in which stresses are carried
through solid materials. A rock’s solid components will react the same to percussive energy regardless
of the background atmospheric pressure. This does not hold true for the rotary drill component. During
testing with drills optimized for rotary drilling, friction between rock surfaces and drill bits have been
found to be as much as 10% lower at Mars atmospheric pressure than at Earth ambient pressure
(Zacny & Cooper, 2007). This is likely due to desorption of gas molecules from surfaces allowing for less
rotational torque. This effect may also provide for more efficient cuttings removal in the presence of a
percussive element at lower pressures (Green & Zacny, 2014).

2. Materials and Methods

Terrestrial, sedimentary rocks from the Ridge Basin Group in California were drilled at Earth ambient
pressure using the arm-mounted drill on the Vehicle System Test Bed (VSTB) in the Mars Yard at
the Jet Propulsion laboratory (JPL) (Figures 1c and 1d). This was done to provide a direct comparison
of the drill performances measured during the mission. The VSTB's robotic arm and drill system are
mechanically indistinguishable from the drill system and robotic arm aboard the Curiosity rover
(Robinson et al.,, 2013).

The Ridge Basin rocks were selected as Gale crater analogs based on their sedimentary history and morpho-
logical characteristic, which are reasonable comparisons to the Martian rocks encountered by Curiosity to
date. Similar to the sedimentary environment at Gale crater, the siltstones and sandstones of the Ridge
Basin Group were produced as a result of high-relief infilling into a restricted basin (Link & Osborne, 2009).
Conglomerates, fine sandstones, and silty mudstones at both sites provide evidence of energetic fluvial activ-
ity into mudflats, shallows, and near-offshore beds. Ridge Basin sandstones are likely of marginal shoreline
origin, whereas the fine sandstones of the Stimson formation at Gale Cater are thought to have been depos-
ited in an eolian dune system (Banham et al., 2017). Where the clastic components of all of the sedimentary
rocks encountered at Gale crater have been dominantly basaltic in composition, Ridge Basin rocks are com-
posed of a variety of felsic to arkosic clastic components. Clasts of Ridge Basin conglomerates are largely
granitic in composition. Sandstones are mainly lithic plagioclase arkoses containing small amounts of carbo-
nate constituents. lllite and smectite with minor kaolinite comprise the detrital clays found in the Ridge Basin
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Figure 2. Summary of the measured properties of the Ridge Basin mudstones that were used as terrestrial analogs for the Murray and Stimson on Mars. Grain size
distribution analysis illustrates that the Ridge Basin rocks are fine-grained mudstones. Results of the uniaxial compressive strength testing are illustrated on the
bottom left, and images of each of the samples drilled during this research are illustrated on the bottom right (image: NASA/JPL-Caltech).

Siltstones (Link, 1984), while the clastic components of the fine-grained sediments of Ridge Basin are
generally arkosic, and the clastic grains at Gale are generally basaltic. However, the minerology of the
grains themselves is not relevant for comparing rock strength in this case. Both arkosic and basaltic grains
are of equitable hardness of 6-7 on the Mohs scale (Pough, 1996).

Rocks collected from the Ridge Basin group include three specimens of varied UCS (Figure 2). Particle size
distribution for each was determined by wet sieving disaggregated samples. Following disaggregation,
each specimen was wet-sieved using a 0.0625 mm mesh in order to separate the sand and mud fractions
in each. After drying, the sand fraction was sieved for 15 min. The mud fraction in each specimen was
analyzed via pipette analysis (Folk, 1980). All three Ridge Basin samples can be classified as moderately
sorted, muddy sandstones dominated by fine, very-fine-sand-sized and very-coarse-silt-sized grains
(Figure 2). Mean grain sizes were found to be 82 um (Phi value of 3.6 ¢) for Ridge Basin Mudstone A,
74 um (Phi value of 3.8 ¢) for Ridge Basin Mudstone B, and 56 um (Phi value of 4.1 ¢) for the Ridge
Basin Mudstone C.

One of the factors that affects drill performance is the ratio of grain size to drill bit diameter. Boring into a
conglomerate will affect drilling performance more profoundly than would a homogenous sandstone, even
where lithification minerology and maturity remained equal. However, the grain sizes of the Murray, Stimson,
and the Ridge Basin mudstones are small relative to the drill bit diameter (0.003 mm:16 mm). The largest
difference in the mean particle sizes among the Murray, Stimson, and Ridge Basin mudstones is ~300 um,
which is ~53 times smaller than the diameter of the drill bit. With such a small difference in grain sizes among
these siltstones and sandstones, and such a large bit-diameter to grain size ratio, the difference in sedimen-
tary classification among the rocks does not affect the drill performance significantly. As such, the specific
percussion energy per unit excavated and the rock strengths for all formations under investigation have been
evaluated together.

The unconfined compressive strengths of each of the three Ridge Basin samples were determined according
to ASTM D7012C on multiple cored samples to ensure a representative distribution of the parent rock
(Figure 2). One inch diameter cores were taken using a wet coring system. However, dry nitrogen replaced
water as a working fluid to ensure no adsorbed water infusion into the test articles, which could have
weakened them. The cores were cut to 2 inch length cylinders. UCS testing on the cylinders created from
the cores was conducted at ambient atmospheric conditions.
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Figure 3. lllustration of the specific percussion energy per unit volume excavated at the highest VCL versus the rock strength (UCS). Rocks presented here are those
that have been drilled using the reduced percussion algorithm during the MSL mission (Murray and Stimson) and rocks that have been drilled using the reduced
percussion algorithm with the Vehicle System Test Bed (VSTB) at JPL (Ridge Basin). A strength curve was generated by plotting the percussion energies needed
to drill into the three Ridge Basin rocks over their (known) UCS. The percussive energy per unit volume excavated measured for each rock drilled at Gale is plotted
along the strength curve to indicate plausible UCS for each. Error reported for the Ridge Basin mudstones is represented as the standard deviation in strength
during UCS testing. The authors are confident in the strengths reported within the green highlighted area.

3. Results and Discussion

Each of the Ridge Basin rocks were drilled once using the VSTB with the reduced percussion algorithm pre-
cisely as they would have been drilled on Mars. Percussion energy per unit volume excavated was calculated
using equation (1). The specific percussion energy per volume excavated and the strengths of the Ridge Basin
mudstones can be found in Figure 3 and in Table 1.

The specific percussion energy needed to drill the 11 rocks at Gale are plotted along a strength curve are
shown in Figure 3. Here is a word of caution when interpreting Figure 3. The curve, defined by the equation
in the figure, is determined using only three points that define the calibration range. This calibration range is
determined by the testing in the Ridge Basin mudstones of which we know the strengths and the energies
needed to drill (black squares in Figure 3). The area outside the green shaded calibration zone represents
an extrapolation that assumes similar lithologies. Error reported for the Ridge Basin mudstones is represented
as the standard deviation in strength during UCS testing (Figure 3).

Sedimentary classification plays an important role in a sedimentary rock’s ability to resist drilling. Particle size
distribution, shape, and compaction determine porosity in the absence of a cementing mineral. Cementation
is influential in contributing to the strength of sedimentary rocks as the type of cementing minerals
determine the strength of the cement itself, and lithification-maturity determines the concentration in which
the cement occupies pore spaces. The predominant cementing agent on Earth consists of very strong syntax-
ial quartz overgrowths. As such, sandstones and siltstones in excess of 180 MPa UCS are common on Earth
(McBride, 1989). Even a relatively highly porous quartz-bound sandstone will be stronger than a fully indu-
rated sulfate-bound sandstone (Bernabé et al., 1992). Where cement minerology remains constant, porosity
has the greatest effect on the strength (Carey et al., 2017; Consoli et al., 2011). The sedimentary composition
at Gale crater is basaltic; concentrations of silica available for quartz induration and the necessary aqueous
processes are considerably less active when compared to Earth.

Conclusive evidence linking minerology to the rock strength at Gale remains elusive. Mineral comparisons in
the Murray seem to suggest that where crystalline SiO, content is high, rocks tend to be weaker. This seems
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to hold true, to a lesser extent, in samples composed of relatively high percentages of magnetite. It may be
that crystalline SiO, and magnetite are present as nonbinding, clastic components, while hematite and cal-
cium sulfate provide the most effective chemically derived cementing mineral. It is also thought that an effec-
tive detrital cement is present in the form of phyllosilicate (clays). Under the dry conditions on the surface of
Mars, these clays are likely to have solidified into an effective cement.

The outcrop at Telegraph Peak is dominated by crystalline SiO, and magnetite but is composed of very little
hematite and virtually no calcium sulfate or phyllosilicates (Rampe et al., 2017). As such, Telegraph Peak remains
the weakest rock drilled at Gale to date. Similarly, Buckskin, the second weakest rock, is also composed of a high
percentage of crystalline SiO,, no phyllosilicates or hematite, and only a small percentage of calcium sulfate.
The strongest rocks of the Murray were found to be the outcrops at Sebina and Marimba, each with a very high
percentage (~40%) of phyllosilicate (Rampe et al,, 2017). The first attempt to drill at the Marimba outcrop failed
due to low ROP. The second attempt at Marimba, using the same reduced percussion algorithm, was successful
but required 1,043 J/cm? specific percussion energy to drill to full depth. This suggests that high percentages of
phyllosilicates produce higher strengths. However, the outcrop at Quela is a close minerological match to
Sebina and Marimba yet remains noticeably weaker. Oudam, with very little phyllosilicate, is stronger than
Quela, although the largest mineral component within Oudam is hematite. This high percentage of hematite
may account for the additional strength of the outcrop at Oudam in the absence of a phyllosilicate cement.

Decisive trends linking rock strength to minerology are even more elusive in the Stimson outcrops. The weak-
est Stimson outcrop at Okousu and the strongest outcrop at Big Sky are mineralogically very similar. The only
discernable difference among these two outcrops is that the magnetite concentration within Okoruso is
markedly higher and the hematite percentage was found to be lower than in Big Sky. This would suggest that
hematite is the primary cementing mineral in the Stimson formation. However, the outcrop at Greenhorn
holds the highest percentage of hematite of all Stimson outcrops tested yet remains in family concerning
strength among other Stimson rocks (Treiman et al,, 2016). As such, it is evident that factors other than
mineral abundances are playing a role in the rock strength story at Gale crater.

It is believed that the crater has been the site of water table undulations, each bringing mineral cements
that have permeated the formation. Gale has also been subjected to multiple burial events (Yen et al.,
2017). The Stimson is a product of one of these burial events as evidenced by its unconformable contact
atop of the Murray. While the Stimson and Murray are both lithified with secondary minerals, the Murray
is lower in the formation and has been subjected to higher burial pressures and more fluid infiltration
events. Weaker rocks of both formations may be the result of mineral depletion as fluids have moved
through them creating open pore-spaces.

While both Stimson and Murray rocks remain within a reasonable strength range for calcium sulfate and
hematite bound rocks, they present the weakest end when compared to terrestrial analogs. Hematite and
gypsum bound rocks are generally stronger than 20 MPa and are known to reach strengths up to 40 MPa
(Yilmaz & Sendir, 2002). It is possible that the rocks drilled at Gale have never been fully indurated with
cementing minerals. The time during which these rocks were subjected to fluids bringing fortifying minerals
may have been inadequate to provide full induration. There is also the possibility that the rocks at Gale are
fully indurated and have been subjected to mineral depletion, diurnal temperature cycling, neighboring
impact events, reactive phyllosilicate swell/shrink cycles, the compression of burial, and the subsequent
decompression due to exhumation.

4, Conclusions

The weakest rocks at Gale are no stronger than adobe bricks (1.5-5 MPa) Silveira et al., 2012), and the
strongest rocks drilled can be compared to the strength of a standard concrete sidewalk or driveway
(15-30 MPa) (Teychenné et al.,, 1997). The Murry and Stimson are composed of relatively weak rocks when
compared to quartz-indurated sandstones and siltstones found on Earth. As such, Murray and Stimson
outcrops are more akin to geologically immature, terrestrial sandstones, and siltstones.

While PADS was not designed to be an instrument for measuring rock properties, the method employed has
provided a good indicator of the strengths of the rocks drilled at Gale crater. These techniques and methodol-
ogies will be useful during future missions during which rotary percussive drilling will be employed.
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