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A three dimensional finite element computer simulation has been performed to assess the effects 
of release waves in normal impact soft-recovery experiments when a star-shaped flyer plate is 
used. Their effects on the monitored velocity-time profiles have been identified and ‘their 
implications in the interpretation of wave spreading and spa11 signal events highlighted. The 
calculation shows that the star-shaped flyer plate indeed minimizes the magnitude of edge 
effects. The major perturbation to the one-dimensional response within the central region of the 
target plate results from spherical waves emanating from the corners of the star-shaped plate. 
Experimental evidence of the development of a damage ring located in coincidence with the 
eight entrant corners of the flyer plate is reported. Microscopy studies performed in the intact 
recovered samples revealed that this damage ring eliminates undesired boundary release waves 
within the central region of the specimen. Consequently, the observed damage in compression 
and tension within this region can be attributed primarily to the conditions arising from a state 
of uniaxial strain. 

I. INTRODUCTION 

The objective of a soft-recovery plate impact experi- 
ment is to be able to attribute the observable residual ef- 
fects (e.g., microcrack density, dislocation configurations, 
phase transformed material) primarily to the stress- 
induced inelasticity developed during the known stress 
pulses ofWuniaxial strain. 

In any plate impact experiment, due to the finite size of 
the plates, particles at lateral boundaries are not con- 
strained against lateral motion. This produces waves of 
stress release which propagate inward and progressively 
eliminate the state of uniaxial strain at the center of. the 
specimen. One of the first attempts to limit the effects of 
such unloading waves was the addition of a concentric 
spa11 ring around the circumference of the target plate 
(Smith’ and Hartman2). The main disadvantage of this 
technique was the requirement of small tolerances in the 
machining of the plates that made its application imprao 
tical for some brittle materials. More recently Kumar and 
Clifton,3 by using a star-shaped flyer (see Fig. 1) , were able 
to subject LiF samples to a well defined stress history fol- 
lowed by a controlled release of stresses. Their main idea is 
to keep the central octagonal region. of the target plate 
relatively free from the effects of lateral unloading waves. 
Cylindricat spherical, and conical waves are generated at 
the flyer boundary (see detailed discussion in Kumar and 
Clifton3) directing most of the energy associated with the 
side rarefactions. to regions at the periphery of the target 
plate and hence away from its center. The only cylindrical 
wave which passes through the central o_ctagonal region is 
a shear wave diffracted from the boundary upon the arrival 
of a cylindrical unloading wave at 45”. Diffracted spherical 

waves emanating from the corners of the flyer constitute 
the principal unloading waves that perturb the state of 
uniaxial strain within the central region. These features 
have been confirmed by Rabie et a1.,4 through three- 
dimensional numerical simulations of the dynamic event, 
when a star-shaped target plate is used. More recently 
Kirkpatrick et al. ,5 through three-dimensional (3-D) cal- 
culations of plate-impact tensile-damage experiments, have 
found that star-shaped target plates are preferable to cir- 
cular target plates because the star geometry eliminates a 
late time amplification of the input pulse. Similarly, the 
star-shaped design has been found to be efficient for the 
experimental study of ceramic materials (Longy and Cag- 
noux6). 

The observation of tensile cracks (Chang et al.‘) 
formed normal to the free edges of square brittle specimens 
when a star-shaped flyer is used, was explained by means of 
finite element simulations. They showed that in-plane ten- 
sile stresses are induced on the back face of the sample. 
This effect was attributed to size mismatch between the 
flyer and the sample. 

The purpose of this article is to clarify the effectiveness 
of the soft-recovery plate impact configuration in the char- 
acterization of brittle materials. Three-dimensional finite 
element simulations and plate impact results obtained in 
the study of Al203 (Clifton et al. *) and AlN/AlN/Al com- 
posite (Espinosa and Clifton’) are used to show unambig- 
uously the effects of unloading waves within the central 
region of the sample. 

II. THREE-DIMENSIONAL NUMERICAL SIMULATION 

akZu-rently at School of Aeronautics and Astronautics, Purdue Univer- 
sity, West Lafayette, IN 47907. 

A. Numerical scheme 

Consider a body B with volume V and surface S 
==S,US, where S, and S, are the traction and kinematic 
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FIG. 1. Soft recovery normal impact configuration. 

boundaries, respectively, and  S,fW ,=0. For the small 
strain formulation, the strain displacement equat ions are 

Ed= ( uij+ ~~,~)/2 in V, (1) 
where eii is the small strain tensor. The  equations of mo- 
mentum balance .and boundary condit ions are 

uud+pbi=piii in V, @a) 
- 

aiipti’ti on S, , (2b) 

Ui=Cf on  SU ) ‘,_ 

where ai/ is the Cauchy stress, bi is the body foice per unit 
mass, p is the density of the med ium, ti are the surface 
tractions, and  Ui are the displacements. A superposed dot 
denotes differentiation with respect to time  and a  super- 
posed bar denotes prescribed values. The  formulation is 
complete when initial condit ions are specified in the body, 
I.e., 

Ui(X,O)=Up zii(X,O)=Vf in V. (3) 
The  material behavior is def ined through constitutive 

equat ions which relate the motion to stress, and/or stress 
rates.-For the case of interest here, elastic response is as- 
sumed. The  linear elastic constitutive equat ion is given by 

=&bjki% 

(4) 

where D, the tensor of elaStiC modu li, satisfies ?ijk[=Dj&[ 
= Dolk = Dk/ip 

The equat ion of motion (?a) CA be  expressed in weak 
form by the principle of virtual work: 

s [~i~Eiifp(iii-bi)Sui]dV= 
s 

t,Sui dS, (5) 
V %  

where the variational field SUi is zero on  S,. 
Due to lim itations in computational resources, difficul- 

ties in the spatial resolution of the finite element discieti- 
zation arise when 3-D wave propagat ion problems are 

solved. In order to reduce the doma in that needs to be  
discretized while conserving nearly all of the physics of the 
real problem, energy absorbing boundar ies have been de- 
veloped and successfully implemented for the analysis of 
dynamic problems involving infinite cont inuous systems 
(Lysmer and  Kuhlemeyer”). The  efficiency of viscous 
boundar ies has been studied by Cohen and Jennings.” 
They observed that one  ma jor weakness of the silent 
boundary method is in the numerical noise generated upon 
ar&al of a  ma in stress pulse. They used numerical damp-  
ing as a  technique for filtering high-frequency noise. This 
viscous boundary approach has been incorporated in the 
dynamic finite element formulation with the aim ofsimu- 
lating the dynamic response of the momentum trap placed 
behind the specimen (see F ig. 1). In addition, a  mod ifica- 
tion of the standard explicit integration of the governing 
equations is implemented. This mod ification removes the 
pathological behavior of the silent boundary method when 
high frequency response is required. 

The  tractions at the nonreflecting interface between the 
specimen and the momentum trap have normal and  tan- 
gential components which are taken to be  

a, = -PC,& ot, = -PW, gtz= -PCJ$ I (6) 

where cd and  c, are the dilatational and  shear wave speeds, 
and  v,, vtl, and  vr2 are the normal and  tangential velocity 
components.  These boundary condit ions are exact for 
p lane wave propagat ion across the boundary.  For problems 
in which the wave amp litudes vary along the boundary,  the 
use. of Eq. (6) corresponds to the use of a  local p lane wave 
approximation of the wave propagat ion across the bound-  
ary. 

By using the standard finite element spatial discretiza- 
tion (Hughes”) the weak form of the momentum balance 
reduces to a  system of ordinary differential equat ions in 
time, i.e., 

M ii=f+T-F, (7) 
where 

M= 
s 

pNTNd V, 
V 

f= 
s 

N=t dS, 
SLi 

& 
s 

(8) 
N ‘PdS , 

SC+= ,g 

F= 
I 

BTodV, 
V 

in which the traction boundary S, has been separated into 
the standard traction boundary S, and  the nonreflecting 
boundary S+, B is the strain-displacement matrix, and  N 
is the shape function matrix. The  numerical algorithm 
given in Box 1  results when the explicit central difference 
scheme is used in the integration of E!q. (7). Corrected 
accelerations at step (iii) need to be  computed. These cor- 
rection terms arise from changes in the appl ied boundary 
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Box 1: Explicit integration of the equations of motion 

(i) initial conditions: 
n=o 
&%-$, $Lp 
aO=M-’ (f”+io-Fo). 
(ii) Compute nodal external forces on S, and S,IU: 
p+~,-.p#. 
(iii) Correct accelerations due to changes in boundary 
forces: 
F=a”+M-’ (Tn+l-Tn) on S,W 
si”=a”+M- (f”+‘-fn) on S,. 
(iv) Update displacements: 
u “+‘=~~+Azv”+~Ar??. 
(v) Update the stress tensor o at each element. 
(vi) Compute internal force vector: 
P+‘=J-VBu”+‘dV. 
(vii) Solve for accelerations: 
a”t’=RI-‘(f”+‘+^i”+‘-F”+I). 
(viii) Update velocity vector: 
V”+l--y”+~(~“+a”+l). 
(ix) n=n+l, if n<n,,, go to step (ii), else stop. 

tractions, either due to changes in the applied external 
forces or due to changes in particle velocity at the nonre- 
fleeting boundary. If such corrections are not incorporated 
in the numerical implementation, spurious oscillations are 
introduced with magnitudes proportional to the traction 
change. These corrections are of special significance in the 
solution of shock wave problems, making this modification 
of the standard explicit algorithm an essential condition for 
the computation of accurate field variables. The conceptual 
modification in the calculation of the field variables at the 
boundary due to changes in the boundary tractions can be 
used in a variety of structural and m icromechanical prob- 
lems. Problems involving contact between viscoplastic bod- 
ies or problems where dynamic running cracks cause a 
sudden release of nodal forces are examples. 

Inversion of the system of Eq. (7) is trivial when a 
lumped mass matrix is used, m inimizing the computational 
effort per time step. The method is conditionally stable, the 
stability criterion is ( Hughes12) 

where o,,, is the maximum frequency of the finite element 
structure. Reducing the time step to values below At,, leads 
to problems of dispersion arising from the spatial errors 
introduced by the finite element discretization. For the spe- 
cial case of one-dimensional uniform meshes, when At is 
chosen such that the Courant number (q=ht+/l, where I 
is the element size) is equal to 1, there is no numerical 

TABLE I. Material properties. 

FIG. 2. Star-shaped flyer and specimen configuration used in the 3-D 
calculations. 

dispersion. This result suggests that meshes should be 
made as uniform as possible. 

B. Numerical results 

A plot of the mesh composed of 8-node, isoparametric 
brick elements is given in Fig. 2. To simulate the flyer 
shape, the brick elements at the boundary are collapsed 
onto one face. A total of 22 000 elements in the target plate 
and 4000 elements in the flyer plate are used. By symmetry 
only one quadrant is discretized, symmetry conditions are 
imposed on the left and lower faces. The target dimensions 
are 23 mmX23 mmx4 m m , the flyer plate has matching 
dimensions and a thickness of 1 m m . The material prop- 
erties for the Al,O, specimen and the Al flyer are given in 
Table I. The interface between the flyer and target plates 
has been modeled such that separation of the surfaces can 
take place. The initial conditions are prescribed as follows: 
(i) nodes at the momentum trap and inside the specimen 
are considered to be at rest, (ii) nodes at the flyer-specimen 
interface are initialized with the velocity obtained from an 
elastic solution according to the characteristic equations, 
and (iii) nodes within the flyer are initialized with a ve- 
locity equal to the projectile velocity. 

The particle velocity versus time profile at four differ- 
ent points located at the back of the specimen are shown in 
Figs. 3 (a)-3 (d) . Finite risetimes at wave fronts and small 
oscillations are the result of geometric dispersion effects 
associated with the spatial discretization. Figures 3 (a)- 
3 (c) show a compressive pulse with constant amplitude 

Longitudinal Transverse Acoustic Shear 
Density wave speed wave speed impedance impedance 

Material ( kg/cm3 1 (mm/p4 (mm/p) (GPa/mm@) ( GPa/mm&s ) 

Aluminum 6061-T6 2700 6.4 3.05 17.34 8.66 
ALO, 3990 10.8 6.4 43.09 25.54 
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TABLE II. Summary of experiments. 

Projectile 
velocity 

Shot no. -= 6, (mdps) 

89-05” 0.1044 
91-02b 0.1070 

“Aluminum 6061-T6 flyer. 
&ri6 Al4 V flyer. 

Interface 
stress 

(MPa) 

1291 
1889 

Tilt 
(mrad) 

<O.lO 
<O.lO 

Flyer Specimen Momentum trap 
thickness thickness thickness 

(mm) (mm) (-1 

0.94 4.020 292 
0.89 3.803 3.02 

proportional to the impact velocity. Three dimensional 
wave contributions arrive after the end of the initial pulse, 
their magnitude is of the order of 8% of the initial pulse 
velocity. Figure 3 (d), which corresponds to a position out- 
side the central octagonal region, shows the effects of the 
unloading wave almost immediately after the arrival of the 
front. Evidence of such response is observed as a departure 
from the 1-D elastic prediction. 

Stress-time profiles at the center of the target plate, at 
I depths 0, h/2, and h (where h is the thickness of the spec- 

Impact Velocity V, = 100 mkec 

D.O8- *  I  * ,  .  I  / .  ,  s  I .  1 ,  .  ,  1 - --I 

-7 15nn 
D FEM Computetlon 1 .--- 

. - - - 1-D Eleetk Wew Theory 
: - 3-l 

* 0.06 - 
1 

0.04 - 

1000 1250 

Time [nsec] (cl Time [nsec] 

Impact V&city V, x 100 mkec Impact Velocity V, = 100 mkec 

0.08 

0.06 z 

(b) Time [nsec] (d) 

0 250 500 750 1000 1250 

Time [nsec] 

imen), are given in Fig. 4. After an initial compressive 
state of stress, tensile stresses with maximum amplitude on 
the order of 15% of the longitudinal compressive stress in 
the incident plane wave, are developed at the rear surface 
of the specimen. The first peak (at t- 1.1 ,US) corresponds 
to the simultaneous arrival of the eight diffracted spherical 
waves emanating from the m-entrant corners. The second 
peak (at t= 1.7 ps), which represents a maximum, is pro- 
duced by the superposition of unloading waves generated 
at the eight comers located at the periphery of the star- 

Impact Velocity V, = 100 mktc 

0.08 -- 
'ij' 
8 
m$ 0.06 

~ 3-D FEM Computetion 

y -0.0 ~r’...‘~~~~‘~~~~‘~~~.‘~~~~‘~~~~i~~~ -50 0 250 500 750 1000 1250 

FIG. 3. (a) Velocity-time profile at the center of the specimen. (b) Velocity-time profile at a point 1.95 mm to the right of the specimen center. (c) 
Velocity-time profile at a point 4.5 mm to the right of the specimen center. (d) Velocity-time profile at a point 5.85 mm to the right of the specimen 
center. 
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Impact Velocity V, = 100 mkec 
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FIG. 4. Normal and in-plane stress-time profil? at the center of the 
target plate. In-plane stress histories at depths 0, 5, and h. 

shaped plate. The duration of these tensile waves is deter- 
m ined by the duration of the initial compressive pulse. 
These tensile stresses are the result of unloading waves 
independent of any size m ismatch between the flyer and 
the target plates. 

The computer simulation reported here corresponds to 
the worst scenario where unloading waves from the eight 
corners of the star-shaped flyer are produced simulta- 
neously, i.e., no tilt between the flyer and the target. More- 
over, as discussed by Kumar and Clifton,3 the maximum 
amplitude of the release waves decreases with decreasing 
ratio I/r, where 1 is the flyer thickness and r is the distance 
from the reentrant corner. This fact should be used in a 
correct design of the recovery experiment. Another reason 
for the need of a thin flyer arises from the generation of 
residual transverse strains upon shock release in materials 
that undergo plastic deformation or phase transition under 
conditions of uniaxial strain (Stevens and Jones13). 

III. EXPERIMENTAL OBSERVATIONS 

Velocity-time profiles obtained using the soft-recovery 
configuration in Al,O, (Clifton et al*) and AlN/AIN/Al 
(Fspinosa and Clifton’) for the highest imposed impact 
velocities, are given in Figs. 5 and 6, respectively. A sum- 
mary of the experiments is given in Table II. .The wave 
structure observed between the first and the second com- 
pressive pulses, in the A&O3 experimental record (Fig. 5 ), 
is caused in part by wave spreading during damage in com- 
pression and in part from release waves emanating from 
the comers of the flyer plate. In the AlN/AlN/Al experi- 
mental record (Fig. 6), the additional feature of reflected 
waves originating at the tensile damage (spall) region is 
observed immediately after the initial compressive pulse. 
These observations together with the results of the 3-D 
computer simulation lead to the conclusion that proper 
interpretation and quantification of the velocity-time his- 
tories require the consideration of the release waves con- 

1750 

1500 g 

1250 1000 ij 

750 500 i 

250 

0 
-250 0 250 500 750 1000 1250 

Time [nsec] 

FIG. 5. Monitor velocity-time profiles at four points within the central 
region of the A1,03 sample (shot 89-05). 

tribution to the normal velocity amplitude. Two pictures of 
the recovered Al,O, sample are shown in Fig. 7. At the 
impact surface of the specimen, Fig. 7 (a), high density of 
m icrocracks and a few macrocracks can be observed out- 
side the central region. This damage pattern is consistent 
with the tensile stresses induced by the unloading cylindri- 
cal and spherical waves. At the rear face of the specimen, 
Fig. 7(b) a damage ring located in coincidence with the 
eight entrant corners of the flyer plate is also observed. The 
divergent character of the unloading waves from the cor- 
ners makes these locations the most favorable regions for 
stress-induced m icrocracking; consequently, the level of 
tensile’stresses that propagates into the central octagonal 
region is attenuated to a value below a fracture stress 
threshold. The net effect is the generation of a protective 
ring that eliminates undesired effects during the generation 
of the main compressive pulse. 

Recovered AlN/AIN/Al samples, with a fracture 
toughness approximately twice the K,, of Al,O,, exhibit 
the same general features. A SEM m icrograph of the spa11 
region within the sample is shown in Fig. 8. The only main 
cracks developed inside the central region of the sample are 
perpendicular to the direction of impact, consistent with 
the expected state of uniaxial strain. 

The observation of cross-shaped cracks by Chang 
et al. ,’ in the study of Mg-PSZ seems to be the result of the 

T ‘T--T ‘TTs7‘---j-K7-p T T v 

1 “lo r ExDerhentPI Records 
2500 
2250 s - - EhstlcSolutbn 

2 0.08 I 

L 
* 0.06 n - 

H 
g 0.04 - 1 

0 200 400 600 800 1000 1200 1400 

Time [nsec] 

FIG. 6. Monitor velocity-time profile in AlN/AlN/Al (shot 91-02). 
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FIG. 8. SEM micrograph showing the spall region developed within the 
central region of the AlN/AIN/Al specimen. Note that the main cracks 
are perpendicular to the direction of wave propagation. 

tions for the interpretation of wave spreading and spa11 
signals have been noted. Transverse tensile stresses calcu- 
lated for the back of the sample have been identified as 
being due primarily to diffracted spherical waves emanat- 
ing from the corners of the flyer plate. The overall efli- 
ciency of the star-shaped flyer design in m inimizing bound- 
ary release waves, up to maximum longitudinal stresses of 
2 GPa, has been shown through experimental velocity-time 
profiles and m icroscopy studies for an Al,Os ceramic and 
an AIN/AlN/Al composite. 
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1 ps applied pulse (magnifying the spherical wave effects) 
and the pre-existence of 200-300 pm surface flaws. These 
flaws appear to have provided the m icrocrack nuclei for 
propagation of main localized cracks within the central 
region of the specimen. Another possible source of tensile 
stresses, not explored by the authors, is the additional dis- 
sipation of elastic energy trapped in the central region of 
the sample upon unloading of the longitudinal compressive 
pulse. This energy arises as a consequence of inelastic de- 
formations that result from the stress-induced phase trans- 
formation in the Mg-PSZ. 

IV. CONCLUSIONS 

Three-dimensional effects due to release waves in the 
soft-recovery configuration proposed by Kumar and Clif- 
ton,3 have been quantified through elastic finite element 
simulations. The effects of release waves on the monitored 
velocity-time profiles have been assessed and their implica- 
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