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The Ideal Model

The ideal model can be described with a circuit diagram as shown in fig. S1a. −Sσ is the triboelctrically
produced surface charge on the dielectric layer that is maintained at a steady value over time. On the
metal side an opposite charge Sσ is initially established (i.e. Q(t = 0) = 0 in fig. S1a). The metal-dielectric
distance (air gap) changes sinusoidally over time

x(t) = xmax ·
(1− cosωt)

2 (S1)

which induces a change in the air-gap contribution of the capacitance

1
C(t) = x(t)

Sε0
= xmax

Sε0

(1− cosωt)
2 = 1

Cair

(1− cosωt)
2 (S2)

Here Cair was defined as the air-gap contribution of the capacitance at x = xmax. Cdevice is the capacitance
of the device that remains constant over time, including the contribution from the dielectric layer and any
additional capacitors connected in series to the dielectric layer. RL is the load resistance.

The time-varying C(t) drives charge Q(t) from the moving electrode to the stationary electrode, making
the moving electrode charge Sσ −Q(t) and the stationary electrode charge Q(t). We can use Kirchhoff’s
voltage law to find the differential equation describing charge Q

RL
dQ

dt
+Q

( 1
Cdevice

+ 1
C(t)

)
− Sσ

C(t) = 0 (S3)

To reduce the differential equation to a dimensionless form, we define reduced parameters. The
mechanical driving motion is reduced to x∗ ≡ x(t)/xmax and instead of time we use phase angle θ = ωt.
Since charge Q is always a fraction of Sσ, we define Q∗ = Q/Sσ. The two independent parameters are the
dimensionless resistance

R∗ ≡ ωRLCair = RLωε0S

xmax
(S4)

and the dimensionless device capacitance

C∗ ≡ Cdevice
Cair

(S5)



Differential equation Eq.S3 then reduces to

R∗dQ
∗

dθ
+Q∗

( 1
C∗ + x∗

)
= x∗ (S6)

By using the integration factor method, the analytical solution of Q∗ can be obtained for the initial
condition of Q∗(0) = 0

Q∗(θ) =

∫ θ
0 (1−cos t)·exp[ 1

2R∗ ( 2t
C∗ +t−sin t)]dt

2R∗ exp[ 1
2R∗ ( 2θ

C∗ +θ−sin θ)] (S7)

Since our prime interest is in the steady state where Q(θ) = Q(θ+ 2π), we can use this condition to replace
the integral in Eq.S7 with one that runs over only one period

Q∗
steady(θ) =

exp( sin θ
2R∗ )

2R∗(exp[ π
R∗ ( 2

C∗ +1)]−1)
∫ 2π

0
[1− cos(t+ θ)] · exp

[ 1
2R∗

( 2t
C∗ + t− sin(t+ θ)

)]
dt (S8)

Using Q∗, we can also define dimensionless current (I∗), voltage (V ∗), and power (P ∗)

I∗ ≡ dQ∗

dθ
(S9)

V ∗ ≡ I∗R∗ (S10)
P ∗ ≡ I∗2R∗ (S11)

Real current (I), voltage (V ), and power (P ) is found by simply scaling the dimensionless values

I = I∗ · Sσω (S12)

V = V ∗ · σxmax
ε0

(S13)

P = P ∗ · xmaxσ
2Sω

ε0
(S14)

RL
Cdevice

C(t)

Q(t)

Sσ-Q(t)

-Sσ

dQ
dt

RL
Cdevice

C(t)

Q(t)
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-Sσ

dQL
dt

Cpar
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dt

Qpar

-Qpar

(a)

(b) dQ
dt

capacitance model. Definitions of charges (blue text) and currents (orange text) are shown together on the circuit
diagram. −Sσ represents the constant charge on the dielectric layer. Sσ −Q(t) and Q(t) represent the charges in
the moving electrode and stationary electrode, respectively.

fig. S1.
Circuit model diagrams of the triboelectric generator for (a) the ideal model and (b) the parasitic

Circuit model diagrams of triboelectric generators.
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represent two non-optimal load resistances. (a-b) Q∗, (c-d) V ∗, (e-f) I∗, and (g-h) P ∗. It is seen that the steady-state
is reached within the first two cycles in most cases except for the case with highest R∗ and lowest 1/C∗. The bad
matching case (1/C∗ = 0.05) shows sharper peaks in V ∗, I∗, and P ∗, whereas the good matching case (1/C∗ = 0.82)
shows smoother behavior. The resulting power after integration over θ is much higher in the good matching case. It
is also seen that the first transient cycle generates more power than at steady-state, especially for high R∗. Initial
conditions were set to Q∗ = 0 in all cases.

fig. S2. Transient characteristics of the ideal model. The left and right columns correspond to
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The transient solution for a number of example cases are plotted in fig. S2. When R∗ is high, it is seen
that the power during the first cycle is much higher than that of the steady-state. By comparing the two
cases of R∗ = 3 with different 1/C∗, i.e. 1/C∗ = 0.05 (fig. S2g) and 1/C∗ = 0.82 (fig. S2f), it is observed
that during the first cycle the bad matching case (1/C∗ = 0.05) case has even higher power generation than
the good matching case (1/C∗ = 0.82) despite the steady-state power being orders of magnitude smaller.
Therefore, modeling the transient cycle (19 ) could lead to results significantly discrepant from real device
operation. In the main text, we focus our analysis on the steady-state behavior.

Figure S3 plots the steady state power output with respect to 1/C∗ and R∗, when one is fixed and the
other is varied. These plots are equivalent to vertical and horizontal cross sections of the color contour plot
shown in Fig.3 of the main text.

Parasitic Capacitance Model

Parasitic capacitance is modeled by adding a capacitor in parallel to the load resistor (Cpar) as shown in
Q always going through the load resistor, the charge splits to a part going through the

load resistor (QL) and the other leaking into the parasitic capacitor (Qpar). From Kirchhoff’s current law

dQ

dt
= dQL

dt
+ dQpar

dt
(S15)

With the initial condition Q(t = 0) = QL(t = 0) = Qpar(t = 0) = 0, we obtain

Q = QL +Qpar (S16)

Use of Kirchhoff’s voltage law on two different loops in fig. S1b yields a set of differential equations

RL
dQL
dt

+Q

( 1
Cdevice

+ 1
C(t)

)
− Sσ

C(t) = 0 (S17)

RL
dQL
dt
− Qpar
Cpar

= 0 (S18)

We can combine Eqs.S16-S18 into a differential equation describing only QL

RL
dQL
dt

+
(
QL + dQL

dt
RLCpar

)( 1
Cdevice

+ 1
C(t)

)
− Sσ

C(t) = 0 (S19)

which is of our interest for analyzing power output at the load resistor. Note the additional term containing
Cpar compared with the ideal model (Eq.S3), which requires an additional independent parameter to

fig. S3.
Steady-state dimensionless power output per cycle for: (a) a given

fig. S1b. Instead of

One-dimensional projections of the steady-state dimensionless power output. 



describe the behavior of the system. We define dimensionless parasitic capacitance

C∗
par ≡

Cpar
Cair

(S20)

which is the added independent parameter. We also define Q∗
L = QL/Sσ as we did previously for Q∗.

The dimensionless differential equation then becomes

R∗dQ
∗
L

dθ
+
(
Q∗
L + dQ∗

L

dθ
R∗C∗

par

)( 1
C∗ + x∗

)
= x∗ (S21)

Parasitic capacitance reduces the power as shown in fig. S4. The optimum R∗ and 1/C∗ shift to smaller
values; one needs to minimize the leakage current by reducing the resistance of the load. As a result, the
output voltage level is compromised more than the current level (fig. S4c-d).
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Power Output vs. Work Input

Work done by the mechanical motion, in dimensionless units identical to P ∗, is

W ∗ = (1−Q∗)2 · sin θ
4 (S22)

which can be derived by finding the force required to maintain the steady motion. We can then compare
this work input to the power output as shown in fig. S5. We note that the input work is positive for the

fig. S4.
The influence of parasitic capacitance on (a) the maximum power generation and (b) the optimum

The influence of parasitic capacitance on device characteristics.



separation process (θ = [0, π]), but negative for the reverse process (θ = [π, 2π]). When integrated over
the entire cycle, the area is identical for the output and input curves which indicates 100 % conversion
efficiency. This energy conversation is an expected result from the model because the load resistor is the
only element that consumes power; ideal capacitors do not consume power.
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(b) 0.191 and −0.123, respectively. The device parameters used for the calculation are given in the legend.

fig. S5.
Comparison of the output power and mechanical work input for (a) the global optimum condition and (b)

Comparison of the output power and mechanical work input. 
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