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Abstract—We formulate an optimal scheduling problem for
battery swapping that assigns to each electric vehicle (EV) a
best station to swap its depleted battery based on its current
location and state of charge. The schedule aims to minimize total
travel distance and generation cost over both station assignments
and power flow variables, subject to EV range constraints, grid
operational constraints and AC power flow equations. To deal
with the nonconvexity of power flow equations and the binary
nature of station assignments, we propose a solution based on
second-order cone programming (SOCP) relaxation of optimal
power flow (OPF) and generalized Benders decomposition. When
the SOCP relaxation is exact, this approach computes a globally
optimal solution. We evaluate the performance of the proposed
algorithm through simulations. The algorithm requires global
information and is suitable for cases where the distribution
network, stations, and EVs are managed centrally by the same
operator. In Part II of the paper, we develop distributed solutions
for cases where they are operated by different organizations that
do not share private information.

Index Terms—DistFlow equations, electric vehicle, battery
swapping, convex relaxation, generalized Benders decomposition.

I. INTRODUCTION

A. Motivation

We are at the cusp of a historic transformation of our
energy system into a more sustainable form in the coming
decades. Electrification of our transportation system will be
an important component because vehicles today consume more
than a quarter of energy in the US and emit more than a quarter
of energy-related carbon dioxide [1], [2]. Electrification will
not only greatly reduce greenhouse gas emission, but will
also have a big impact on the future grid because electric
vehicles are large but flexible loads [3]. It is widely believed
that uncontrolled EV charging may stress the distribution grid
and cause voltage instability, but well controlled charging can
help stabilize the grid and integrate renewables. As we will
see below there is a large literature on various aspects of EV
charging.
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We study a different problem here, motivated by a battery
swapping model currently being pursued in China, especially
for electric buses and electric taxis [4]. The State Grid (one of
the two national utility companies) of China is experimenting
with a new business model where it operates not only the grid,
but also battery stations and a taxi service around a city, e.g.,
Hangzhou. When the state of charge of a State Grid taxi is
low, it goes to one of State Grid operated battery stations to
exchange its depleted battery for a fully-charged battery. While
battery swapping takes only a few minutes, it is not uncommon
for a taxi to arrive at a station only to find that it runs out of
fully-charged batteries and there is a queue of taxis waiting
to swap their batteries. The occasional multi-hour waits are a
serious impediment to the battery swapping model.

In this paper, we formulate in Section II an optimal
scheduling problem for battery swapping that assigns to each
EV a best station to swap its depleted battery based on its
current location and state of charge. The station assignment
not only determines EVs’ travel distance, but can also impact
significantly the power flows on a distribution network because
batteries are large loads. The schedule aims to minimize a
weighted sum of total travel distance and generation cost over
both station assignments and power flow variables, subject
to EV range constraints, grid operational constraints and AC
power flow equations.

This joint battery swapping scheduling and OPF problem is
nonconvex and computationally difficult for two reasons. First
the AC power flow equations are nonlinear. Second, the station
assignment variables are binary. We address the first difficulty
in Section III using the recently developed SOCP relaxation
of OPF. Fixing any station assignment, the relaxation of OPF
is then convex. Sufficient conditions are known that guarantee
an optimal solution to the nonconvex OPF problem can be
recovered from an optimal solution to its relaxation; see [5],
[6] for a comprehensive tutorial and references therein. Even
when these conditions are not satisfied, SOCP relaxation is
often exact for practical radial networks, as confirmed also by
our simulations.

The second difficulty can be addressed using two different
approaches. The first approach, presented in Section III of this
paper, applies generalized Benders decomposition to the mixed
integer convex relaxation, and is suitable for cases where the
distribution network, stations, and EVs are managed centrally
by the same operator. When the underlying relaxation of OPF
is exact, the generalized Benders decomposition computes a
global optimum. In Section IV we illustrate the performance of
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our centralized solution through simulations. The simulation
results suggest that the proposed algorithm is effective and
computationally efficient for practical application.

In the first approach, the operator needs global information
such as the grid topology, impedances, operational constraints,
background loads, availability of fully-charged batteries at
each station, locations and states of charge of EVs. The second
approach relaxes the binary station assignment variables to
real variables in [0, 1]. With both relaxations the resulting
approximate problem of joint battery swapping scheduling
and OPF is a convex problem. This allows us to develop
distributed solutions that are suitable for cases where the grid,
stations, and EVs are operated by different organizations that
do not share their private information. Their respective deci-
sions are coordinated through privacy-preserving information
exchanges. This will be explained in Part II of this paper.

B. Literature

There is a large literature on EV charging, e.g., optimiz-
ing charging schedule for various purposes such as demand
response, load profile flattening, or frequency regulation,
e.g., [7]–[11]; architecture for mass charging [12]; locational
marginal pricing for EV [13]; or the interaction of EV penetra-
tion and the optimal siting and investment of charging stations
[14].

Sojoudi et al. [15] seems to be the first to jointly optimize
EV charging and AC power flow spatially and temporally
through semidefinite relaxation. Zhang et al. [16] extends
the joint OPF-charging problem to multiphase distribution
networks and proposes a distributed charging algorithm based
on the alternating direction method of multipliers (ADMM).
Chen et al. [17] decomposes the joint OPF-charging prob-
lem into an OPF subproblem that is solved centrally by a
utility company and a charging subproblem that is solved in
a distributed manner by the EVs coordinated by a valley-
filling signal from the utility. De Hoog et al. [18] uses a
linear model and formulates EV charging on a three-phase
unbalanced grid as a receding horizon optimization problem.
It shows that optimizing charging schedule can increase the
EV penetration that is sustainable by the grid from 10–15% to
80%. Linearization is also used in [19] to model EV charging
on a three-phase unbalanced grid as a mixed-integer linear
program (binary because an EV is either being charged at
peak rate or off).

The literature on battery swapping is comparatively much
smaller. Tan et al. [20] proposes a mixed queueing network
that consists of a closed queue of batteries and an open queue
of EVs to model the battery swapping processes, and analyzes
its steady-state distribution. Yang et al. [21] designs a dynamic
operation model of a battery swapping station and devises
a bidding strategy in power markets. You et al. [22] studies
the optimal charging schedule of a battery swapping station
serving electric buses and proposes an efficient distributed
solution that scales with the number of charging boxes in
the station. Sarker et al. [23] proposes a day-ahead model
for the operation of battery swapping stations and uses ro-
bust optimization to deal with future uncertainty of battery

demand and electricity prices. Zheng et al. in [24] studies
the optimal design and planning of a battery swapping station
in a distribution system to maximize its net present value
taking into account life cycle cost of batteries, grid upgrades,
reliability, operational costs and investment costs. Zhang et al.
[25] discusses several potential commercial modes of battery
swapping and leasing service in China, and presents a benefit
analysis from perspectives of utility companies and battery
manufacturers.

II. PROBLEM FORMULATION

We focus on the scenario where a fleet of EVs and a set
of stations1 operate in a region that is supplied by an active
distribution network. We assume the EVs, the stations, and
the distribution network are managed centrally by the same
operator, e.g., the State Grid in China. Periodically, say, every
15 minutes, the system determines a set of EVs that should
be scheduled for battery swapping, e.g., based on their current
state of charge or EVs’ requests for battery swapping. At the
beginning of the control interval the system assigns to each
EV in the set a station for battery swapping. The EVs travel to
their assigned station to swap their batteries before the end of
the current interval, and batteries returned by the EVs start to
be charged at the stations from the next interval. Our goal is
to design an assignment algorithm that optimizes a weighted
sum of electricity generation cost and the distance travelled for
battery swapping, while respecting the operational constraints
of the distribution network.

We make two simplifying assumptions. First we assume
that all EVs in the set can arrive at their assigned station
and finish battery swapping before the next interval, so we
do not consider scheduling across multiple intervals. This
assumption is reasonable because the geographic area covered
by a distribution network is usually relatively small. Typically
a city substation (50MVA, 110kV) has a service radius of 3–
5km, depending on its load density [26]. Second we ignore
the possibility that an EV does not swap its battery as
recommended or swaps its battery at a station different from
its assigned station. These complications affect the initial state
at the beginning of the next interval, but in this paper, we focus
only on optimal scheduling in the current interval.

In the following we present a mathematical model of a radial
distribution network and formulate our optimal scheduling
problem for battery swapping. All vectors x in this paper are
column vectors; xT denotes its transpose.

A. Network model

Consider a radial distribution network with a connected
directed graph G = (N,E), where N := {0, 1, 2, . . . , N} and
E ⊆ N×N. Each node in N represents a bus and each edge in E
represents a distribution line. We assume G has a radial (tree)
topology with bus 0 representing a substation that extracts
power from a transmission network to feed the loads in G,
as illustrated in Fig. 1. We orient the graph, without loss of
generality, so that each line points away from bus 0. Denote

1Throughout this paper stations refer to battery stations.



root node (bus 0)

leaf nodes

Fig. 1. Radial topology of G.

a line in E by (j, k) or j → k if it points from bus j to bus
k. Each bus j (except bus 0) has a unique parent bus i := ij .
Let zjk be the complex impedance of line (j, k) ∈ E. Let
Sjk := Pjk + iQjk denote the sending-end complex power
from bus j to bus k where Pjk and Qjk denote the real and
reactive power flows. Let ljk denote the squared magnitude of
the complex current from bus j to bus k. Let vj denote the
squared magnitude of the complex voltage phasor of bus j.
We assume the voltage v0 of bus 0 is fixed.

Each bus j has a base load sbj := pbj + iqbj (excluding
the battery charging loads from stations), where pbj and qbj
denote the real and reactive power. Each bus j may also have
distributed generation sgj := pgj + iqgj . Let sj denote the net
complex power injection given by

sj :=

{
sgj − sbj − sej if j supplies a station

sgj − sbj otherwise

where sej denotes the total charging load at bus j. We assume
the base loads sbj are given and the generations sgj and charging
loads sej are variables.

We use the DistFlow equations proposed by Baran and Wu
in [27] to model the power flows on the network:∑
k:(j,k)∈E

Sjk = Sij − zij lij + sj , j ∈ N (1a)

vj − vk = 2Re(zHjkSjk)− |zjk|2ljk, j → k ∈ E (1b)

vj ljk = |Sjk|2, j → k ∈ E (1c)

where vj =: |Vj |2 and ljk := |Ijk|2. The equations (1a)
impose power balance at each bus, (1b) model the Ohm’s law,
and (1c) define branch power flows. Note that Si0 := 0 and
Ii0 := 0 if j = 0 is the substation bus. When bus j is a leaf
node of G, all Sjk = 0 in (1a). The quantity zij |Iij |2 is the
loss on line (i, j), and hence Sij−zij |Iij |2 is the receiving-end
complex power at bus j from i.

The complex notation of the DistFlow equations (1)
is only a shorthand for a set of real equations in the
real vector variables (s, v, l, S) := (p, q, v, l, P,Q) :=
(pj , qj , vj , ljk, Pjk, Qjk, j, k ∈ N, (j, k) ∈ E). The equations
(1a)–(1b) are linear in these variables but (1c) are quadratic,
one of the two sources of nonconvexity in our joint battery
swapping scheduling and OPF problem formulated below.

The operation of the distribution network must meet certain
specifications. The squared voltage magnitudes must satisfy

vj ≤ vj ≤ vj , j ∈ N (2a)

where vj and vj are given lower and upper bounds on the
squared voltage magnitude at bus j. The distributed real and
reactive generations must satisfy

pg
j
≤ pgj ≤ p

g
j , j ∈ N (2b)

qg
j
≤ qgj ≤ q

g
j , j ∈ N (2c)

where pg
j
, pgj , qg

j
, and qgj are given lower and upper bounds on

the real and reactive power generation at bus j respectively.
The power flows on line (j, k) must satisfy

|Sjk| ≤ Sjk, j → k ∈ E (2d)

where Sjk denotes the capacity of line (j, k).
The model is quite general. For example, if a quantity is

known and fixed, then we set both its upper and lower bounds
to the given quantity, e.g., for the voltage of the substation
bus, v0 = v0. If there is no distributed generation at bus j
then pgj = pg

j
= qgj = qg

j
= 0.

B. Battery swapping scheduling

Let Nw := {1, 2, . . . , Nw} ⊆ N denote the set of buses
that supply electricity to stations. Their locations are fixed and
known. There is a station connected to each bus j ∈ Nw and
we use j to index both the bus and the station. The batteries
at station j are either charging at a constant rate r or already
fully-charged and ready for swapping. Denote the total number
of batteries and fully-charged batteries at the beginning of the
current control interval by Mj and mj respectively.

Let A := {1, 2, . . . , A} denote the set of EVs in the
geographic area served by the distribution network that require
battery swapping in the current interval. Let their states of
charge be (ca, a ∈ A). Let uaj , a ∈ A, j ∈ Nw, represent the
assignment:

uaj =

{
1, if EV a is assigned to station j

0, otherwise

and let u := (uaj , a ∈ A, j ∈ Nw) denote the vector of
assignments.

Assumption 1. A ≤
∑
j∈Nw mj .

Under Assumption 1, there are enough fully-charged batteries
in the system for all EVs in A in the current interval. This can
be enforced when choosing the candidate set A of EVs for
battery swapping, e.g., ranking EVs according to their states
of charge and scheduling in an increasing order for at most∑
j∈Nw mj EVs.
The assignment u satisfies the following conditions:∑

j∈Nw

uaj = 1, a ∈ A (3a)∑
a∈A

uaj ≤ mj , j ∈ Nw (3b)

i.e., exactly one station is assigned to every EV and every
assigned station has enough fully-charged batteries to serve
EVs.

The system knows the current location of every EV a
and therefore can calculate the distance daj from its current



location to the assigned station j. If the EV is not currently
carrying passengers and can go to swap its battery immedi-
ately, then daj is the travel distance from its current location
to station j, e.g., calculated from a routing application (such
as Google map). If the EV must first complete its current
passenger run before going to station j, then the distance daj
is the travel distance from its current location to the destination
of its passengers and then to station j. The assigned station j
must be within each EV a’s driving range, i.e.,

uajdaj ≤ γaca, j ∈ Nw, a ∈ A (3c)

where ca is EV a’s current state of charge and γa is its driving
range per unit state of charge.

Since every EV produces a depleted battery that needs to
be charged at rate r, we can express the net power injection
sj = pj + iqj at bus j in terms of assignment u as:

pj =


pgj − p

b
j − r

(
Mj −mj +

∑
a∈A

uaj

)
, j ∈ Nw

pgj − p
b
j , j ∈ N \ Nw

(4a)

qj = qgj − q
b
j , j ∈ N (4b)

Let fj : R → R models the generation cost at bus j, e.g.,
for a distributed gas generator. We assume all fj are strictly
convex increasing functions [15]–[17]. We are interested in the
following optimization problem:

min
u,s,sg,
v,l,S

∑
j∈N

fj(p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj (5)

s.t. (1)(2)(3)(4), uaj ∈ {0, 1}

where
∑
a∈A

∑
j∈Nw

uajdaj is the total travel distance of EVs and

α > 0 is a weight that makes the generation cost and the travel
distance comparable.

III. SOLUTION

The joint battery swapping scheduling and OPF problem
(5) is generally difficult to solve because (1c) is nonconvex,
as mentioned above, and u is discrete. Our solution strategy
has two steps.

1. SOCP relaxation. We first relax the nonconvex constraint
(1c) into a second-order cone. Specifically, replace the Dist-
Flow equations (1) by∑
k:(j,k)∈E

Sjk = Sij − zij lij + sj , j ∈ N (6a)

vj − vk = 2Re(zHjkSjk)− |zjk|2ljk, j → k ∈ E (6b)

vj ljk ≥ |Sjk|2, j → k ∈ E (6c)

Then the SOCP relaxation of the problem (5) is:

min
u,s,sg,
v,l,S

∑
j∈N

fj(p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj (7)

s.t. (6)(2)(3)(4), uaj ∈ {0, 1}

Fix any assignment u ∈ {0, 1}A. Then the problem (7) is
a convex problem. It is a relaxation of the problem (5),

given u, in the sense that the optimal objective value of the
relaxation (7) lower bounds that of the original problem (5).
If an optimal solution to the relaxation (7) attains equality in
(6c) then the solution is also feasible, and therefore optimal,
for the original problem (5). In this case, we say that the
SOCP relaxation is exact. Sufficient conditions are known
that guarantee the exactness of the SOCP relaxation; see [5],
[6] for a comprehensive tutorial and references therein. Even
when these conditions are not satisfied, SOCP relaxation for
practical radial networks is often exact, as confirmed also by
our simulations in Section IV.

Hence we will solve (7) instead of (5).

2. Generalized Benders decomposition. To deal with the
discrete variables in (7), we apply generalized Benders decom-
position. Benders decomposition was first proposed in [28] for
problems where, when a subset of the variables are fixed, the
remaining subproblem is a linear program. It is extended in
[29] to the broader class of problems where the remaining
subproblem is a convex program. We now apply it to solving
(7).

Denote the continuous variables by x := (s, sg, v, l, S) and
the discrete variables by u. Denote the objective function by

F (x, u) :=
∑
j∈N

fj(p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj

Given any u, F (x, u) is convex in x since fj’s are assumed
to be strictly convex. Denote the constraint set for x by

X := {x ∈ R(5|N|+3|E|) : x satisfies (2)(6)}

the constraint set for u by

U := {u ∈ {0, 1}ANw : u satisfies (3)}

and the constraints (4) on (x, u) by G(x, u) = 0. Then the
relaxation (7) takes the standard form for generalized Benders
decomposition:

min
x,u

F (x, u) (8)

s.t. G(x, u) = 0, x ∈ X, u ∈ U

where F : R(5|N|+3|E|) × {0, 1}ANw → R is a scalar-valued
function, and G : R(5|N|+3|E|) × {0, 1}ANw → R2|N| is a
vector-valued constraint function. Fixing any u ∈ U, (8) is a
convex subproblem in x. We now apply generalized Benders
decomposition of [29] to (8).

Write (8) in the following equivalent form:

min
u

W (u) s.t. u ∈ U ∩W (9a)

where

W (u) := min
x∈X

F (x, u)

s.t. G(x, u) = 0
(9b)

and
W := {u : G(x, u) = 0 for some x ∈ X} (9c)

The problem (9b), called the slave problem, is convex and
much easier to solve than (8). The set W consists of all u
for which (9b) is feasible and hence U ∩W is the projection



of the feasible region of (8) onto the u-space. The central
idea of generalized Benders decomposition is to invoke the
dual representations of W (u) and W to derive the following
equivalent problem to (9) (see [29, Theorems 2.2 and 2.3]):

min
u∈U

sup
µ∈R2|N|

{
min
x∈X

{
F (x, u) + µTG(x, u)

}}
s.t. min

x∈X

{
λTG(x, u)

}
= 0, ∀λ ∈ R2|N|

Here λ and µ are Lagrangian multiplier vectors for W and
W (u) respectively. This problem is equivalent to:

min
u∈U,u0

u0 (10)

s.t. u0 ≥ min
x∈X

{
F (x, u) + µTG(x, u)

}
, ∀µ ∈ R2|N|

min
x∈X

{
λTG(x, u)

}
= 0, ∀λ ∈ R2|N|

In summary, the series of manipulations has transformed the
relaxation (7) into the master problem (10).

Since (10) has uncountably many constraints with all pos-
sible λ’s and µ’s, it is neither practical nor necessary to
enumerate all constraints in solving (10). Generalized Benders
decomposition starts by solving a relaxed version of (10) that
ignores all but a few constraints. If a solution of the relaxed
version of (10) satisfies all the ignored constraints, then it
is an optimal solution of (10) and the algorithm terminates.
Otherwise, the solution process of the relaxed version of (10)
will identify one µ or λ for which the constraints are violated.
These constraints are then added to the relaxed version of (10),
and the cycle repeats.

Specifically the Benders decomposition algorithm for (7)
(or equivalently (8)) is as follows.
• Step 1. Pick any ū ∈ U ∩W. Solve (9b) with u = ū

to obtain an optimal Lagrangian multiplier vector µ̄. Let
nµ = 1, nλ = 0, µ1 = µ̄, and UBD = W (ū), where nµ,
nλ are counters for the two types of constraints in (10),
and UBD denotes an upper bound on the optimal value
of (8).

• Step 2. Solve the current relaxed master problem:

min
u∈U,u0

u0 (11)

s.t. u0 ≥ min
x∈X

{
F (x, u) +

(
µi
)T
G(x, u)

}
,

i = 1, . . . , nµ

min
x∈X

{(
λi
)T
G(x, u)

}
= 0,

i = 1, . . . , nλ

Let (û, û0) be the optimal solution to (11). Clearly û0 is
a lower bound on the optimal value of (8) since the con-
straints in (10) are relaxed to a smaller set of constraints
in (11). Terminate the algorithm if UBD−û0 ≤ ε, where
ε > 0 is a sufficiently small threshold.

• Step 3. Solve the dual problem of (9b) with u = û. The
solution falls into the following two cases.

1) Step 3a. The dual problem of (9b) has a finite solution
µ̂. W (û) is finite. Let UBD = min{UBD,W (û)}.
Terminate the algorithm if UBD− û0 ≤ ε. Otherwise,
increase nµ by 1 and let µnµ = µ̂. Return to Step 2.

2) Step 3b. The dual problem of (9b) has an unbounded
solution. Then (9b) is infeasible. Determine λ̂ through
a feasibility check problem and its dual [30]. Increase
nλ by 1 and let λnλ = λ̂. Return to Step 2.

We make three remarks. First, the slave problem (9b) is
convex and hence can generally be solved efficiently. The
relaxed problem (11) involves discrete variables and are gen-
erally nonconvex, but it is much simpler than the original
problem (8). Second, for our problem, (11) turns out to be
a binary linear program because both F and G are separable
functions in (x, u) of the form:

F (x, u) =: f1(x) + f2(u)

G(x, u) =: g1(x) + g2(u)

where f2 and g2 are both linear in u. Indeed the constraints
in (11) are

u0 − f2(u)−
(
µi
)T
g2(u) ≥ min

x∈X

{
f1(x) +

(
µi
)T
g1(x)

}
i = 1, . . . , nµ(

λi
)T
g2(u) = −min

x∈X

(
λi
)T
g1(x)

i = 1, . . . , nλ

where the left-hand side is linear in the variable u and the
right-hand side is independent of u. Hence, in each iteration,
the algorithm solves a binary linear program (11) and a convex
program (9b). Finally, every time Step 2 is entered, one or two
additional constraints are added to the binary linear program
(11). This generally makes (11) harder to compute but also
a better approximation of (10). It is proved in [29, Theorem
2.4] that the algorithm will terminate in finite steps since U is
discrete and finite.

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed algorithm through
numerical simulations using a 56-bus distribution feeder of
Southern California Edison (SCE) with a radial structure. More
details about the feeder can be found in [31, Figure 2, TABLE
I]. We add 4 distributed generators and 4 stations at different
buses. The setup of the distributed generators is given in Table
I(a)2. The 4 stations are assumed to be uniformly located in a
4km×4km square area supplied by the distribution feeder, as
shown in Table I(b). Suppose in a certain control interval, there
are A number of EVs that request battery swapping. Their
current locations are randomized uniformly within the square
area while their destinations are ignored. We use the Euclidean
distance for daj . For convenience, it is assumed that Mj =
mj , mj = A, j ∈ Nw, which means in each station batteries
are all fully-charged and sufficient to serve all EVs. We assume
all EVs have sufficient battery energy to reach any of the 4
stations, which means (3c) is readily satisfied. The extension
to the general case where each EV has a limited driving range
and can only reach some of the stations is straightforward. The
constant charging rate is r = 0.01MW [32] at all stations. To

2The units of the real power, reactive power, cost (for the whole control
interval), distance and weight in this paper are MW, Mvar, $, km and $/km,
respectively.
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Fig. 2. #EVs=100 (a) Nearest-station policy. (b) Optimal assignment.
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Fig. 3. #EVs=300 (a) Nearest-station policy. (b) Optimal assignment.

make the two components of the objective comparable, we set
the weight α to be 0.02$/km first [33], and will then allow it
to take different values to reveal its impact. Note that due to
the randomness of EVs’ initialized locations, we conduct 10
simulation runs for each case setup. All numerical tests are
run on a laptop with Intel Core i7-3632QM CPU@2.20GHz,
8GB RAM, and 64-bit Windows 10 OS.

TABLE I
SETUP

(a) Distributed generator

Bus p
g
j

p
g
j

q
g
j

q
g
j

Cost function

1 4 0 2 -2 0.3pg2 + 30pg

4 2.5 0 1.5 -1.5 0.1pg2 + 20pg

26 2.5 0 1.5 -1.5 0.1pg2 + 20pg

34 2.5 0 1.5 -1.5 0.1pg2 + 20pg

(b) Station

Bus Location Mj mj

5 (1,1) mj A

16 (3,1) mj A

31 (1,3) mj A

43 (3,3) mj A

Nearest-station policy. Without optimization, the default pol-
icy is that all EVs head for their nearest stations to swap
batteries. This is shown in Fig. 2(a) and Fig. 3(a) for two
specific cases with 100 and 300 EVs, respectively. In practice
this myopic policy can lead to battery shortage at a station
if many EVs cluster around that station due to correlation in
traffic patterns. Moreover it can cause voltage instability: the
voltage magnitudes of some buses drop below the threshold
0.95 p.u. in the 300-EV case, as shown in Table II.
Optimal assignment. Fig. 2(b) and Fig. 3(b) show the optimal
assignments computed using the proposed algorithm for the
above two cases, respectively. The nearest stations are not

TABLE II
PARTIAL BUS DATA UNDER NEAREST-STATION POLICY (300 EVS)

Bus |Vj | (p.u.) p
g
j

q
g
j

r
∑
a∈A

uaj

1 1.050 0.571 0.000 /

4 1.047 2.500 0.663 /

5 1.031 / / 0.660

16 0.941 / / 0.700

18 0.948 / / /

19 0.944 / / /

26 1.050 2.500 0.410 /

31 1.020 / / 0.830

34 1.044 2.500 1.500 /

43 1.015 / / 0.810

assigned to some of the EVs (marked black in the figures)
when grid operational constraints such as voltage stability are
taken into account. The numbers of such EVs is higher in
the 300-EV case than that in the 100-EV case. The tradeoff
between EVs’ total travel distance and the total generation cost
is optimized. For comparison with Table II, the corresponding
partial OPF results of the 300-EV case are listed in Table III.
As we can see from Table III, the outputs (2.500 MW) of the
distributed generators at buses 4, 26 and 34 have reached their
full capacity (2.5 MW) while the injection (0.520 MW) at bus
1 (root bus) is far from its capacity (4 MW). This is consistent
with our intuition that distributed generators that are closer to
users and potentially cheaper than power from the transmission
grid are favored in OPF. Under the optimal assignment, the
deviations of voltages from their nominal value are all less
than the 5%.

TABLE III
PARTIAL BUS DATA UNDER OPTIMAL ASSIGNMENT (300 EVS)

Bus |Vj | (p.u.) p
g
j

q
g
j

r
∑
a∈A

uaj

1 1.050 0.520 0.000 /

4 1.048 2.500 0.590 /

5 1.025 / / 0.990

15 0.981 / / /

16 0.974 / / 0.300

17 0.980 / / /

18 0.973 / / /

19 0.969 / / /

26 1.050 2.500 0.439 /

31 1.019 / / 0.840

34 1.044 2.500 1.500 /

43 1.013 / / 0.870

Optimality of generalized Benders decomposition. The
upper and lower bounds on the optimal objective values for
the above two cases are plotted in Fig. 4(a) and Fig. 4(b),
respectively, as the algorithm iterates between the master and
slave problems. Basically, more iterations are required for
larger-scale cases since it usually takes more iterations to attain
an initial feasible solution. However, once we have a feasible
solution, the gap between the upper and lower bounds starts to
shrink rapidly and the convergence to optimality is achieved
within a few iterations.
Exactness of SOCP relaxation. We check whether the solu-
tion computed by generalized Benders decomposition attains
equality in (6c), i.e., whether the solution satisfies power flow
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Fig. 4. Convergence of generalized Benders decomposition (a) #EVs=100.
(b) #EVs=300.

equations and is implementable. Our final result confirms the
exactness of the SOCP relaxation for the above two cases, and
the relaxation is exact for most other cases we have tested on.
Due to space limit, only some partial data of the 300-EV case
are shown in Table IV.

In summary, SOCP relaxation and generalized Benders de-
composition have solved our joint battery swapping scheduling
and OPF problem (5) exactly.

TABLE IV
EXACTNESS OF SOCP RELAXATION (PARTIAL RESULTS FOR 300 EVS)

Bus
vjljk |Sjk|2 Residual

From To

1 2 0.271 0.271 0.000

2 3 0.006 0.006 0.000

2 4 0.202 0.202 0.000

4 5 1.369 1.369 0.000

4 6 0.005 0.005 0.000

4 7 1.952 1.952 0.000

7 8 1.691 1.691 0.000

8 9 0.009 0.009 0.000

8 10 1.269 1.269 0.000

10 11 1.092 1.092 0.000

Computational effort. To demonstrate the potential of the
proposed algorithm for practical application, we check its
required computational effort by counting its computation time
for different number of EVs, since the number of discrete
variables in the optimization problem is the computational
bottleneck. We use Gurobi to solve the master problem (integer
programming) and SDPT3 to solve the slave problem (convex
programming) on the MATLAB R2012b platform. Fig. 53

shows the average computation time required by the proposed
algorithm to find a global optimum for different numbers of
EVs, which validates its computational efficiency.
Benefit. Fig. 6 displays the average relative reduction in
the objective value with different α’s using our algorithm,
compared with the nearest-station policy. Scheduling flexibility
is enhanced with more EVs, thus improving the savings.
Clearly the smaller the weight α on EVs’ travel distance,
the more benefit the proposed algorithm provides over the
nearest-station policy. However, Fig. 6 also suggests that the
improvement is small, i.e., the nearest-station policy is good
enough if it is implementable.

The nearest-station policy is sometimes infeasible when

3Due to the randomization of EVs’ initial locations, each datapoint in Fig. 5,
Fig. 6, Fig. 7 and Fig. 8 is an average over 10 simulation runs.
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Fig. 6. Average relative reduction in objective value.

there are more EVs nearest to a station than the number of
fully-charged batteries at that station or when some operational
constraints of the distribution network are violated. In our case
study, infeasibility is mainly due to some voltages dropping
below their lower limits. Define a metric voltage drop violation
as VDV :=

∑
j∈N max{√vj − |Vj |, 0} to quantify the degree

of voltage violation. Fig. 7 shows the average VDV for the
number of EVs ranging from 240 to 400 under the nearest-
station policy. The voltage violation becomes more severe
when the number of EVs increases.

It is also interesting to look at cases where there are more
EVs nearest to a station than fully-charged batteries that
station can provide, which, as far as we know, are common
in practice. We reset M1 = m1 = M2 = m2 = 1

2A and
M3 = m3 = M4 = m4 = 1

8A to simulate these situations.
Hence the total number of fully-charged batteries in the system
is 5

4A. Fig. 8(a) shows, for each station, the average ratio of
the number of EVs that go to the station for battery swapping
to the number of fully-charged batteries at the station, under
both the nearest-station policy and an optimal assignment.
Under the optimal assignment, 99.40% of station 1’s batteries,
50.60% of station 2’s batteries, and all the batteries at stations
3, 4 are used, thus they have collectively served all A EVs.
Under the nearest-station policy, however, only 51.55% and
48.89% of stations 1 and 2’s batteries respectively (i.e., a
total of around 1

2A batteries) are used for swapping. At either
of stations 3 and 4, the number of EVs is approximately
double that of available fully-charged batteries (192.61% and
205.62%, respectively). Fig. 8(b) shows the average number
of unserved EVs under the nearest-station policy as a function
of the total number A of EVs. On average, a total of 1

4A
EVs cannot be served at their nearest stations, mainly due to
congestion at stations 3 and 4, while available fully-charged
batteries at stations 1 and 2 are not fully utilized.
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Fig. 8. (a) Average ratio of the number of EVs to that of fully-charged
batteries. (b) Average number of unserved EVs under nearest-station policy.

V. CONCLUSION

We formulate an optimal scheduling problem for battery
swapping that assigns to each EV a best station to swap
its depleted battery based on its current location and state
of charge. The schedule aims to minimize total travel dis-
tance and generation cost over both station assignments and
power flow variables, subject to EV range constraints, grid
operational constraints and AC power flow equations. We
propose a centralized solution that relaxes the nonconvex
constraint of OPF into a second-order cone and then applies
generalized Benders decomposition to handle the binary nature
of station assignments. Numerical case studies on the SCE 56-
bus distribution feeder show the SOCP relaxation is mostly
exact and generalized Benders decomposition computes an
optimal solution efficiently.
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