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ABSTRACT

In phaseless super-resolution, we only have the magnitude information of continuously-parameterized signals
in a transform domain, and try to recover the original signals from these magnitude measurements. Optical
microscopy is one application where the phaseless super-resolution for 2D signals arise. In this paper, we propose
algorithms for performing phaseless super-resolution for 2D or higher-dimensional signals, and investigate their
performance guarantees.
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1. INTRODUCTION

In the field of science and engineering, the research on overcoming or mitigating the limitations of measurement
tools has been widely conducted. For example, in 2014, the Nobel Prize in Chemistry was awarded to the
researchers for the development of super-resolution fluorescence microscopy.1 Especially, in optical microscopy,
a target object of interest can be observed or investigated by resolving the elements of structural features
with light sources. Because of its usability to the biological structure of living cell unlike electron microscopy,
optical microscopy has been considered as an important measurement tool in various fields such as biology
and medicine. However, due to physical limitations including Abbe’s diffraction limit,2 obtaining high resolved
images beyond the physical limitation by using optical microscopy is still on-going research. In addition, due
to the nature of light source, it is hard to measure phase information rather than magnitude information from
optical microscopy. Hence, the research on recovering a signal of interest or observing an object of interest by
using limited measurement data, e.g., only magnitude information and only low frequency information, have
been studied.

Super-resolution and phase retrieval are the well known signal processing problems from limited measurement
data. In the super-resolution, low frequency measurement data including phase as well as magnitude information
are considered to recover a signal of interest with unknown high frequency information. The phase retrieval aims
at the recovery of a signal of interest up to phase only with the magnitude information of the sampled signal. For
optical microscopy, the limited measurement data can be low frequency magnitude information of the sampled
signal. Therefore, the conventional super-resolution and phase retrieval theorems cannot be directly applicable
to the optical microscopy.

Phaseless super-resolution combines the two problems of super-resolution and of phase-retrieval and seeks
to recover a signal from magnitude measurements of only low-frequencies. Hence, due to the extremely lim-
ited measurement data and type including only low frequency and only magnitude information, the phaseless
super-resolution is a well ill-posed and a challenging problem. This phaseless super-resolution problem is firstly
introduced by Jaganathan et al. for a signal in 1D which is expressed as sum of Dirac Delta functions located
in the discrete domain, i.e., on the grid.3 By using lifting method, the authors proposed the Semidefinite Pro-
gramming (SDP) formulation for the phaseless super-resolution problem in the discrete domain and showed that
one could recover a signal of interest in 1D from only the magnitude of low frequency information. Later, Cho
et al. dealt with the phaseless super-resolution problem for an 1D signal in the continuous domain, i.e., off the
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grid.4 In order to handle the nature of the continuous signal domain, Cho et al. introduced the squared atomic
norm minimization and derived the SDP formulation of the squared atomic norm minimization which is called
as Phaseless Atomic Norm Minimization (PANM).

The previous research on the phaseless super-resolution are targeting the recovery of a signal of interest in 1D.
For practical applications such as microscopy, X-ray crystallography, and medical devices, dealing with signals
in 2D or higher dimension is of great interest due to the nature of the original signal in high dimension and the
wide range of applications. The super-resolution problem considering a signal in 2D or higher dimension was
studied by Xu et al.5 and Chi et al.6 In particular, Xu et al. derived the precise SDP formulation of the Atomic
Norm Minimization (ANM) for 2D or higher-dimensional signals by using positive trigonometric polynomial,5

while Chi et al. introduced an approximate SDP formulation to solve the ANM.6

The contribution of this paper is two-fold. This paper firstly describes the phaseless super-resolution problem
for 2D or higher-dimensional signals in the continuous domain, which is uninvestigated research area. Secondly,
from the phaseless measurement data, we propose the SDP formulation of PANM for 2D or higher-dimensional
signals. This paper can be a bridge between theories and practical applications including optical microscopy and
x-ray crystallography to improve the resolution of those applications.

The rest of the paper is organized as follows. Section 2 describes the problem setting including the equation
for 2D or higher-dimensional signals in the continuous domain. In Section 3, the super-resolution problem and
ANM for 2D or higher dimensional signals are introduced. In Section 4, we propose the PANM for 2D or higher-
dimensional signals and its SDP formulation to solve the PANM. Finally, in Section 5, we demonstrate the
successful recovery of a signal from low frequency magnitude measurement data by using the SDP formulation
for the PANM.

Notations: We denote the sets of complex numbers and natural numbers as C and N respectively. We
reserve calligraphic uppercase letters for index sets, e.g., N . ∣N ∣ represents the cardinality of the index set N .
We use the superscripts ∗, T , and H to denote conjugate, transpose, and conjugate transpose respectively. We
reserve i for the imaginary number, i.e., i2 = −1. When we denote a sampled signal in the frequency domain as
x[f], we represent its space domain signal as x̂(t). For a ground truth signal, we use the superscript o, e.g.,
xo. If we use an index set as the subscript of a vector or a tensor, it represents the partial vector or the partial
tensor over the index set. x⃗j denotes the j-th element of a vector x⃗.

2. PROBLEM SETTING

Let us consider a d-dimensional signal x̂o(t), where d ≥ 2 and tin[0,1]d. The signal x̂o(t) that we are interested
in is expressed as a sum of Dirac delta functions as follows:

x̂o(t) =
s

∑
j=1

cojδ(t − toj), (2.1)

where toj ∈ [0,1]d, δ(t) is the d-dimensional Dirac delta function, coj = ∣coj ∣eiφ
o
j , ∣coj ∣ > 0, and φoj ∈ [0,2π). Its

Fourier transform xo[f] is a sum of s complex exponentials as follows:

xo[f] =
s

∑
j=1

coje
i2πfT toj =

s

∑
j=1

∣cj ∣a(toj , φoj)[f], f ∈ N . (2.2)

The index set f is defined as ∏dp=1{f ∣ 0 ≤ f ≤ np − 1} to represent the set of frequency indices of the signal,

where np ∈ N, 1 ≤ p ≤ d, and ∣N ∣ = ∏dp=1 np. We set np = n, for all p = 1,2, ..., d, for the sake of simplicity.

a(tj , φj) ∈ A ⊂ C∣N ∣ is temporal or spatial atom vector, where A is the set of all temporal or spatial atoms. For

a specific frequency f , a(tj , φj)[f] = ei(2πtTj f+φj), where tj = (tj,1, tj,2, ..., tj,d)T ∈ [0,1]d.
Our goal here is recovering the d-dimensional signal introduced in (2.1) including coj and toj for all j = 1, ..., s

from only low frequency magnitude information. Since the ground truth signal x̂o(t) is in the continuous domain,
we consider the ANM for a multidimensional signal. Hence, in the next section, we will review the ANM for a
multidimensional signal, and then, introduce how to adapt the magnitude frequency information in the ANM
formulation.
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3. ATOMIC NORM MINIMIZATION FOR MULTIDIMENSIONAL SIGNALS

In this section, we review how ANM framework leads to an SDP formulation for recovering a continuous multi-
dimensional signal as in (2.1) from its Fourier measurements.5

The atomic norm ∣∣ ⋅ ∣∣A of a d-dimensional signal of the form (2.2) is defined as follows:

∣∣x∣∣A = inf {∑
j

∣cj ∣ ∶ x[f] =∑
j

∣cj ∣a(tj , φj)[f], tj∈[0,1]d,
φj∈[0,2π)}. (3.1)

For two tensors q and x, let us denote the vectorization of q and x as q⃗ and x⃗ respectively, and the inner product
between them as ⟨q, x⟩ = x⃗H q⃗. We define the real part of the inner product as ⟨q, x⟩R. The dual norm is then
expressed as follows:

∣∣q∣∣∗A = sup
∣∣x∣∣A≤1

⟨q, x⟩R = sup
t∈[0,1]d

∣⟨q, a(t,0)⟩∣. (3.2)

With the definition of the atomic norm, the ANM for a d-dimensional signal is stated as follows:

minimize
x

∣∣x∣∣A
subject to x[f] = xo[f], f ∈M, (3.3)

where M is the index set for measurements and M ⊆ N . Then we have the dual problem of (3.3) as follows:

maximize
q

⟨qM, xoM⟩

subject to ∣∣q∣∣∗A ≤ 1,

qN∖M = 0, (3.4)

where qM is the partial tensor of q over the index setM. Here, ⟨q, a(t,0)⟩ = ∑j qje
i2πtT j , where j = {j1, j2, ..., jd} ∈

N , and 0 ≤ jd ≤ np −1 for 1 ≤ p ≤ d. It is noteworthy that ⟨q, a(t,0)⟩ is a d-variate trigonometric polynomial with
variables t or that is often termed the dual polynomial.

Let m = (m1,m2, ...,md)T , where mp ≥ np−1, ∀p, 1 ≤ p ≤ d, be a sum-of-squares relaxation degree vector and

introduce the zero-padding extension q̃ of q under m, as follows. For j = (j1, j2, ..., jd) ∈∏dp=1{f ∣ 0 ≤ f ≤mp}, q̃
is defined as follows:

q̃j =
⎧⎪⎪⎨⎪⎪⎩

qj if j ∈ N
0 otherwise.

(3.5)

Then, for the vectorization of q̃, denoted by ⃗̃q, we have the following equation for every j = (j1, j2, ..., jd) ∈
∏dp=1{f ∣ 0 ≤ f ≤mp}:

⃗̃qu = q̃j ,

where u is the index for the vectorized variable represented as

u = (
d

∑
t=1

[jd−t+1(
d−t
∏
p=1

(mp + 1))]) + 1.

For each 1 ≤ p ≤ d, we define the (mp + 1) × (mp + 1) Toeplitz matrix whose kp-th diagonal elements are ones
and zeros elsewhere as Θkp , where −mp ≤ kp ≤mp. We consider the diagonal of the matrix as the 0-th diagonal,
and the uppermost diagonal as the mp-th diagonal. Then, for a d-tuple k = (k1, k2, ..., kd), where −mp ≤ kp ≤mp,
p = 1,2, ..., d, we define Θk as follows:

Θk ≜ Θkd ⊗ ...⊗Θk1 , (3.6)
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where ⊗ is the Kronecker product. From the Bounded Real Lemma for multivariate positive trigonometric
polynomials,7 for ∣∣q∣∣∗A < 1, there exists a Hermitian matrix Q ⪰ 0 such that

δk = Tr[ΘkQ], k ∈H, (3.7)

where H is a halfspace of ∏dp=1{kp ∣ −mp ≤ kp ≤mp}, δ0 = 1, δk = 0 if k ≠ 0, and

[Q
⃗̃q

⃗̃qH 1
] ⪰ 0. (3.8)

Then, (3.4) is rewritten as follows:

maximize
q,Q

⟨qM, xoM⟩R

subject to δk = Tr[ΘkQ], k ∈H

[Q
⃗̃q

⃗̃qH 1
] ⪰ 0,

qN∖M = 0, (3.9)

where q̃ is the extension of q, ⃗̃q is the vectorization of q̃, and Q ∈ C(∏d
p=1(mp+1))×(∏d

p=1(mp+1)).

4. PHASELESS ATOMIC NORM MINIMIZATION FOR MULTIDIMENSIONAL
SIGNALS

For some practical applications including optical fluorescence microscopy and X-ray crystallography, measuring
phase information is much harder than measuring frequency magnitude information. When only magnitudes
of frequency information are available to us, then (3.9) is not directly applicable. Hence, an SDP formulation
of the ANM is required to recover a 2D or higher-dimensional signal in the continuous domain from only low
frequency magnitude information. We call the SDP formulation as the phaseless ANM, simply PANM, for 2D
or higher-dimensional signals. In this section, we extend the content of Section 3 and derive an SDP formulation
that is applicable when only magnitude information is available.

The SDP formulation of the phaseless ANM is based on the following theorem which we prove next.

Theorem 4.1. For a d-dimensional signal x that can be written as in (2.2) and its vectorization x⃗ ∈ C∣N ∣,

∣∣x∣∣2A ≥ minimize
z,l

1

∣N ∣zTr(Td)

subject to U ≜ [Td x⃗
x⃗H z

] ⪰ 0, (4.1)

where Td ∈ C∣N ∣×∣N ∣ is the d-level block Hermitian Toeplitz matrix defined as follows:

Td ≜ ∑
k∈H

Θklk. (4.2)

Here, Θk is defined in (3.6) and lk is an element of l, which is the optimization variable in (4.1). Equality holds
in (4.1) if the d-level block Toeplitz matrix Td can be decomposed as follows:

Td = V DV H (4.3)

for the optimal solution lo, where V is the Vandermonde matrix for a multidimensional signal having a(tj , φj)
in the j-th column of V , D is the diagonal matrix whose j-th diagonal element is ∣dj ∣, and rank(Td) = r < ∣N ∣.

Proof. For a given x, let us denote the optimal value of the optimization problem in (4.1) as SDP (x). (4.1)
can be proven by considering a feasible solution of the optimization problem in (4.1). For x⃗ = ∑j ∣cj ∣a(tj , φj),
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let us choose a feasible solution for z and l as follows: l such that Td = ∑j ∣cj ∣a(tj , φj)a(tj , φj)H and z = ∑j ∣cj ∣.
Then, we have

[Td x⃗
x⃗H z

] =∑
j

∣cj ∣ [
a(tj , φj)

1
] [a(tj , φj)

1
]
H

⪰ 0. (4.4)

For the feasible solution, the objective function value is 1
∣N ∣zTr(Td) = (∑j ∣cj ∣)2, which is ∣∣x∣∣2A by (3.1). Since

SDP (x) represents the minimum value among all feasible solutions, ∣∣x∣∣2A2 ≥ SDP (x).
The proof of the equality condition is shown by considering the relationship between Td and x⃗ in the positive

semi-definite matrix of (4.1). Due to the positive semi-definiteness, x⃗ should be in the range space of Td; namely,
x⃗ = ∑j ∣wj ∣a(tj , φj). Otherwise, we can always find a vector v such that vHUv < 0, where U is defined in (4.1).
Because of positive semi-definiteness and z > 0, the Schur complement of the matrix is also positive semi-definite,
i.e.,

V DV H − 1

z
V wwHV H ⪰ 0. (4.5)

When V is full column rank, we can find a vector v such that V Hv = sign(w), where sign(w) is a sign vector
having wj/∣wj ∣ as the j-th element. By using such v, we have

Tr(D) = vHV DV Hv

≥ 1

z
vHV wwHV Hv

= 1

z
sign(w)HwwHsign(w)

= 1

z
(∑
j

∣wj ∣)2, (4.6)

where the inequality is obtained from (4.5). Therefore, for the objective value of the optimization problem in
(4.1), we have

1

∣N ∣zTr(Td) =
1

∣N ∣zTr(V DV
H) = zTr(D) ≥ (∑

j

∣wj ∣)2 = ∣∣x∣∣2A, (4.7)

where the inequality is obtained from (4.6). With the first part showing that ∣∣x∣∣2A ≥ SDP (x), we conclude
that if the Toeplitz matrix is decomposed as (4.3), then, ∣∣x∣∣2A = SDP (x). If z = 0, then, from the positive
semi-definiteness of U , all the principal minor of U should be non-negative. Therefore, all the elements in x need
to be 0, and the equality in (4.1) still holds.

The existence of Vandermonde decomposition for a multidimensional signal as shown in (4.3) is studied in
the previous research.8 According to the research, the Vandermonde decomposition for the d-level Toeplitz
matrix Td exists if rank(Td) < minp np. When rank(Td) ≥ minp np, a numerical method is proposed to find the
decomposition in the research.8

For incorporating magnitude measurement in ANM, we propose the squared ANM as follows:

minimize
x

∣∣x∣∣2A
subject to aj(x) = aj(xo), j = 1, ..., g. (4.8)

where g is the number of measurements, and aj(x) is the magnitude mapping operator defined as ∣⟨aj , x⃗⟩∣, where
aj is a vector in the same dimension as x⃗.
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From Theorem 4.1, we relax (4.8) to the follows optimization problem:

minimize
x,z,l

1

∣N ∣zTr(Td)

subject to [Td x⃗
x⃗H z

] ⪰ 0,

aj(x) = aj(xo), j = 1, ..., g. (4.9)

Using the Schur complement to equivalently express the positive semi-definiteness constraint in (4.9), we have

minimize
x,z,l

1

∣N ∣zTr(Td)

subject to Td −
1

z
x⃗x⃗H ⪰ 0,

aj(x) = aj(xo), j = 1, ..., g. (4.10)

By multiplying z to the first constraint, denoting zTd as T ′d and x⃗x⃗H as X, and relaxing the optimization problem
by removing the rank(X) = 1 constraint, we have the following optimization problem:

minimize
X⪰0,l′

1

∣N ∣Tr(T ′d)

subject to T ′d −X ⪰ 0,

Aj(X) = Aj(Xo), j = 1, ..., , (4.11)

where T ′d ≜ ∑k∈HΘkl
′
k, and Aj(X) is a mapping function to the magnitude information; namely, Aj(X) =

Tr(AjX), where Aj = ajaHj . We call (4.11) the phaseless ANM (or simply PANM) for a multidimensional signal.

For concreteness, let us assume that only low frequency information is known and denoted by XM,M ∈
C∣M∣×∣M∣, which represents the partial matrix X over the index set M in columns and rows of the matrix
X ∈ C∣N ∣×∣N ∣. Then, by duality, we can have the following dual problem of (4.11) for a multidimensional signal:

maximize
Q⪰0,W

⟨WM,M,Xo
M,M⟩R

subject to δk = Tr[ΘkQ], k ∈H
Q −W ⪰ 0,

WN∖M,N∖M = 0, (4.12)

where magnitude information is applied to Xo
M,M. In the following subsection, we describe a way to obtain

Xo
M,M from different linear combinations in magnitude.

4.1 Using masks to obtain different linear combination magnitude information

Different magnitude information in frequency domain can be obtained by using different linear combination aj(x)
in (4.8). For example, from different linear combinations, we can have ∣x[f]∣, ∣x[f]+x[f +1]∣, and ∣x[f]−x[f +1].
Motivated by the previous research,3, 4, 9 in this subsection, we introduce one way to obtain Xo

M,M in (4.12) .

Lemma 4.2. Given magnitude measurements ∣x⃗j ∣ = ∣x⃗oj ∣, ∣x⃗j + x⃗j+1∣ = ∣x⃗oj + x⃗oj+1∣ and ∣x⃗j − ix⃗j+1∣ = ∣x⃗oj − ix⃗oj+1∣,
j = 1, ..., ∣M∣, where x⃗j ≠ 0, j = 1, ..., ∣M∣, the positive semi-definite matrix XM,M, which is the partial matrix of
X = x⃗x⃗H over the index set M in columns and rows, is uniquely determined to x⃗oMx⃗oM

H .

Proof. Given magnitude measurements ∣x⃗oj ∣, ∣x⃗oj + x⃗oj+1∣ and ∣x⃗oj − ix⃗oj+1∣, j = 0,1, ..., ∣M∣ − 1, we can have the
diagonal, sub-diagonal, and super-diagonal of the matrix Xo

M,M by solving linear equations together; namely,

Xj,j = ∣x⃗oj ∣2 for j = 1,2, ..., ∣M∣, and Xj+1,j = x⃗oj+1x⃗oj∗ and Xj,j+1 = x⃗oj x⃗oj+1∗ for j = 1,2, ..., ∣M∣ − 1 are obtained.

According to the non-negativeness of a Hermitian matrix,10 the Hermitian matrix is positive semi-definite if and
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Standard Atomic Norm Minimization
n =(10, 10), s =''3, m =60

Ground Truth

1-

0.5-

Phaseless Atomic Norm Minimization
n = (10, 10), s = 3, m = 60

Ground Truth

Figure 1. Dual polynomial obtained from the standard atomic norm minimization (3.9) with measurements including both
phase and magnitude information.

Figure 2. Dual polynomial obtained from the phaseless atomic norm minimization (4.12) with only magnitude measure-
ments.

only if all of its principal minors are non-negative. Hence, all principal minors of X including XM,M should be
non-negative. Then, the lemma 4.2 can be proven by induction. When ∣M∣ = 3, the determinant of XM,M is

det(
⎡⎢⎢⎢⎢⎢⎣

x⃗o1x⃗
o
1
∗ x⃗o1x⃗

o
2
∗ X1,3

x⃗o2x⃗
o
1
∗ x⃗o2x⃗

o
2
∗ x⃗o2x⃗

o
3
∗

X∗
1,3 x⃗o3x⃗

o
2
∗ x⃗o3x⃗

o
3
∗

⎤⎥⎥⎥⎥⎥⎦
) = −∣x⃗o2X1,3 − x⃗o1x⃗o2x⃗o3∗∣2,

where X1,3 is unknown. To be −∣x⃗o2X1,3 − x⃗o1x⃗o2x⃗o3∗∣2 ≥ 0, x⃗o2X1,3 − x⃗o1x⃗o2x⃗o3∗ = 0. Since x⃗o2 ≠ 0, X1,3 is determined
uniquely to x⃗o1x⃗

o
3
∗. When ∣M∣ = 4, the top-left 3×3 submatrix of XM,M and the bottom-right 3×3 submatrix of

XM,M can be considered to determine X1,3 and X2,4 respectively. After figuring out X1,3 and X2,4, we can find
X1,4 by considering 3× 3 principal submatrix of XM,M having X1,4. In the similar way, when ∣M∣ = n ≤ ∣N ∣, we
can uniquely determine every unknown variables in XM,M.

5. NUMERICAL EXPERIMENTS

We illustrate the efficacy of the proposed phaseless ANM with numerical simulations. We compare the simulation
results with the standard ANM for 2D signal introduced in Section 3. For the 2D signal, we randomly generate a
ground truth expressed as the sum of three Dirac delta functions, i.e., s = 3, and the size of the signal dimension
n is [10,10]T . The coefficient of each Dirac delta function, denoted by coj in (2.2), is randomly generated, where

the real part and the imaginary part of the coefficient followed N(0,1). We use CVX11 to solve (3.9) and (4.12)
to obtain the dual polynomials.

For the magnitude measurements for PANM, we consider the case introduced in Lemma 4.2, where the number
of measurements ∣M∣ = 60. The measurements used in ANM include both phase and magnitude information
over the index set M. Figure 1 and 2 demonstrate that the frequencies are successfully recovered from the dual
polynomial obtained by solving (3.9) and (4.12) respectively.
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6. CONCLUSION

In this paper, we consider the recovery of a signal in d-dimension expressed as sum of delta Dirac functions
whose possible locations are in the continuous spatial domain [0,1]d. The proposed algorithm, called the phase-
less atomic norm minimization for d-dimensional signals, demonstrates the possible signal recovery with only
frequency magnitude information.
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