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Abstract

We study the backwards Markov chain for the Bak-Sneppen model of biological evolution
and derive its corresponding reversibility equations. We show that, in contrast to the forwards
Markov chain, the dynamics of the backwards chain explicitly involve the stationary distribution
of the model, and from this we derive a functional equation that the stationary distribution
must satisfy. We use this functional equation to derive differential equations for the stationary
distribution of Bak-Sneppen models in which all but one or all but two of the fitnesses are
replaced at each step. This gives a unified way of deriving Schlemm’s expressions for the
stationary distributions of the isotropic four-species model, the isotropic five-species model, and
the anisotropic three-species model.

1 Introduction

Since its first introduction in [BS93], the Bak-Sneppen model and its many novel features have be-
come of great interest across a wide variety of disciplines for a wide variety of reasons. To biologists
Bak-Sneppen is a simplified model of biological evolution that incorporates mechanisms for natural
selection with spatial interaction, and has had some success [BC01] in explaining experimental re-
sults on the fitnesses of bacteria in an evolutionary experiment [LT94]. To physicists Bak-Sneppen
is a model that exhibits so-called self-organized criticality [BTW88, Jen98], the notion that a sys-
tem without tunable parameters can still exhibit the typical properties of a phase transition at
a critical point. From the point of view of probabilists, Bak-Sneppen is a discrete-time Markov
chain on a continuous state space that is simple to describe but notoriously difficult to analyze.
The dynamics of the Markov chain are as follows: finitely many species are arranged on a circle
and each assigned a fitness value, initially chosen to be independent and uniformly distributed
between 0 and 1. At each time the species with minimum fitness is eliminated and replaced with a
new species with an independent fitness value that is uniform on [0, 1]; this is the natural selection
component of the model. In addition, the two species’ adjacent to the species with minimum fitness
are eliminated and replaced with new species with independent fitness values uniform on [0, 1]; this
is the spatial interaction component of the model. It is well known that under these dynamics
there is a unique stationary distribution for the fitness values, although it generally seems to be a
complicated function with no closed-form expression.
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It is widely believed, however, that as the number of species in the model grows infinitely
large the stationary distribution starts to become simpler. The longstanding but still unproven
conjecture is that in the limit the individual species’ fitnesses become uniformly distributed on an
interval (fc, 1), where fc is a value somewhere close to 2/3, and moreover that the fitnesses all
become independent of each other. The latter is particularly surprising and in marked contrast to
the situation for a finite number of species where the limiting fitnesses are dependent and supported
on all of (0, 1). Strong numerical evidence for the limiting form of the one-dimensional marginals
has been provided by simulations in [Gra95, Jen98, Bak97], and significant mathematical progress
towards this conjecture [MZ03, MZ04, GMN06, GMVDW06] has been made using the notion of
avalanches. More recent papers have studied the Bak-Sneppen model using the framework of
rank-driven Markov processes [GKW11, GKW12].

A previously unexplored aspect of the Bak-Sneppen model is its time reversed process. Time
reversal is a very powerful tool in Markov chain theory: if one starts the Markov chain in sta-
tionarity then the process run backwards is also a time-homogeneous Markov chain with the same
stationary distribution yet different dynamics. For the Bak-Sneppen model these reverse dynamics
are particularly interesting. Both the forward chain and the reverse chain follow the same pro-
cedure of replacing three species’ fitnesses at each time step, though the mechanism for how this
occurs is very different for each direction. In the forwards direction of Bak-Sneppen the chosen
species is entirely deterministic, given the current configuration of fitnesses, but the replacement
fitness values are entirely independent of the configuration. In particular this means we have no
a priori knowledge of what the new fitnesses will be. In the backwards direction of Bak-Sneppen
this turns out to be entirely the opposite. The species that will be replaced is chosen randomly,
with probabilities determined by the current configuration. Furthermore, the replacement fitnesses
are highly influenced by the current configuration and the chosen species. In particular, the fitness
value of the middle species must be chosen so that it is the minimum of the configuration at the
next step.

In this paper we derive formulas for the transition rules for the reversed process. As is to be
expected, they depend explicitly on the stationary distribution for the Markov chain which is in
general unknown. However, we are able to use the reverse dynamics to derive a functional equation
that the stationary distribution must satisfy, which provides a new tool for deriving its properties.
It is not yet fully clear how effective this tool will be for analyzing the stationary distribution for
large numbers of species, but one of the main results of this paper is that it is very effective for
small numbers of species.

Analysis of the Bak-Sneppen model with small numbers of species was recently considered by
Schlemm [Sch12, Sch15], who was able to derive exact expressions for the stationary distribution
in the four and five species cases. He does this by applying the so-called power method or von
Mises iteration: he repeatedly updates the fitness distribution with successive application of the
transition kernel and studies the convergence of this sequence of distributions. He shows that when
the initial distribution is uniform the subsequent distributions are all polynomial expressions in the
fitness values (that obey certain symmetry properties), and in the limit these polynomials converge
to a Taylor series which can be summed exactly. This involves setting up complicatd recursive
equations for the coefficients of the polynomials and finding solutions for each individual recursion.
In the four species case the solution Schlemm produces [Sch12] is very explicit, and he uses the same
method to find the stationary distribution for the anisotropic three-species model, in which only
one of the neighboring species has its fitness parameter replaced. In the five species case [Sch15]
the stationary distribution is expressed as the solution to a certain system of differential equations
that has no simple closed form expression.

Using the reversed process and the resulting functional equations, we are able to re-derive all
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of Schlemm’s formulas in a shorter and more unified way. Our method does not require setting up
a large collection of recursive equations and proving their convergence properties. Instead we only
have to solve certain integral equations which, with modest effort, can be converted into differential
equations in a small number of variables. In the isotropic four species and the anisotropic three
species cases this leads to an easily solved ordinary differential equation that has a very explicit
solution, see Theorem 3.1 for the exact expression. In the isotropic five species case we are able to
reduce the integral equations into a system of three ordinary differential equations, whose solutions,
although not explicit, can be combined to produce the stationary distribution for that model. See
Theorem 3.2 for the full statement of the solution.

Our approach has an added benefit in that it generalizes beyond just having four or five species
in the model, so long as the number of non-replaced species is kept at one or two. Both Theorems
3.1 and 3.2 allow for a more general setup of the Bak-Sneppen model in which the set of non-
replaced species at each step is kept small, so long as it occupies the same relative position with
respect to the species with minimum fitness, but the set of replaced species can be made arbitrarily
large. As our proofs show this extra feature requires virtually no change in the analysis.

The outline of this paper is as follows: in Section 2 we set our notation for the model and then
derive its reversibility equations in Theorem 2.2. Using this we describe the dynamics of the reverse
Markov chain in Corollary 2.3, and derive a functional equation that the stationary distribution
must satisfy in Proposition 2.4. In Section 3 we use this functional equation to re-derive Schlemm’s
exact expressions for the stationary distributions of the isotropic four-species model, the isotropic
five-species model, and the anisotropic three-species model, along with our generalizations to the
situation where the number of species is arbitrarily large but the number of non-replaced species
is either one or two.

Acknowledgments: Tom Alberts thanks Siva Athreya and Eric Cator for helpful discussions,
and the support of the Scott Robert Johnson fellowship at the California Institute of Technology.
Ga Yeong Lee thanks the Caltech Summer Undergraduate Research Fellowships (SURF) program
and Margaret Leighton for their support of her research. Mackenzie Simper thanks the internal
REU program at the University of Utah’s Mathematics department for support of her research.

2 The Bak-Sneppen Model and its Reverse Dynamics

2.1 Definition of the Model and Notation

The underlying dynamics are very simple to describe. The model begins with N species arranged
in a circle and to each one is attached a fitness parameter taking values between zero and one.
Typically the initial choice is to make them iid uniform random variables. At each iteration the
species with minimum fitness is selected, and its fitness along with that of some of its neighbors

is replaced with new and independently chosen uniform random fitnesses. The selection of the
minimum fitness is a way to model natural selection while the rule that the neighbors also have
their fitnesses replaced is a simplified model of spatial interaction between the species.

We describe the Bak-Sneppen model using the language of Markov chains. For an integer N ≥ 4
we label the different species of the population by ZN = Z/(NZ), the group of integers modulo
N , and it is understood that all operations on the species’ labels are performed modulo N . The
Markov chain takes values in the hypercube [0, 1]ZN . For shorthand we will use the symbol CN
to denote the hypercube. Generic elements of this space we write as x = (x1,x2, . . . ,xN ). We
also write F0,F1,F2, . . . ∈ CN for the random sequence of fitness configurations that form the
Markov chain. Note that for bold lowercase letters the subscript indicates the particular species
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within the fitness configuration, while for bold uppercase letters the subscript denotes the time in
the Markov chain. We denote the uniform measure on the hypercube by UN , and for the forward
Markov chain it is standard to assume that F0 ∼ UN . When studying the backwards Markov chain
we will typically make the assumption that F0 starts from the stationary distribution. We then
introduce sets Ei that will allow us to describe the dynamics of the Bak-Sneppen Markov chain
in wide generality, including both the isotropic and anisotropic cases. For each i ∈ ZN let Ei be
the set of species whose fitnesses will be replaced if i is the species with minimum fitness . In the
isotropic case Ei = {i − 1, i, i + 1} and in the anisotropic case Ei = {i, i + 1}, but many of our
later arguments apply to arbitrary choices of the Ei. For a given choice we let Li be the projection
operator onto the linear subspace REi , i.e. Li takes a vector in R

ZN and sets to zero all the entries
corresponding to indices that are not in Ei. We also write Lc

i for the projection onto R
Ec

i ; note
then that I = Li + Lc

i where I is the identity operator. By defining a(x) = argminx (which is
well-defined Lebesgue a.e.), the Bak-Sneppen dynamics can be written as

Fk+1 = Fk + La(Fk)(Uk − Fk), (1)

where U0,U1, . . . are iid uniform random variables in the hypercube. The second term on the
right hand side replaces the fitness parameters determined by the minimum fitness with new and
independent uniform random variables. For functions f : CN → R this Markov chain is equivalently
described by the Markov operator

Pf(x) := E [f (Fk+1)|Fk = x] = EUn

[

f
(

x+ La(x)(U− x)
)]

=

∫

CN

f
(

x+ La(x)(u− x)
)

du. (2)

In the next section we will determine the adjoint of this operator on the function space L2(CN ,PN),
where PN is the stationary measure for this chain. The adjoint is the Markov operator corresponding
to the backwards chain and from it we can deduce the reverse dynamics. Before proceeding with
this we collect some useful facts about the stationary distribution, all of which are proved in other
works.

Theorem 2.1. There exists a unique probability measure PN on CN that is stationary for the

Bak-Sneppen model. Moreover PN is absolutely continuous with respect to Lebesgue measure.

Proof. Existence and uniqueness is proved in [Gil07], based on techniques from [MT93]. That proof
holds on general graphs and therefore applies to our situation of arbitrary sets Ei. A similar proof
is found in [Sch12] for the typical model with Ei = {i− 1, i, i+ 1} and also includes a proof of the
absolute continuity, which can easily be extended to handle the case of general sets Ei.

In the remainder of the paper we will write

dPN(x) = πN(x) dx.

Implicitly this depends on the choice of the sets Ei, but this will always be clear from the context.

2.2 The Reverse Dynamics

The reversible dynamics describe the evolution of the process FT−k, 0 ≤ k ≤ T , where T is a
large positive integer and F0 is assumed to be distributed according to PN. With this distribution
for F0 the reverse chain is also a time-homogeneous Markov process, but with different dynamics
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governing its evolution. In this section we determine exactly what the dynamics are for the reverse
chain. Their main feature is that they explicitly involve the unknown stationary distribution PN,
in contrast to the forward dynamics which make no reference to it.

To determine the reversible dynamics for the Bak-Sneppen model we compute the adjoint of
the Markov operator P . Henceforth we will call this adjoint Q, and we recall that it satisfies

〈f, Pg〉PN
= 〈Qf, g〉PN

(3)

for all functions f, g ∈ L2(CN ,PN). The inner product is the standard L2 one

〈f, g〉PN
= EPN

[f(X)g(X)] =

∫

CN

f(x)g(x) dPN(x).

The equivalent description of Q is as the Markov operator for the reverse chain, that is

Qf(x) = E [f (FT−k−1)|FT−k = x] ,

so long as F0 ∼ PN.

Theorem 2.2. The adjoint operator Q acts on L2(CN ,PN) via the formula

Qf(x) =
1

πN(x)

∑

i∈ZN

Hif(x), (4)

where the operators Hi are defined by

Hif(x) =

∫

CN

f(Liy + Lc
ix)1 {a(Liy + Lc

ix) = i}πN(Liy+ Lc
ix) dy.

Remark. The operators Hi are essentially expectations with respect to the marginal distribution
of Lc

iX, where X is distributed according to PN . The indicator function term only integrates over
vectors y which put the minimum of Liy + Lc

ix at species i. Note that the right hand side of the
equation depends only on Lc

ix, hence if Lc
ix1 = Lc

ix2 then Hif(x1) = Hif(x2).

Proof. In this proof we use the notation xi = Lix, x
c
i = Lc

ix for the projections of a vector x ∈ CN ,
and for a set A ⊂ ZN of species we write C(A) = [0, 1]A. Now let f, g ∈ L2(CN ,PN). Then by
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definition of Pg and the inner product we have

〈f, Pg〉PN
=

∫

CN

f(x)Pg(x)πN(x) dx

=

∫

CN

∫

CN

f(x)g(x+ La(x)(u− x))πN(x) du dx

=
∑

i∈ZN

∫

CN

∫

CN

f(x)g(x+ Li(u− x))1 {a(x) = i}πN(x) du dx

=
∑

i∈ZN

∫

C(Ec
i )

∫

C(Ei)

∫

C(Ei)
f(xi + xc

i )g(x
c
i + ui)1 {a(xi + xc

i ) = i}πN(xi + xc
i ) dui dxi dx

c
i

=
∑

i∈ZN

∫

C(Ec
i )

∫

C(Ei)
g(xc

i + ui)

∫

C(Ei)
f(xi + xc

i )1 {a(xi + xc
i) = i}πN(xi + xc

i) dxi dui dx
c
i

=
∑

i∈ZN

∫

C(Ec
i )

∫

C(Ei)
g(xc

i + ui)Hif(x
c
i) dui dx

c
i

=
∑

i∈ZN

∫

CN

g(y)Hif(y− Liy) dy

=
∑

i∈ZN

∫

CN

g(y)
Hif(y)

πN(y)
πN(y) dy.

The second last equality follows by writing y = xc
i + ui and noting that for Lebesgue measure

dy = dui dx
c
i . By definition of y we have Liy = ui, and by the remark before the proof we also

have that Hif(y − Liy) = Hif(y).

From the adjoint Q we can derive a description for the dynamics of the backwards Markov
chain. As we mentioned in the introduction, the backwards Markov chain chooses a species i at
random and then replaces the fitness parameters of the species in the set Ei with randomly chosen
fitnesses. Therefore the backwards Markov chain is fully described by the joint distribution of the
chosen species and the replaced fitnesses. For the forwards Markov chain this joint distribution
only depends on the location of the species with the minimum fitness, while for the backwards
Markov chain it depends much more heavily on the current value of all the fitness parameters.

Corollary 2.3. Suppose F0 ∼ PN. Conditionally on FT−k = x, the joint probability of the chosen

species and the replaced fitnesses for FT−k−1 is

1 {a(Liy + Lc
ix) = i} πN(Liy + Lc

ix)

πN(x)
dy.

In particular, the probability that species i is selected is

1

πN(x)

∫

CN

1 {a(Liy + Lc
ix) = i}πN(Liy + Lc

ix) dy.

Proof. This is essentially a restatement of Theorem 2.2. For the second part one can simply
integrate out the y variable of the joint density, or use Theorem 2.2 on the function f(x) =
1 {a(x) = i}. This is because for the backwards chain the chosen species is the one that is assigned
the minimum fitness value.
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2.3 A Functional Equation for the Stationary Distribution

Proposition 2.4. The stationary distribution πN satisfies the functional equation

πN(x) =
∑

i∈ZN

∫

CN

1 {a(Liy + Lc
ix) = i}πN(Liy + Lc

ix) dy. (5)

Proof. Consider the constant function f : CN → R given by f(x) = 1. Since Q is the Markov
operator of the reverse chain we automatically have Qf(x) = 1 for all x. The result then follows
from Theorem 2.2.

Remark. Proposition 2.4 can also be derived from the standard adjoint equation. Indeed if P ∗ is
the adjoint of P in the space L2(CN , dx), then πN is the unique solution to P ∗πN = πN that is also
a probability distribution. Calculations similar to those in the proof of Theorem 2.2 give us that

P ∗f(x) =
∑

i∈ZN

∫

CN

f(Liy + Lc
ix)1 {a(Liy + Lc

ix) = i} dy,

from which one sees that P ∗πN = πN is equivalent to (5). We have chosen to make our derivation
this way since it also gives us a description of the reverse dynamics.

Remark. Each term on the right hand side of (5) is a function of Lc
ix since the y variables

are integrated out. For “shift-invariant” models where Ei = i + E0 for all i, which includes the
standard isotropic and anisotropic Bak-Sneppen models, symmetry arguments show that it is the
same function for each i. That is, for each fixed N there exists a function qN : [0, 1]E

c
0 → R+ such

that

πN(x) =
∑

i∈ZN

qN (Lc
iS−ix),

where S is the shift operator that cyclically increments the label of each species. This decomposition
is similar to the one found in [Sch12, Proposition 2], and we will use it for determining exact solutions
for small numbers of species.

3 Exact Solutions for Small Numbers of Non-Replaced Species

In this section we show that for small numbers of non-replaced species, that is when E0 is almost
all of ZN , equation (5) can be used to derive an explicit expression for πN.

3.1 Shift Invariant Models for One Non-Replaced Species

Here we consider the forwards Bak-Sneppen model with N species in which, at each time, all but
one of the species have their fitnesses replaced, including the species with minimum fitness. Note
that this includes the isotropic four-species model and the anisotropic three-species model studied
by Schlemm. We also assume that the model is shift invariant, in the sense that Ei = i + E0 for
each i. In words this means that the set of species replaced at each time is a re-centering of a given
fixed set around the species with minimum fitness.

Theorem 3.1. Suppose that Ei = i+E0 for each i, and that E0 = ZN\{k} for some k 6= 0. Then

the stationary distribution πN(x) is

πN(x) =
(N − 1)(N − 2)

N

∑

i∈ZN

1− (1− xi)
N−1

((1− xi)N−1 +N − 2)2
.
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Proof. By the second remark after Proposition 2.4, the full-replacement and shift invariance as-
sumptions give that πN has the form

πN(x) =
∑

i∈ZN

qN (xi)

for a to-be-determined function qN : [0, 1] → R+. By plugging this form into equation (5) and
collecting all of the individual fitness variables xi into individual equations we get a collection
of functional equations that qN must satisfy. By the shift invariance assumption it is the same
functional equation for each fitness variable, and so we may assume that i = 0. Using that Lc

0x = xk

we have

qN (xk) =

∫

CN

1 {a(L0y + Lc
0x) = 0}



qN(xk) +
∑

j∈Zn\{k}

qN(yj)



 dy.

The indicator function constrains y to take on values where the minimum of L0y + Lc
0x is at

species zero, with the fitness value xk given and remaining fixed. Therefore the constraint on the
integration is equivalent to y0 ≤ xk, and yj ≥ y0 for all j 6= 0, k. Writing from now on xk = x, the
latter equation becomes

qN (x) =

∫ x

0

∫

CN



qN (x) +
∑

j∈Zn\{k}

qN (yj)









∏

j 6=0,k

1 {yj ≥ y0} dyj



 dy0.

Now introduce the notation QN (x) =
∫ x
0 qN(t) dt. With this the inner integral is simple to evaluate,

although one should note that in the summation term the case j = 0 requires special care. This
leaves us with

qN (x) =

∫ x

0
(1− y0)

N−2(qN (x) + qN (y0)) + (N − 2)(1 − y0)
N−3(QN (1) −QN (y0)) dy0.

Straightforward calculations give

qN (x) =
1

N − 1
(1− (1− x)N−1)qN (x) + (1− (1− x)N−2)QN (1) + (1− x)N−2QN (x).

This is an ordinary differential equation for QN with boundary conditions QN (0) = 0 and QN (1) =
1/N , the latter following from the constraint that πN must integrate to 1. The ODE is easily solved
via the product rule to give

QN (x) =
(N − 1)x+ (1− x)N−1 − 1

N((1 − x)N−1 +N − 2)
,

which we then differentiate to get

qN(x) =
(N − 1)(N − 2)

N

1− (1− x)N−1

((1− x)N−1 +N − 2)2
.
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Remark. For N = 4 simple algebra gives

q4(x) =
3 · 2
4

1− (1− x)3

((1− x)3 + 2)2
=

3

2

x(3− x(3− x))

(3− x(3− x(3− x)))2
, (6)

which agrees with the solution of Schlemm [Sch12] for the isotropic four-species model. Similarly,
for N = 3 our formula reduces to

q3(x) =
2 · 1
3

1− (1− x)2

((1− x)2 + 1)2
=

2

3

x(2− x)

(2− x(2− x))2
,

which agrees with formula of Schlemm for the anisotropic three-species model. As N → ∞, it is
straightforward to see that

lim
N→∞

NqN(x) = 1

pointwise in x, and even uniformly on any sub-compact set that is bounded away from 0. This
agrees with the intuition that when all but one species is replaced at each time step, the asymptotic
distribution of the fitnesses is still uniform on [0, 1].

3.2 Shift Invariant Models for Two Adjacent Non-Replaced Species

We again consider the shift invariant case Ei = i + E0, but we now assume that E0 consists of
all but two locations which are adjacent to each other, and neither of which is adjacent to species
zero. This assumption contains the standard, isotropic five-species model. In this framework we
are able to re-derive Schlemm’s recent [Sch15] description of the asymptotic fitness distribution for
the isotropic, N = 5 model as the solution to a particular system of differential equations.

Theorem 3.2. Suppose that Ei = i + E0 for each i, and that E0 = ZN\{k, k + 1} where k 6∈
{−2,−1, 0, 1}. Then the stationary distribution is

πN(x) =
∑

i∈ZN

qN (xi,xi+1)

where qN : {(u, v) : 0 ≤ v ≤ u ≤ 1} → R+ has the form qN (u, v) = BN (u)GN (v) + AN (v), with
AN , BN , and GN solutions to the system of equations

(1− aN−2(x))G
′
N (x)− a′N−2(x)GN (x) + a′N−3(x)

∫ x

0
GN (s) ds = 0, (7)

A′
N (x) =

1

1− x

[

−G′
N (x)

∫ 1

x
BN (s) ds −B′

N (x)

∫ x

0
GN (s)ds

]

, (8)
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and

AN (v) = aN−2(v)AN (v) + aN−3(v)GN (v)

∫ 1

v
BN (s) ds + aN−3(v)(1 − v)AN (v)

+ 2

∫ v

0
aN−3(t)AN (t) dt− aN−3(v)

∫ v

0
AN (t) dt

+BN (v)

∫ v

0
aN−3(t)GN (t) dt (9)

+ 2

∫ v

0
(1− t)N−4GN (t)

∫ 1

t
B(s) ds dt+ 2

∫ v

0
(1− t)N−3AN (t) dt

+ (N − 5)

∫ v

0
(1− r)N−5

∫ 1

r

∫ s

r
[BN (s)GN (t) +AN (t)] dt ds dr

+ (N − 5)

∫ v

0
(1− r)N−5

∫ 1

r

∫ 1

t
[BN (s)GN (t) +AN (t)] ds dt dr,

where ak(v) is the function

ak(v) =

∫ v

0
(1− t)k−1 dt =

1

k

[

1− (1− v)k
]

.

Remark. Note that equation (7) for GN does not involve AN or BN , and therefore can be solved on
its own as a second-order differential equation. Then given the solution for GN , the two equations
(8), (9) form a system which can be solved for BN and AN . In the N = 5 case this system appears
in [Sch15, Corollary 2 and Proposition 5]. Furthermore, as in [Sch15, Proof of Theorem 1] equation
(9) can be differentiated multiple times to become a differential equation solely for BN , which
together with the solution for GN and equation (8) determines AN . Note that in equation (8) the
terms involving AN are entirely separate from the terms involving BN and GN .

Remark. In the N = 5 case our solutions appear to be slightly different from [Sch15, Theorem 1],
but can be made to agree by making the substitutions

B0(x) =

∫ 1−x

0
A(s) ds, B1(x) =

∫ 1

1−x
B(s) ds, and G(x) = −

∫ 1−x

0
G(s) ds.

With this substitution, (7) becomes
(

1− (1− (1− x)3))

3

)

G′′(1− x)− (1− x)2G′(1− x) + (1− x)G(1 − x) = 0,

which is equivalent to

(z3 + 2)G′′(z) + 3z2G′(z) + 3zG(z) = 0.

This same equation can be found towards the end of [Sch15, Proof of Theorem 1], however we
arrive at it very differently and now present an alternative method for solving it. In the latter
formula we allow z to be complex, which makes the differential equation second order with regular
singular points at the three roots of z3+2 = 0. Therefore the ODE can be reduced to the standard
hypergeometric differential equation and its solution expressed in terms of hypergeometric functions
or Riemann’s P-function; see [AS64] or [Poo60] for more details. In this particular case the correct
reduction is by allowing G(z) = H(−z3/2), which leads to the hypergeometric equation

3z(1 − z)H′′(z) + (2− 5z)H′(z) −H(z) = 0.
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This is the standard form of Euler’s hypergeometric equation, whose two linearly independent
solutions are expressed in terms of Gauss’ hypergeometric function 2F1 as

2F1

(

1

3
+ i

√
2

3
,
1

3
− i

√
2

3
;
2

3
; z

)

, z1/3 2F1

(

2

3
+ i

√
2

3
,
2

3
− i

√
2

3
;
4

3
; z

)

.

This agrees with the solutions found by Schlemm.

Proof. By the remark after Proposition 2.4 it follows that πN(x) has the form

πN(x) =
∑

i∈ZN

qN (xi,xi+1) (10)

for a yet to be determined function qN . We also have the functional equation (5) for the stationary
distribution, and by the shift invariance of the model we can write

πN(Liy+ Lc
ix) = πN(xi+k,xi+k+1,yi+k+2, . . . ,yi+k−1).

Combining this with (10) shows that we can write πN(Liy + Lc
ix) as

qN (yi+k−1,xi+k) + qN (xi+k,xi+k+1) + qN(xi+k+1,yi+k+2) +
N−1
∑

j=3

qN (yi+k+j−1,yi+k+j). (11)

Similarly the indicator function in the functional equation (5) can be written as

1 {a(Liy + Lc
ix) = i} = 1 {yi ≤ min{xi+k,xi+k+1}}1 {yj ≥ yi for j ∈ ZN\{i, i + k, i+ k + 1}} .

(12)

For all x ∈ UN let CN,i(x) denote the set of all y ∈ UN satisfying the inequalities on the right hand
side of (12). To find the stationary distribution we insert (10), (11), (12) into (5) and obtain

∑

i∈ZN

qN(xi,xi+1)

=
∑

i∈ZN

∫

CN,i(x)
qN (yi+k−1,xi+k) + qN(xi+k,xi+k+1) + qN (xi+k+1,yi+k+2) +

N−1
∑

j=3

qN (yi+k+j−1,yi+k+j) dy

Note that each integral on the right hand side above is a function of only xi+k and xi+k+1 (all
other variables get integrated out), and similarly each term on the left hand side is a function of
two adjacent variables. Therefore we search for solutions of the form

qN (xi,xi+1) =

∫

CN,i−k(x)
qN (yi−1,xi) + qN (xi,xi+1) + qN(xi+1,yi+2) +

N−1
∑

j=3

qN (yi+j−1,yi+j) dy

(13)

Since the equation above is the same for all i it is enough to consider i = 0, and from now on we
write x0 = u and x1 = v. The range of integration becomes the set

CN (u, v) := {y ∈ UN : y−k ≤ min{u, v},yj ≥ y−k for j ∈ ZN\{−k, 0, 1}}.
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Note that y−k plays a different role from the other yj terms in equation (13), since they are separate
in the set CN (u, v). Separating out the y−k terms from equation (13) leads to

qN (u, v) =

∫

CN (u,v)
qN (y−1, u) + qN (u, v) + qN (v,y2) + qN (y−k−1,y−k) + qN (y−k,y−k+1)

+
∑

j 6∈{−1,0,1,−k−1,−k}

qN (yj ,yj+1) dy.

Now qN is an unknown function on [0, 1]2 satisfying the above equation, with the constraints

qN(u, v) ≥ 0,

∫

[0,1]2
qN (u, v) du dv =

1

N

that make it a density. If one inserts a symmetric function f in place of qN into the right hand
side of (13) then the output is also a symmetric function, which motivates us to restrict our search
to symmetric solutions qN(u, v) = qN (v, u). With this in mind we restrict the domain of definition
of the function qN to the set S = {(u, v) : 0 ≤ v ≤ u ≤ 1}, and we symmetrize the right hand
side to be defined on this domain (which, in general, means that we replace a function f on [0, 1]2

with its symmetrization f̃(u, v) = (f(u, v) + f(v, u))/2 on S). Then tedious but straightforward
computations lead us to the equation

qN (u, v) = aN−2(v)qN (u, v) + aN−3(v)

∫ 1

u
q(s, u) ds + aN−3(v)

∫ 1

v
q(s, v) ds

+

∫ v

0
aN−3(t)q(u, t) dt + aN−3(v)

∫ u

v
q(u, t) dt+

∫ v

0
aN−3(t)q(v, t) dt

+ 2

∫ v

0
(1− t)N−4

∫ 1

t
q(s, t) ds dt+ (N − 5)

∫ v

0
(1− r)N−5

∫ 1

r

∫ s

r
q(s, r) dr ds dr

+ (N − 5)

∫ v

0
(1− r)N−5

∫ 1

r

∫ 1

r
q(s, t) ds dt dr, (14)

Note that the ak(v) terms are simply the probabilities

ak(v) = P (U0 ≤ v, Uj ≥ U0 for j = 1, 2, . . . , k − 1)

where the Ui are independent uniform random variables on [0, 1]. The aN−2 and aN−3 factors that
appear in (14) are a result of integrating out most components of the y variables in (13) over the
sets CN,i(x).

Thus we are left to solve (14), and at this point we introduce the ansatz qN (u, v) = BN (u)GN (v)+
AN (v) for functions BN , GN , AN : [0, 1] → R. This is the form that already appears in Schlemm’s
solution [Sch15], and which we came upon by using a forward iteration method on (14) and ob-
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serving that this form is invariant under the iteration. Inserting it into (14) results in the equation

BN (u)GN (v) +AN (v) = aN−2(v)BN (u)GN (v) + aN−2(v)AN (v)

+ aN−3(v)GN (u)

∫ 1

u
BN (s) ds+ aN−3(v)(1 − u)AN (u)

+ aN−3(v)GN (v)

∫ 1

v
BN (s) ds + aN−3(v)(1 − v)AN (v)

+BN (u)

∫ v

0
aN−3(t)GN (t) dt+

∫ v

0
aN−3(t)AN (t) dt

+ aN−3(v)BN (u)

∫ u

v
GN (t) dt+ aN−3(v)

∫ u

v
AN (t) dt (15)

+BN (v)

∫ v

0
aN−3(t)GN (t) dt+

∫ v

0
aN−3(t)AN (t) dt

+ 2

∫ v

0
(1− t)N−4GN (t)

∫ 1

t
BN (s) ds dt+ 2

∫ v

0
(1− t)N−3AN (t) dt

+ (N − 5)

∫ v

0
(1− r)N−5

∫ 1

r

∫ s

r
q(s, t) dt ds dr

+ (N − 5)

∫ v

0
(1− r)N−5

∫ 1

r

∫ 1

t
q(s, t) ds dt dr.

Equation (9) is found by equating all the terms in (15) involving v. We then differentiate (15) with
respect to u to get

A′
N (u) =

1

1− u

[

−G′
N (u)

∫ 1

u
BN (s) ds −B′

N (u)

∫ u

0
GN (s)ds

]

+
1

aN−3(v)(1 − u)

[

(1− aN−2(v))B
′
N (u)G(v) + aN−3(v)B

′
N (u)

∫ v

0
GN (s) ds

−B′
N (u)

∫ v

0
aN−3(s)GN (s) ds

]

.

By equating all terms that are functions of u alone we derive (8). This leaves the terms involving
both u and v

0 = (1− aN−2(v))B
′
N (u)G(v) + aN−3(v)B

′
N (u)

∫ v

0
GN (s) ds −B′

N (u)

∫ v

0
aN−3(s)GN (s) ds.

We factor out B′
N (u) and then differentiate once with respect to v to derive (7).
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