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Abstract—In Part I of this paper we formulate an optimal
scheduling problem for battery swapping that assigns to each
electric vehicle (EV) a best station to swap its depleted battery
based on its current location and state of charge. The schedule
aims to minimize a weighted sum of total travel distance and
generation cost over both station assignments and power flow
variables, subject to EV range constraints, grid operational
constraints and AC power flow equations. We propose there
a centralized solution based on the second-order cone pro-
gramming (SOCP) relaxation of optimal power flow (OPF) and
generalized Benders decomposition that is suitable when global
information is available. In this paper we propose two distributed
solutions based on the alternating direction method of multipliers
(ADMM) and dual decomposition respectively that are suitable
for cases where the distribution grid, battery stations and EVs
are managed by separate entities. Our algorithms allow these
entities to make individual decisions but coordinate through
privacy-preserving information exchanges to jointly solve an
approximate version of the joint battery swapping scheduling and
OPF problem. We evaluate our algorithms through simulations.

Index Terms—Electric vehicle, joint battery swapping schedul-
ing and OPF, privacy preserving, distributed algorithms.

I. INTRODUCTION

A. Motivation

In Part I of this paper we formulate an optimal scheduling
problem for battery swapping that assigns to each EV a best
station to swap its depleted battery based on its current location
and state of charge. The station assignment not only deter-
mines EVs’ travel distance, but can also impact significantly
the power flows on a distribution network because batteries are
large loads. The schedule aims to minimize a weighted sum
of total travel distance and generation cost over both station
assignments and power flow variables, subject to EV range
constraints, grid operational constraints and AC power flow
equations. This joint battery swapping scheduling and OPF
problem is nonconvex and computationally difficult because
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the AC power flow equations are nonlinear and the assignment
variables are binary.

We propose in Part I a centralized solution based on the
SOCP relaxation of OPF, which deals with the nonconvexity of
power flow equations, and generalized Benders decomposition,
which deals with the binary nature of assignment variables.
When the relaxation of OPF is exact, this approach computes
a global optimum. It is however suitable only for cases
where the distribution network, battery stations, and EVs are
managed centrally by the same operator, as is the current
electric taxi program of State Grid in China. We expect that,
as EVs proliferate and as battery swapping models mature,
an equally (if not more) likely business model will emerge
where the distribution grid is managed by a utility company,
battery stations are managed by a station operator (or multiple
station operators), and EVs may be managed by multiple taxi
companies or by individual drivers. In particular, the set of
EVs to be scheduled may include a large number of private
cars in addition to fleet vehicles. The centralized approach of
Part I will not be suitable for these future scenarios, for two
reasons.

First, the operator in the centralized approach needs global
information such as the grid topology, impedances, operational
constraints, background loads, availability of fully-charged
batteries at each station, locations and states of charge of EVs,
etc. In the future, the grid, battery stations, and EVs will likely
be operated by different entities that do not share their pri-
vate information. Second, generalized Benders decomposition
solves a mixed-integer convex problem in each iteration and
is computationally expensive. It is hard to scale it to compute
in real time an optimal station assignment and an (relaxed)
OPF solution in future scenarios where the numbers of EVs
and battery stations are large. In this paper we aim to develop
distributed solutions that preserve private information and are
more suitable for these future scenarios.

Instead of generalized Benders decomposition, we relax the
binary assignment variables to real variables in [0, 1]. With
both the SOCP relaxation of OPF and the relaxation of binary
variables, the resulting approximate problem of joint battery
swapping scheduling and OPF is a convex program. This
allows us to develop two distributed solutions where different
entities make their individual decisions but are coordinated
through privacy-preserving information exchanges to jointly
solve the global problem. The first solution is based on
ADMM and is for cases where the distributed grid is managed
by a utility company and all stations and EVs are managed
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Fig. 1. Distributed framework.

by a station operator. Here the utility company maintains a
local estimate of some aggregate assignment information that
is computed by the station operator, and they exchange the
aggregate information and its estimate to attain consensus.
The second solution is based on dual decomposition and
is for cases where the distributed grid is managed by a
utility company, all battery stations by a station operator,
and all EVs are individually operated. The utility company
still sends its local estimate to the station operator while
the station operator does not need to send the utility com-
pany the aggregate assignment information, but only some
Lagrange multipliers. The station operator also broadcasts
Lagrange multipliers to all EVs and individual EVs respond
by sending the station operator their choices of stations for
battery swapping based on the Lagrange multiplier values and
their current locations and driving ranges. In both approaches,
given aggregate information and Lagrange multipliers that are
exchanged, different entities only need their own local states
(e.g., power flow variables) and local data (e.g., impedance
values, available batteries, EV locations and driving ranges) to
iteratively compute their own decisions. See Fig. 1. As we will
discuss later, both distributed algorithms are able to converge
to a solution, in which the station assignment may be non-
binary, to the relaxed version of the joint battery swapping
scheduling and OPF problem. However, we show it is easy
to discretize the obtained assignment to achieve a binary one
that is close to optimum, and the SOCP relaxation is usually
exact [1], [2].

B. Literature
The privacy issues in smart grids have drawn much attention

from academia due to the vision of more and more inter-
connections in power systems to strive for strength, security,
stability and efficiency [3]. Most previous work lays emphasis
on the privacy issue of residential loads from the perspective
of smart meters [4]–[7], and only a small portion of the related
literature realizes the significance of EVs’ privacy despite their
expected high penetration in the future and the resulting giant
impact on smart grids. Currently, privacy concerns for EVs
mainly arise in Vehicle-to-Grid networks where the status of
EVs has to be continuously monitored. Tseng [8] proposes a
secure and privacy-preserving communication protocol based
on restrictive partially blind signatures to protect EV owners
from identity and location information leakage. Liu et al. [9]
design an aggregated-proofs based authentication scheme to
collect EVs’ status without revealing any individual privacy.

Besides, Nicanfar et al. [10] present different situations where
EVs may be involved in the smart grid context, and provide the
corresponding authentication schemes to preserve EV owners’
privacy. Nonetheless, the privacy leakage of scheduling infor-
mation in EV battery charging/swapping is often ignored.

In contrast to centralized algorithms, distributed (decentral-
ized) algorithms inherently preserve privacy as global infor-
mation is not necessary in local computation. Hence there is a
large literature of distributed algorithm design with various
applications for privacy-preserving purposes. Liu et al. [6]
schedule thermostatically controlled devices and batteries in a
household to hide its actual load profiles such that no privacy
can be inferred from electricity usage. Yang et al. [7] design
an online control algorithm of batteries that only uses the
observations of the current load requirement and electricity
price to strike a tradeoff between the smart meter data privacy
and the electricity bill for customers. Clifton et al. [11] present
a toolkit of distributed algorithms that can be combined for
specific privacy-preserving data mining applications. Zhou
et al. [12] devise a multi-level privacy-preserving cooperative
authentication scheme to realize different levels of privacy
requirement for a distributed m-healthcare cloud computing
system that shares personal health information among health-
care providers. Liu et al. [13] propose a consensus-based
distributed speed advisory system that optimally determines
a common speed for a given area in a privacy-aware manner
to minimize the group emissions of fuel vehicles or the group
battery consumptions of EVs.

The remainder of this paper is organized as follows. We
revisit the problem formulation in Sec. II. The proposed
distributed solutions via ADMM and dual decomposition are
elaborated in Sec. III, followed by numerical results in Sec. IV.
At last, Sec. V concludes.

II. PROBLEM FORMULATION

We now summarize the joint battery swapping scheduling
and OPF problem in Part I [14], using the notations defined
there.

An assignment of stations1 to EVs for battery swapping is
represented by the binary variables u := (uaj , a ∈ A, j ∈ Nw)
where

uaj =

{
1 if station j is assigned to EV a

0 otherwise

1Throughout this paper stations refer to battery stations.



A station assignment must satisfy the following conditions.

• The assigned station must be in every EV’s driving range:

uajdaj ≤ γaca, j ∈ Nw, a ∈ A (1a)

• Exactly one station is assigned every EV:∑
j∈Nw

uaj = 1, a ∈ A (1b)

• Every assigned station has enough fully-charged batteries
for EVs: ∑

a∈A
uaj ≤ mj , j ∈ Nw (1c)

A station assignment will add loads to the distribution
network at buses in Nw that supply electricity to stations.
The net power injections sj = pj + iqj depend on the station
assignment u according to

pj =


pgj − p

b
j − r

(
Mj −mj +

∑
a∈A

uaj

)
, j ∈ Nw

pgj − p
b
j , j ∈ N/Nw

(2a)

qj = qgj − q
b
j , j ∈ N (2b)

An active distribution network is modeled by the DistFlow
equations from [15]:∑
k:(j,k)∈E

Sjk = Sij − zij lij + sj , j ∈ N (3a)

vj − vk = 2Re(zHjkSjk)− |zjk|2ljk, j → k ∈ E (3b)

vj ljk = |Sjk|2, j → k ∈ E (3c)

The power flow quantities must satisfy the following con-
straints on grid operation:

• voltage stability

vj ≤ vj ≤ vj , j ∈ N (4a)

• generation capacity

pg
j
≤ pgj ≤ p

g
j , j ∈ N (4b)

qg
j
≤ qgj ≤ q

g
j , j ∈ N (4c)

• line transmission capacity

|Sjk| ≤ Sjk, j → k ∈ E (4d)

The joint battery swapping scheduling and OPF problem
is to minimize a weighted sum of total generation cost in the
distribution network and total travel distance of EVs over both
station assignments and power flow variables:

min
u,s,sg,
v,l,S

∑
j∈N

fj(p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj (5)

s.t. (1)(2)(3)(4)
uaj ∈ {0, 1}, a ∈ A, j ∈ Nw

III. DISTRIBUTED SOLUTIONS

A. Relaxations

The joint battery swapping scheduling and OPF problem (5)
is computationally difficult for two reasons. First, the quadratic
equality (3c) is nonconvex. Second, the station assignment
variables u are binary.

To deal with the first difficulty, we replace (3c) by an
inequality, i.e., replace the DistFlow equations (3) in the
problem (5) by:∑
k:(j,k)∈E

Sjk = Sij − zij lij + sj , j ∈ N (6a)

vj − vk = 2Re(zHjkSjk)− |zjk|2ljk, j → k ∈ E (6b)

vj ljk ≥ |Sjk|2, j → k ∈ E (6c)

Fixing any assignment u ∈ {0, 1}ANw , the optimization
problem is then a convex problem. If an optimal solution to
the SOCP relaxation attains equality in (6c) then the solution
also satisfies (3) and is therefore optimal (for the given u). In
this case, we say that the SOCP relaxation is exact. Sufficient
conditions are known that guarantee the exactness of the
SOCP relaxation; see [1], [2] for a comprehensive tutorial
and references therein. Even when these conditions are not
satisfied, SOCP relaxation for practical radial networks is still
often exact, as confirmed also by our simulations in Sec. IV.

To deal with the second difficulty, we use generalized
Benders decomposition in Part I [14]. This approach computes
an optimal solution when SOCP relaxation is exact, but it is
computationally expensive as it requires solving a binary linear
program (as well as an SOCP relaxation) in each iteration of
the generalized Benders decomposition procedure. Moreover,
the computation is centralized and is suitable only when a
single organization, e.g., State Grid in China, operates all of
the distribution grid, stations, and EVs.

In this paper, we develop distributed solutions that are
suitable for cases where these three are operated by different
organizations that do not share their private information. To
deal with the second difficulty, we relax the binary variables
uaj to real variables uaj ∈ [0, 1], a ∈ A, j ∈ Nw. The
constraints (1) are then replaced by:

uaj ∈ [0, 1] , uaj = 0 if daj > γaca, j ∈ Nw, a ∈ A (7a)∑
j∈Nw

uaj = 1, a ∈ A (7b)∑
a∈A

uaj ≤ mj , j ∈ Nw (7c)

In summary, in this paper we solve the following convex
relaxation of (5):

min
u,s,sg,
v,l,S

∑
j∈N

fj(p
g
j ) + α

∑
a∈A

∑
j∈Nw

dajuaj (8)

s.t. (2)(4)(6)(7)

This problem has a convex objective and convex quadrati-
cal constraints. After an optimal solution (x∗, u∗) of (8) is
obtained, we check if x∗ attains equality in (6c). We also
discretize u∗aj into {0, 1}, e.g., by setting for each EV a a



single largest uaj to 1 and the rest to 0. An alternative is to
randomize the station assignment using u∗aj as a probability
distribution. As we will show later, the discretization can
be readily implemented and achieve an assignment close to
optimum.

B. Distributed solution via ADMM
The problem (8) decomposes naturally into two subprob-

lems, one on station assignments over u and the other on OPF
over (s, sg, v, l, S). The station assignment subproblem will
be solved by a station operator that operates the network of
stations. The OPF subproblem will be solved by a utility com-
pany. Our goal is to design a distributed algorithm for them
to jointly solve (8) without sharing their private information.

These two subproblems are coupled only in (2a) where
the utility company needs the load r

(
Mj −mj +

∑
a∈A uaj

)
of station j in order to compute the net real power in-
jection pj . This quantity depends on the total number of
EVs that each station j is assigned to and is computed by
the station operator. Their computation can be decoupled by
introducing an auxiliary variable wj at each bus (station) j
that represents the utility company’s estimate of the quantity
r
(
Mj −mj +

∑
a∈A uaj

)
, and requiring that they be equal

at optimality.
Specifically, recall the station assignment variables u, and

denote the power flow variables by x := (w, s, sg, v, l, S)
where w := (r

(
Mj −mj +

∑
a∈A uaj

)
, j ∈ Nw). Separate

the objective function by defining

f(x) :=
∑
j∈N

fj(p
g
j )

g(u) := α
∑
a∈A

∑
j∈Nw

dajuaj

Replace the coupling constraints (2) by constraints local to
bus j:

pj =

{
pgj − p

b
j − wj , j ∈ Nw

pgj − p
b
j , j ∈ N/Nw

(9a)

qj = qgj − q
b
j , j ∈ N (9b)

Denote the local constraint set for x by

X := {x ∈ R(|Nw|+5|N|+3|E|) : x satisfies (4)(6)(9)}

Denote the local constraint set for u by

U := {u ∈ RANw : u satisfies (7)}

To simplify notation, define uj :=
∑
a∈A uaj for j ∈ Nw.

Then the problem (8) is equivalent to

min
x,u

f(x) + g(u) (10a)

s.t. x ∈ X, u ∈ U (10b)
wj = r (Mj −mj + uj) , j ∈ Nw (10c)

We now apply ADMM to (10). Let λ be the Lagrange
multiplier vector corresponding to the coupling constraint
(10c), and define the augmented Lagrangian:

Lρ(x, u, λ) := f(x) + g(u) + hρ(w, u, λ) (11a)

where hρ depends on (x, u) only through (wj , uj , j ∈ Nw):

hρ(w, u, λ) :=
∑
j∈Nw

λj [wj − r (Mj −mj + uj)]

+
ρ

2

∑
j∈Nw

[wj − r (Mj −mj + uj)]
2

(11b)

and ρ is the step size for dual variable λ updates. The standard
ADMM procedure is to iteratively and sequentially update
(x, u, λ): for n = 0, 1, . . . ,

x(n+ 1):=argmin
x∈X

f(x) + hρ(w, u(n), λ(n)) (12a)

u(n+ 1):=argmin
u∈U

g(u) + hρ(w(n+ 1), u, λ(n)) (12b)

λj(n+ 1):=λj(n) + ρ[wj(n+ 1)

−r(Mj −mj + uj(n+ 1))], j ∈ Nw (12c)

Remark 1: 1) The x-update (12a) is carried out by the
utility company and involves minimizing a convex objec-
tive with convex quadratic constraints. The (u, λ)-updates
(12b)(12c) are carried out by the station operator and
the u-update minimizes a convex quadratic objective with
linear constraints. Both can be efficiently solved.

2) The x-update by the utility company needs (u(n), λ(n))
from the station operator in iteration n. In fact, from
(11b), the station operator does not need to communicate
the detailed station assignment u(n) = (uaj(n), a ∈
A, j ∈ Nw) to the utility company but only the total
numbers of EVs (uj(n), j ∈ Nw) that stations j are
assigned to.

3) The (u, λ)-updates by the station operator need in it-
eration n the utility company’s estimate w(n + 1) of
(r(Mj −mj + uj(n+ 1)), j ∈ Nw).

4) The reason that the x-update by the utility company needs
(uj(n), j ∈ Nw) and the u-update by the station operator
needs w(n + 1) is the (quadratic) regularization term in
hρ. This becomes unnecessary for the dual decomposition
approach in Sec. III-C without the regularization term.

The communication structure is illustrated in Fig. 2. In
particular, private information of the utility company, such
as distribution network parameters zjk, network states
(s(n), sg(n), v(n), l(n), S(n)), cost functions f , and opera-
tional constraints, as well as private information of the station
operator, such as the total number of batteries (Mj , j ∈ Nw),
the numbers of available fully-charged batteries (mj , j ∈ Nw),
how many EVs or where they are or their states of charge, and
the detailed assignment u(n), do not need to be communicated.

utility company:

updates            x(n)

station operator:

updates                         u(n),l(n)( )

u j (n),l j (n)( ) w j (n+1)

Fig. 2. Communication between utility company and station operator.



When the cost functions fj are closed, proper and convex
and L0(x, u, λ) has a saddle point, the ADMM iteration (12)
converges in that, for all j ∈ Nw, the mismatch |wj(n) −
uj(n)| → 0 and the objective f(x(n))+g(u(n)) converges to
its minimum value [16]. This does not automatically guarantee
that (x(n), u(n)) converges to an optimal solution to (8).2 If
(x(n), u(n)) indeed converges to a primal optimal solution
(x∗, u∗), u∗ may generally not be binary. We use a heuristic
to derive a binary station assignment from u∗, as mentioned
above. Fortunately, the following result shows that the number
of EVs a for which a binary assignment needs to be derived
from the obtained non-binary one (u∗aj , j ∈ Nw) is small.

Theorem 1: Suppose (x∗, u∗) is an optimal solution to the
relaxation (8), then the number of EVs a for which u∗aj < 1
for all j ∈ Nw is at most Nw(Nw − 1)/2.

See Appendix A for its proof. In practice, the number Nw
of stations is typically small compared with the number A of
EVs that request battery swapping. Therefore, it is expected
that the discretization will attain a station assignment close to
optimum, considering the subtle impact of individual EVs.

C. Distributed solution via dual decomposition
The ADMM-based algorithm assumes the station operator

directly controls the station assignment to all EVs. This
requires that the station operator know the locations (daj),
states of charge (ca) and performance (γa) of EVs. Moreover,
the aggregate EV information uj needs to be provided to the
utility company. We now present another algorithm based on
dual decomposition that is more suitable in situations where
it is undesirable or inconvenient to share private information
between the utility company, the station operator, and EVs.

In the original relaxation (8), the update of the injections pj
in (2) by the utility company involves uj which are updated
by the station operator. These two computations are decoupled
in the ADMM-based solution by introducing the auxiliary
variables wj at the utility company and relaxing the constraint
wj = r(Mj −mj + uj). In addition, the station assignment
u must satisfy uj ≤ mj in (7c). This is enforced in the
ADMM-based solution by the station operator that computes u
for the EVs. To fully distribute the computation to individual
EVs, we dualize uj ≤ mj as well. Let λ and µ ≥ 0 be
the Lagrange multiplier vectors for the constraints wj = uj
and uj ≤ mj , respectively. Intuitively w and λ decouple the
computation of the utility company and that of individual EVs
through coordination with the station operator. Additionally, µ
decouples and coordinates the EVs’ decisions so that EVs do
not need direct communication among themselves to ensure
that their decisions uaj collectively satisfy uj ≤ mj .

Consider the Lagrangian of (10) with these two sets of
constraints relaxed:

L(x, u, λ, µ) := f(x) + g(u) +
∑
j∈Nw

λj(wj − r(Mj −mj + uj))

+
∑
j∈Nw

µj(uj −mj)

(13)

2In theory ADMM may converge and circulate around the set of optimal
solutions, but never reach one. In practice a solution within a given error
tolerance is acceptable.

and the dual problem of (10):

max
λ,µ≥0

D(λ, µ) := min
x∈X,u∈Û

L(x, u, λ, µ)

where the constraint set Û on u is:

Û := {u ∈ RANw : u satisfies (7a)(7b)}

Let ua := (uaj , j ∈ Nw) denote the column vector of EV
a’s decision on which station to swap its battery. Then the
dual problem is separable in power flow variables x as well
as individual EV decisions ua:

D(λ, µ) =: V (λ) +
∑
a∈A

Ua(λ, µ) (14a)

where the problem V (λ) to be solved by the utility company
is:

V (λ) := min
x∈X

f(x) + ∑
j∈Nw

λjwj

 (14b)

and the problem Ua(λ) to be solved by each individual EV a
is:

Ua(λ, µ) := min
ua∈Ûa

∑
j∈Nw

(αdaj − rλj + µj)uaj (14c)

where the constraint set Ûa on ua is:

Ûa :=
{
ua ∈ RNw :

uaj ∈ [0, 1] , j ∈ Nw
uaj = 0 if daj > γaca, j ∈ Nw∑
j∈Nw

uaj = 1

}

Note that (14c) entails closed-form solutions. If there exists a
unique optimal solution to Ua(λ, µ), i.e., for any EV a there
is a unique j∗a(λ, µ) defined as

j∗a(λ, µ) := arg min
j:daj≤γaca

{αdaj − rλj + µj}

then the optimal solution to Ua(λ, µ) can be uniquely deter-
mined as

uaj(n) :=

{
1 if j = j∗a(λ, µ)

0 if j 6= j∗a(λ, µ)

i.e., it simply chooses the unique station j∗a within EV a’s
driving range that has the minimum cost αdaj − rλj + µj .

From (13) the standard dual algorithm for solving (10) is:
for j ∈ Nw,

λj(n+ 1) := λj(n) + ρ1(n)[wj(n)− r(Mj −mj + uj(n))] (15a)
µj(n+ 1) := max{µj(n) + ρ2(n)(uj(n)−mj), 0 } (15b)

where ρ1(n), ρ2(n) > 0 are diminishing stepsizes and, from
(14), we have

x(n) := argmin
x∈X

f(x) + ∑
j∈Nw

λj(n)wj

 (15c)

ua(n) := arg min
ua∈Ûa

∑
j∈Nw

(αdaj − rλj + µj)uaj , a ∈ A (15d)



Remark 2: 1) The x-update (15c) is carried out by the
utility company and involves minimizing a convex ob-
jective with convex quadratic constraints. The only in-
formation that is non-local to the utility company for its
x-update is one of the dual variables λ(n) computed by
the station operator.

2) The ua-update (15d) is carried out by each individual EV.
Each EV requires the dual variables (λ(n), µ(n)) from
the station operator for its update.

3) The dual updates (15a)(15b) are carried out by the station
operator which uses a (sub)gradient ascent algorithm to
solve the dual problem maxλ,µ≥0D(λ, µ). It requires
w(n) from the utility company and individual decisions
ua(n) from EVs a.

The communication structure is illustrated in Fig. 3. In partic-

utility company:

updates            x(n)

station operator:

updates                         l(n),m(n)( )

l j (n) w j (n)

EV1 :

updates             u1(n)
EVA :

updates             uA(n)

l(n),m(n)( )
broadcasts to EVs

. . . .

u1(n) uA(n)

Fig. 3. Communication between utility company, station operator, and EVs.

ular, EVs are completely decoupled from the utility company
and among themselves. Unlike the ADMM-based approach,
the station operator knows only the (tentative) battery swap-
ping decisions of EVs, but not their private information such
as their locations (daj), states of charge (ca) or performance
(γa).

Since the relaxation (8) is convex, strong duality holds if
Slater’s constraint qualification is satisfied. By strong duality,
when the above (sub)gradient algorithm converges to a dual
optimal solution (λ∗, µ∗), any primal optimal point is also a
solution to the corresponding x-update (15c) and ua-update
(15d) [17], [18]. Suppose (x(n), ua(n), a ∈ A) indeed con-
verges to a primal optimal solution (x∗, u∗a, a ∈ A), typically
(u∗a, a ∈ A) may not be binary. As discussed above, the
discretization of (u∗a, a ∈ A) can be readily implemented since
Theorem 1 still holds, and in practice the gap to optimum is
small.

Remark 3: The two solutions have their own advantages
and can be adapted to different application scenarios. Specifi-
cally, the ADMM-based one requires a station operator that is
trustworthy and can access EVs’ private information. Nonethe-
less, thanks to the station operator that is able to optimize
the station assignment on behalf of all EVs, no computation
unit is necessary on each EV’s end, and communications are
only required between the station operator and the utility
company, which is practical to realize. In contrast, the dual-
decomposition-based one is more distributed in a sense, thus

further preserving privacy inherently. However, it necessitates
computation capabilities of all EVs. In addition, iterative
communications, both between the station operator and the
utility company and between the station operator and each
individual EV, are required to enable computation. As a result,
the deployment of computation units on each EV and commu-
nication unreliability may impede the practical implementation
of the dual-decomposition-based solution. To conclude, the
dual-decomposition-based solution further preserves privacy
at the price of communication and computation overheads,
compared with the ADMM-based one.

IV. NUMERICAL RESULTS

We test the two distributed algorithms on the same 56-bus
radial distribution feeder of Southern California Edison (SCE)
in Part I. Details about the feeder can be found in [19]. Similar
setups are adopted to demonstrate the algorithm performance.
4 distributed generators and 4 stations are added to the feeder
at different buses, and the 4 stations are assumed to be evenly
distributed in a 4km×4km square area supplied by the feeder.
Table I lists their parameters.3 We use examples of A = 400
EVs that request battery swapping in a certain control interval.
We randomize their current locations uniformly within the
square area and ignore their destinations. daj is assumed to
be the Euclidean distance, and the driving range constraints
are readily satisfied by assuming all EVs can reach any of the
4 stations for illustrative purposes. The constant charging rate
is r = 0.01MW [20], and the weight is α = 0.02$/km [21].
Simulations are run on a laptop with Intel Core i7-3632QM
CPU@2.20GHz, 8GB RAM, and 64-bit Windows 10 OS.

TABLE I
SETUP

(a) Distributed generator

Bus pgj pg
j

qgj qg
j

Cost function

1 4 0 2 -2 0.3pg2 + 30pg

4 2.5 0 1.5 -1.5 0.1pg2 + 20pg

26 2.5 0 1.5 -1.5 0.1pg2 + 20pg

34 2.5 0 1.5 -1.5 0.1pg2 + 20pg

(b) Station

Bus Location Mj mj

5 (1,1) mj (i) A ; (ii) A/2
16 (3,1) mj (i) A ; (ii) A/10
31 (1,3) mj (i) A ; (ii) A/4
43 (3,3) mj (i) A ; (ii) A/4

As shown in Table I(b), we test the two distributed algo-
rithms using two cases (i) and (ii) of different mj’s to show
their convergence, the suboptimality they can achieve, and the
exactness of SOCP relaxation.

3The units of the real power, reactive power, cost (for the whole control
interval), distance and weight in this paper are MW, Mvar, $, km and $/km,
respectively.
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Fig. 4. Convergence of ADMM (a) λ. (b) Residual.

Convergence: The convergence of the ADMM-based algo-
rithm in case (i) is demonstrated in Fig. 4, where Fig. 4(a)
illustrates that the Lagrange multiplier vector λ converges
rapidly and Fig. 4(b) shows the residual of the relaxed equality
constraint (10c) diminishes acoordingly so as to attain con-
sensus of w and (uj , j ∈ Nw) between the utility company
and the station operator. Similar results can be found for
case (ii). In terms of the dual-decomposition-based algorithm,
Fig. 5(a) and Fig. 5(b) show the convergence of its two
Lagrange multiplier vectors λ and µ respectively in case (ii).
λ maintains the consensus between the utility company and
EVs at convergence, and µ guarantees (7c) is satisfied when it
converges. Dual decomposition usually takes more iterations
to converge due to extra iterative coordination among all EVs
by updating µ. For case (i), results are similar except that µ
remains 0 during iterations as (7c) is always satisfied.

Suboptimality (comparison with centralized solution): In
case (i) both algorithms obtain a solution in which the
station assignment to two EVs, marked black in Fig. 6(a),
is non-binary, i.e., u242 = [0.707 0.293 0.000 0.000] and
u367 = [0.230 0.000 0.770 0.000]. This is consistent with
Theorem 1. Unlike the centralized solution in Part I that
uses global information to compute a globally optimal binary
assignment, the distributed algorithms solve the relaxation (8)
and are likely to attain a non-binary one, exemplified by case
(i). However, we can naively round u243 and u367 off to
discretize the assignment, as shown in Fig. 6(a), which turns
out to be an optimal station assignment of the original problem
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Fig. 5. Convergence of dual decomposition (a) λ. (b) µ.

(5), identical with the one computed by the centralized solution
in Part I. Typically a heuristic binarization method will yield
a suboptimal assignment, but the suboptimality gap is usually
trivial due to the bounded number of EVs with a non-binary
assignment and their limited impact on the whole system.

In case (ii) we reduce available fully-charged batteries at
each station to activate (7c). Fig. 6(b) shows the solution
achieved by both algorithms which contains a binary as-
signment, also an optimal station assignment of the original
problem (5). In this case the relaxation of binary variables
is exact. EVs, to which the station assignment is altered due
to the bound imposed on battery availability of each station,
are marked cyan in Fig. 6(b). The intuition is that an active
(7c) sometimes can help eliminate the marginal non-binary
assignment to certain EVs, and this is often the case in practice
where the battery availability is uneven across stations.

Exactness of SOCP relaxation: We check whether the above
solutions computed by the distributed algorithms attain equal-
ity in (6c), i.e., whether the SOCP relaxation of OPF is exact.
Our final results, as well as most tests in other case studies,
confirm the exactness of the SOCP relaxation. Only partial
result data for case (ii) are listed in Table II due to space limit.
To sum up, the above solutions satisfy power flow equations
and are thus implementable.

V. CONCLUDING REMARKS

This paper is an extension of Part I that solves the same
optimal scheduling problem for battery swapping. Instead
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TABLE II
EXACTNESS OF SOCP RELAXATION (PARTIAL RESULTS FOR CASE (II))

Bus
vj ljk |Sjk|2 Residual

From To

1 2 2.582 2.582 0.000
2 3 0.006 0.006 0.000
2 4 2.336 2.336 0.000
4 5 3.413 3.413 0.000
4 6 0.005 0.005 0.000
4 7 2.276 2.276 0.000
7 8 1.984 1.984 0.000
8 9 0.009 0.009 0.000
8 10 1.518 1.518 0.000

10 11 1.318 1.318 0.000

of resorting to a centralized solution which requires global
information, two distributed solutions based on ADMM and
dual decomposition respectively are proposed, considering the
fact that the grid, battery stations and EVs are likely operated
by different entities, which do not share their private informa-
tion. The distributed algorithms allow these entities to make
individual decisions but coordinate through privacy-preserving
information exchanges to jointly solve an approximate version
of the joint battery swapping scheduling and OPF problem.
Finally, the obtained station assignment may not be binary,
but we prove that the number of EVs for which a binary
assignment needs to be derived from the obtained non-binary

one is small, and thus a station assignment that is close
to optimum is expected to be attained. Numerical tests on
the SCE 56-bus distribution feeder demonstrate the algorithm
performance and validate our analysis.
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APPENDIX A
PROOF OF THEOREM 1

We refer to EV a as a critical EV if u∗aj < 1 for all j ∈ Nw.
We first show the following lemma always holds, on which
basis Theorem 1 is then proved.

Lemma 1: There exists an optimal solution with no
uaj , uak, ubj , ubk > 0 for ∀a, b ∈ A and ∀j, k ∈ Nw,
i.e., if a solution contains two critical EVs a, b ∈ A with
uaj , uak, ubj , ubk > 0 for certain j, k ∈ Nw, there always
exists a better one.

Proof: We prove Lemma 1 by contradiction.
Suppose (8) is solved by the proposed algorithms and we

obtain the primal optimal solution (u∗, x∗), which contains
the assignment of two stations to two same critical EVs, i.e.,
u∗aj , u

∗
ak, u

∗
bj , u

∗
bk > 0. We focus on the two-EV-two-station

subsystem and fix its impact on the remaining parts of the
whole system, e.g., the distribution network, other stations and
EVs. Note that EV a and EV b have rBa and rBb charging
loads to distribute, respectively, where Ba := u∗aj + u∗ak and
Bb := u∗bj + u∗bk. Meanwhile, the two EVs yield in total
rBj and rBk charging loads at the buses of station j and
k, respectively, where Bj := u∗aj + u∗bj and Bk := u∗ak + u∗bk.
Apparently, Ba + Bb = Bj + Bk. Since a and b, as well
as j and k, are indiscriminative, without loss of generality
we assume case 1: Ba ≥ Bj ≥ Bk ≥ Bb and case 2:
Bj ≥ Ba ≥ Bb ≥ Bk to cover all possibilities. Below we
will take case 1 as an illustrative example to go on with the
proof, and case 2 shares the similar property.

Obviously the above circumstance u∗aj , u
∗
ak, u

∗
bj , u

∗
bk > 0

would only occur when subcase 1’: daj ≤ dbj , dak ≤ dbk or
subcase 2’: dbj ≤ daj , dbk ≤ dak. Otherwise, EV a and EV b
would have a bias for different stations in terms of the travel
distance. For example, if daj ≤ dbj , dbk ≤ dak, the two-EV-
two-station subsystem will benefit if EV a goes to station j and
EV b goes to station k with priority, i.e., u′aj = Bj , u

′
ak =

Bk − Bb, u
′
bj = 0, u′bk = Bb with the rest of the optimal

solution (u∗, x∗) is a better solution. Because the remaining
parts of the whole system is not affected, which means the OPF
solution and other EVs’ total travel distance won’t change, but
the travel distance of the two-EV-two-station subsystem will
decrease.

Again we take subcase 1’ as an example, which we call
case 11’. In this case, we may have

dbj − dbk > daj − dak
⇐⇒ u∗ajdaj + u∗akdak + u∗bjdbj + u∗bkdbk

> Bjdaj + (Bk −Bb)dak +Bbdbk

(16)

or

daj − dak > dbj − dbk
⇐⇒ u∗ajdaj + u∗akdak + u∗bjdbj + u∗bkdbk

> (Bj −Bb)daj +Bkdak +Bbdbj

(17)

or

daj − dak = dbj − dbk
⇐⇒ u∗ajdaj + u∗akdak + u∗bjdbj + u∗bkdbk

= Bjdaj + (Bk −Bb)dak +Bbdbk

= (Bj −Bb)daj +Bkdak +Bbdbj

(18)

In the cases of (16) and (17), there is a better solution
that decreases the travel distance of the two-EV-two-station
subsystem, while the remaining parts of the whole system
remain the same. This conflicts the original assumption that
(u∗, x∗) is the optimal solution. In the case of (18), still we
can find solutions of equal optimum that only render either
EV a or EV b critical.

Likewise, case 12’, case 21’ and case 22’ share the same
conclusion. As a result, there always exists an optimal solution
with no uaj , uak, ubj , ubk > 0 for ∀a, b ∈ A and ∀j, k ∈ Nw.

This completes the proof.

Based on Lemma 1, we now go on to prove Theorem 1.
Proof: According to the definition of a critical EV,

its charging load will split into at least two parts that are
distributed to different stations. The problem is currently
transformed to how many critical EVs we can assign the Nw
stations to at most without violating Lemma 1.

This is a basic assignment problem. Obviously, assume
every critical EV only splits into two parts at best, i.e., at most
two station can be assigned to each critical EV. Then we need
to assign the Nw stations to as many critical EVs as possible
without repeats. We start from assigning two consecutively
indexed stations to each critical EV, i.e., stations 1 and 2 to
one critical EV, and stations 2 and 3 to another, etc. Note that
stations Nw and 1 are not consecutive. By this means, we
can assign stations to at most Nw − 1 critical EVs. Then two
stations with a one-index gap are assigned to each critical EV,
i.e., stations 1 and 3 to one critical EV, and stations 2 and 4
to another, etc, by which means we can assign stations to at
most Nw − 2 critical EVs. By analogy, we finally assign two
stations with an (Nw − 2)-index gap to each critical EV, and
will find there is at most only 1 critical EV that we can assign
stations to. Therefore, in total we are able to assign the Nw
stations to at most (Nw−1)+(Nw−2)+ · · ·+1 = Nw(Nw−1)

2
critical EVs, so as to satisfy Lemma 1.

This completes the proof.
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