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Abstract

In this paper we present a modeling approach to bridge the atomistic with macroscopic
scales in crystalline materials. The methodology combinesidentification and modeling of the
controlling unit processes at microscopic level with the direct atomistic determination of fun-
damental material properties. These properties are computed using a many body Force Field
derived from ab initio quantum-mechanical calculations. This approach is exercised to de-
scribe the mechanical response of high-purity Tantalum single crystals, including the effect of
temperature and strain-rate on the hardening rate. The resulting atomistically informed model
is found to capture salient features of the behavior of thesecrystals such as: the dependence of
the initial yield point on temperature and strain rate; the presence of a marked stage I of easy
glide, specially at low temperatures and high strain rates;the sharp onset of stage II hardening
and its tendency to shift towards lower strains, and eventually disappear, as the temperature in-
creases or the strain rate decreases; the parabolic stage IIhardening at low strain rates or high
temperatures; the stage II softening at high strain rates orlow temperatures; the trend towards
saturation at high strains; the temperature and strain-rate dependence of the saturation stress;
and the orientation dependence of the hardening rate.
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1 Introduction

This paper is concerned with the development of a multiscalemodeling approach for advanced
materials such as high-purity bcc single crystals. The present approach is aligned with the current
divide and conquerparadigm in micromechanics (see, e. g., [1, 2, 3, 4, 5, 6]. This paradigm
first identifies and models the controlling unit process at microscopic scale. Then, the energetics
and dynamics of these mechanisms are quantified by means of atomistic modeling. Finally, the
macroscopic driving force is correlated to macroscopic response via microscopic modeling. This
last step involves two stages,localizationof the macroscopic driving force into unit-process driving
forces andaveragingof the contribution of each unit process into the macroscopic response.

We show in this article that the meticulous application of this paradigm renders truly predictive
models of the mechanical behavior of complex systems. In particular we predict the hardening of
Ta single crystal and its dependency for a wide range of temperatures and strain rates. The feat
of this approach is that predictions from these atomistically informed models recover most of the
macroscopic characteristic features of the available experimental data, without a priori knowledge
of such experimental tests. This approach then provides a procedure to forecast the mechanical
behavior of material in extreme conditions where experimental data is simply not available or very
difficult to collect.

A crucial step in this approach is the appropriate selectionand modeling of the unit processes.
These models supply the link between the atomic and meso scale by identifying and correlating the
relevant material properties, susceptible of atomistic determination such as energy formation for
defects, with the corresponding driving forces. In this case, we specifically consider the following
unit processes: double-kink formation and thermally activated motion of kinks; the close-range
interactions between primary and forest dislocation, leading to the formation of jogs; the percola-
tion motion of dislocations through a random array of forestdislocations introducing short-range
obstacles of different strengths; dislocation multiplication due to breeding by double cross-slip;
and dislocation pair-annihilation.

A set of material parameters is then obtained from the modeling and identification stage, which
is required to quantify the contribution of each of the unit processes. We compute these mate-
rials properties using a combination of ab-initio quantum mechanics (QM) and Force Field (FF)
calculations. QM describes the atomic interactions from first principles, i.e. with no input from
experiments; unfortunatelly QM methods are computationally intensive and restricted to small
systems, making QM calculations impractical to study most of the materials properties govern-
ing plasticity. Force Fields give the total energy of a system as a potential energy function of the
atomic positions and with Molecular Dynamics (MD) allows the simulation of systems containing
millions of atoms. We used ab-initio quantum mechanical calculations (equations of state of vari-
ous crystalline phases, elastic constants, energetics of defects, etc.) to develop a many body Force
Field (FF) (named qEAM FF) for Tantalum. We use the qEAM FF with MD to calculate the core
energy of the1/2a < 111 > screw dislocation, that of the edge dislocation with Burgers vector
b = 1/2a < 111 > in (110) planes. We have also calculated the formation energies and nucleation
lengths of the kinks inb = 1/2a < 111 > screw dislocations.

The organization of the paper follows the sequential stagesof the proposed approach. First, we
provide a brief description of each of the unit processes including the governing final equations.
We then identify and compute by atomistic means the corresponding material properties. Finally,
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(a) (b)

Figure 1: Schematic of the double-kink mechanism.

we compare the predictions against experimental data.

2 Unit Processes

Plastic deformation in metallic systems is the macroscopicmanifestation of dislocation activity.
The resistance to the dislocation motion, therefore, engenders the hardening properties observed
in this type of materials. It is then the complex interplay ofmicroscopic mechanisms control-
ling dislocation mobility, dislocation interaction and dislocation evolution which confers the
macroscopic constitutive properties. In the present approach, these controlling processes are con-
sidered to beorthogonalin the sense that are weakly coupled with each other. The interaction
among them is only established through the uniqueness of themacroscopic driving force which
are shared, via the localization process, by all the unit processes.

In this section, we introduce the set of controlling unit processes which have been identified for
describing the mechanical response of high-purity BCC single crystals, in particular for Tantalum.
We also provide the final expression resulting from the the modeling of each of these processes. A
detailed description of the model, including comparison with experimental data is given in [7].

2.1 Dislocation Mobility: Double-Kink Formation and Therm ally Activated
Motion of Kinks

We consider the thermally activated motion of dislocationswithin anobstacle-freeslip plane. Un-
der these conditions, the motion of the dislocations is driven by an applied resolved shear stressτ
and is hindered by the lattice resistance, which is weak enough that it may be overcome by thermal
activation. The lattice resistance is presumed to be well-described by a Peierls energy function,
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Figure 2: Temperature dependence of the effective Peierls stress for various strain rates. Note that
the typical order of magnitude ofγ̇kink

0 = 106 s−1.

which assigns an energy per unit length to dislocation segments as a function of their position on
the slip plane.

In bcc crystals, the core of screw dislocation segments relaxes into low-energy non-planar
configurations [8, 9, 10, 11, 12, 5, 13, 14]. This introduces deep valleys into the Peierls energy
function aligned with the Burgers vector directions and possessing the periodicity of the lattice. At
low temperatures, the dislocations tend to adopt low-energy configurations and, consequently, the
dislocation population predominantly consists of long screw segments. In order to move a screw
segment normal to itself, the dislocation core must first be constricted, which requires a substantial
supply of energy. Thus, the energy barrier for the motion of screw segments, and the attendant
Peierls stress, may be expected to be large, and the energy barrier for the motion of edge segments
to be comparatively smaller. For instance, Duesbery and Xu [15] have calculated the Peierls stress
for a rigid screw dislocation in Mo to be 0.022µ, whereµ is the〈111〉 shear modulus, whereas
the corresponding Peierls stress for a rigid edge dislocation is 0.006µ, or about one fourth of the
screw value. This suggests that the rate-limiting mechanism for dislocation motion is the thermally
activated motion of kinks along screw segments ([16, 17, 18]).

At sufficiently high temperatures and under the applicationof a resolved shear stressτ >
0, a double-kink may be nucleated with the assistance of thermal activation (e. g., [19, 20, 5],
and the subsequent motion of the kinks causes the screw segment to effectively move forward,
Fig. 1. Under this conditions the following expression for the effective temperature and strain-rate
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Figure 3: Bow-out mechanism for a dislocation segment bypassing an obstacle pair

dependent Peierlsτp is obtained:

τP =
τ0

βEkink
asinh

(

γ̇

γ̇kink
0

eβE
kink

)

(1)

where the effective Peierls stress is given by

τ0 =
Ekink

bLkinklP
(2)

and the reference strain is defined as

γ̇kink
0 = 2bρlPνD (3)

In the preceeding equations,b is the Burgers vector,ρ is the dislocation density,β = 1/kBT , kB is
Boltzmann’s constant,T is the absolute temperature, andνD is the attempt frequency which may be
identified with the Debye frequency to a first approximation.Also, lP is the distance between two
consecutive Peierls valleys. For bcc crystals,lP =

√

2/3a if the slip plane is{110}, lP =
√
2a, if

the slip plane is{112}, andlP =
√

8/3a if the slip plane is{123}, wherea is the cubic lattice size
[21]. Finally,Ekink is the energy of formation of a kink-pair andLkink is the length of an incipient
double kink. The formation energyEkink and the lengthLkink, which cannot be reliably estimated
from elasticity since the energy is composed mostly of core region, can, however, be accurately
computed by recourse to atomistic models as shown in section3. Modeling of this first unit process
renders the first 2 material properties amenable of atomistic calculations.

In Figure 2 the dependence of the effective Peierls stress ontemperature and rate of deforma-
tion is illustrated. The Peierls stress decreases ostensibly linearly up to a critical temperatureTc,
beyond which it tends to zero. These trends are in agreement with the experimental observations
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Figure 4: Schematic of energy variation as a function of a reaction coordinate during dislocation
intersection and crossing.

of Wasserbäch [22] and Lachenmann and Schultz [23]. The critical temperatureTc increases with
the strain rate. In particular, in this model the effect of increasing (decreasing) the strain rate has
an analogous effect to decreasing (increasing) the temperature, and vice-versa, as noted by Tanget
al. [24]. In the regime of very high strain-rates (γ̇ > 105 s−1), effects such as electron and phonon
drag become important and control the velocity of dislocations [25, 26].

2.2 Dislocation Interactions: Obctacle-Pair Strength andObstacle Strength

In the forest-dislocation theory of hardening, the motion of dislocations, which are the agents of
plastic deformation in crystals, is impeded by secondary –or ‘forest’– dislocations crossing the
slip plane. As the moving and forest dislocations intersect, they form jogs or junctions of varying
strengths [27, 28, 4, 29, 30, 31, 32, 33, 34] which, provided the junction is sufficiently short, may
be idealized as point obstacles. Moving dislocations are pinned down by the forest dislocations
and require a certain elevation of the applied resolved shear stress in order to bow out and bypass
the pinning obstacles. For the case of infinitely strong obstacles, the resistance of the forest is
provided by the strength of the obstacle pairs. This obstacle pair strength is subsequently reduced
by considering that point obstacles composing the pair can only provide a finite strength. The
processes imparting the pair-obstacle strength and obstacle strength are described next

2.2.1 Obstacle-Pair Strength

We begin by treating the case of infinitely strong obstacles.In this case, pairs of obstacles pin down
dislocation segments, which require a certain threshold resolved shear stresss in order to overcome
the obstacle pair. The lowest-energy configuration of unstressed dislocation segments spanning an
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Figure 5: Schematic of jog formation during dislocation intersection

obstacle pair is a step of the form shown as the thin line in Fig. 3. Under these conditions, the bow-
out mechanism by which a dislocation segment bypasses an obstacle pair may be expected to result
in the configuration shown in Fig. 3 (bold line). If the edge-segment length isle, a displacement
dae of the dislocation requires a supply of energy equal to2U screwdae + bτ edgeP ledae in order to
overcome the Peierls resistanceτ edgeP and to extend the screw segments. The corresponding energy
release isbτ ledae. Similar contributions result from a displacementdas of the screw-segment of
lengthls. Retaining dominant terms the obstacle-pair strength is

s = τ screwP +
2U edge

bls
(4)

The obstacle-pair strength can be therefore estimated by quantifying τP , ls andU edge. An expres-
sion for the Peierls stressτP is given in Eq. (1), the distance between obstacles along thescrew
directionls is estimated by statistics assuming a random obstacle distribution and the core energy
per unit length in the edge directionU edge is obtained by atomistic calculations presented in the
following sections.

2.2.2 Obstacle Strength

In this section we proceed to estimate the obstacle strengths which reduces the obstacle-
pair strength described in the previuos section. The interaction between primary and sec-
ondary dislocations may result in a variety of reaction products, including jogs and junctions
[30, 31, 27, 32, 24, 28, 4, 34, 29]. Experimental estimates ofjunction strengths have been given by
Franciosi and Zaoui [35] for the twelve slip systems belonging to the family of{111} planes and
[110] directions in fcc crystals, and by Franciosi [36] for the twenty-four systems of types{211}
[111] and{110} [111] in bcc crystals. The strength of some of these interactions has recently been
computed using atomistic and continuum models [27, 28, 4, 29]. Tanget al. have numerically
estimated the average strength of dislocation junctions for Nb and Ta crystals [24].

For purposes of the present theory, we specifically concern ourselves with short-range interac-
tions between dislocations which can be idealized as point defects. For simplicity, we consider the
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Figure 6: Schematic of a dislocation line overcoming a junction

case in which each intersecting dislocation acquires a jog.The energy of a pair of crossing disloca-
tions is schematically shown in Fig. 4 as a function of some convenient reaction coordinate, such
as the distance between the dislocations. The interaction may be repulsive, resulting in an energy
barrier, or attractive, resulting in a binding energy, Fig.4. In the spirit of an equilibrium theory,
here we consider only the final reaction product, corresponding to a pair of jogged dislocations
at infinite distance from each other, and neglect the intermediate states along the reaction path.
In addition, we deduce the strength of the obstacles directly from the energy supply required to
attain the final state, i. e. the jog-formation energy. Despite the sweeping nature of these assump-
tions, the predicted saturation strengths in multiple slipare in good agreement with experiment (cf
Section 4), which lends some empirical support to the theory.

We estimate the jog formation energy as follows. Based on energy and mobility considerations
already discussed, we may expect the preponderance of forest dislocations to be of screw character,
and the mobile dislocation segments to be predominantly of edge character. We therefore restrict
our analysis to intersections between screw and edge segments. The geometry of the crossing
process is schematically shown in Fig. 5. Each dislocation acquires a jog equal to the Burgers
vector of the remaining dislocation. The energy expended inthe formation of the jogs may be
estimated as

Ejogs
αβ ∼

{

bU screw
[

1− r cos θαβ
]

if bα = b
β

bU screw
[

2r − cos(θβα)− r cos θαβ
]

otherwise
(5)

wherer = U edge/U screw is the ratio of screw to edge dislocation line energies. Thisratio is
computed by atomistic calculations presented in the next section, renders a value ofr = 1.77 for
Ta. The resulting jog formation energies for the complete collection of pairs of{211} and{110}
dislocations are tabulated in Table 1.

A derivation entirely analogous to that leading to Eq. (1) yields the following expression for
the strength of an obstacle in the slip systemα produced by a forest segment in the systemβ

sαβ =
sαβ0
βEjog

αβ

asinh

(

γ̇α

γ̇α
0

eβE
jog

αβ

)

(6)
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A2 A2’A3 A3’A6 A6’B2 B2”B4 B4’B5 B5’C1 C1’C3 C3”C5 C5”D1 D1”D 4 D4”D6 D6”
A2 —- 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
A2’ 1.0 —- 1.0 1.0 1.0 1.0 3.2 3.2 3.2 3.2 3.2 3.2 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
A3 1.0 1.0 —-1.0 1.0 1.0 2.4 2.4 2.4 2.4 2.4 2.4 1.5 1.5 1.5 1.5 1.5 1.5 2.4 2.4 2.4 2.4 2.4 2.4
A3’ 1.0 1.0 1.0 —- 1.0 1.0 1.8 1.8 1.8 1.8 1.8 1.8 3.2 3.2 3.2 3.2 3.2 3.2 1.8 1.8 1.8 1.8 1.8 1.8
A6 1.0 1.0 1.0 1.0 —-1.0 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 1.5 1.5 1.5 1.5 1.5 1.5
A6’ 1.0 1.0 1.0 1.0 1.0 —- 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 3.2 3.2 3.2 3.2 3.2 3.2
B2 1.5 1.5 1.5 1.5 1.5 1.5 —-1.0 1.0 1.0 1.0 1.0 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
B2” 3.2 3.2 3.2 3.2 3.2 3.2 1.0 —- 1.0 1.0 1.0 1.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
B4 2.4 2.4 2.4 2.4 2.4 2.4 1.0 1.0 —-1.0 1.0 1.0 2.4 2.4 2.4 2.4 2.4 2.4 1.5 1.5 1.5 1.5 1.5 1.5
B4’ 1.8 1.8 1.8 1.8 1.8 1.8 1.0 1.0 1.0 —- 1.0 1.0 1.8 1.8 1.8 1.8 1.8 1.8 3.2 3.2 3.2 3.2 3.2 3.2
B5 2.4 2.4 2.4 2.4 2.4 2.4 1.0 1.0 1.0 1.0 —-1.0 1.5 1.5 1.5 1.5 1.5 1.5 2.4 2.4 2.4 2.4 2.4 2.4
B5’ 1.8 1.8 1.8 1.8 1.8 1.8 1.0 1.0 1.0 1.0 1.0 —- 3.2 3.2 3.2 3.2 3.2 3.2 1.8 1.8 1.8 1.8 1.8 1.8
C1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 —-1.0 1.0 1.0 1.0 1.0 3.2 3.2 3.2 3.2 3.2 3.2
C1’ 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.0 —- 1.0 1.0 1.0 1.0 3.2 3.2 3.2 3.2 3.2 3.2
C3 1.5 1.5 1.5 1.5 1.5 1.5 2.4 2.4 2.4 2.4 2.4 2.4 1.0 1.0 —-1.0 1.0 1.0 2.4 2.4 2.4 2.4 2.4 2.4
C3” 3.2 3.2 3.2 3.2 3.2 3.2 1.8 1.8 1.8 1.8 1.8 1.8 1.0 1.0 1.0 —- 1.0 1.0 1.8 1.8 1.8 1.8 1.8 1.8
C5 2.4 2.4 2.4 2.4 2.4 2.4 1.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 —-1.0 2.4 2.4 2.4 2.4 2.4 2.4
C5” 1.8 1.8 1.8 1.8 1.8 1.8 3.2 3.2 3.2 3.2 3.2 3.2 1.0 1.0 1.0 1.0 1.0—- 1.8 1.8 1.8 1.8 1.8 1.8
D1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 3.2 3.2 3.2 3.2 3.23.2 —- 1.0 1.0 1.0 1.0 1.0
D1” 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 3.2 3.2 3.2 3.2 3.23.2 1.0 —- 1.0 1.0 1.0 1.0
D4 2.4 2.4 2.4 2.4 2.4 2.4 1.5 1.5 1.5 1.5 1.5 1.5 2.4 2.4 2.4 2.4 2.42.4 1.0 1.0 —-1.0 1.0 1.0
D4” 1.8 1.8 1.8 1.8 1.8 1.8 3.2 3.2 3.2 3.2 3.2 3.2 1.8 1.8 1.8 1.8 1.81.8 1.0 1.0 1.0 —- 1.0 1.0
D6 1.5 1.5 1.5 1.5 1.5 1.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.42.4 1.0 1.0 1.0 1.0 —-1.0
D6” 3.2 3.2 3.2 3.2 3.2 3.2 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.81.8 1.0 1.0 1.0 1.0 1.0 —-

Table 1: Normalized jog-formation energies resulting fromcrossings of bcc dislocations.
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where the strength at zero temperature is given by

sαβ0 =
Ejog

αβ

bl̄αLjunct
(7)

and the reference strain rate by

γ̇α
0 = 2ραbl̄ανD (8)

The lengths̄lα andLjunct describe the geometry of the junction as illustrated in Fig.(6). These
values, which have been estimated to be of the order of fewb in the present case, can also be
obtained by atomistic models.

2.3 Dislocation Evolution: Multiplication and Attrition

The density of forest obstacles depends directly on the dislocation densities in all slip systems
of the crystal. Therefore, in order to close the model we require a equation of evolution for the
dislocation densities. Processes resulting in changes in dislocation density include production by
fixed sources, such as Frank-Read sources, breeding by double cross slip and pair annihilation
(see [37] for a review; see also [38, 39, 40, 41, 42, 43]). Although the operation of fixed Frank-
Read sources is quickly eclipsed by production due to cross slip at finite temperatures, it is an
important mechanisms at low temperatures. The double cross-slip, fixed Frank-Read sources and
pair annihilation mechanisms are next considered in turn.

2.3.1 Dislocation Multiplication: Fixed Frank-Reed and Breeding by Cross Glide

The rate of dislocation multiplication in a given slip system α produced by fixed Frank-Reed
sources and by breeding by cross glide is written as

bρ̇α = λ0

√
ραγ̇α (9)

whereλ0 is a constant associated with the fixed Frank-Read production; this parameter is rather
topological than material dependent.

2.3.2 Attrition: Pair Annihilation

The rate of dislocation attrition due to pair annihilation may finally be estimated as:

bρ̇α = −κραγ̇α (10)

whereκ is the effective annihilation distance. This is the maximumdistance at which two screw
segments with opposite direction and forced to move with a velocity v = γ̇/bρ will annihilate.
This distance can be estimated by simply equating the time required for trapping and escaping.
Trapping is governed by the elastic interaction forces (attraction) while escaping by the applied
strain rate. Then,

1

κ
=

1

κc

+
1

κ0

(

A +
√
A2 + 1

) (11)
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where

A = e−βEjog

βEjogγ̇jog
0 /γ̇α (12)

is a factor depending on the strain rate and temperature,

γ̇jog
0 = 2bρlPνD (13)

is a reference slip-strain rate andκc is the cut-off value corresponding the effective screeningdis-
tance. It follows that the critical pair-annihilation distanceκ decreases with increasing strain rate
and decreasing temperature. Thus, at high strain rates the dislocation velocities are high and the
probability of being captured by another dislocation diminishes accordingly. Additionally, an in-
crease in temperature increases the dislocation mobility and speeds up the annihilation process,
which results in an attendant increase in annihilation rates. The rate of annihilation is then modu-
lated by the nucleation energy of a jogEjog which can be calculated from atomistic simulations.

3 Atomistic modeling of dislocations properties

In the previous section we have identified the following set of material parametersrequired to
estimate the contribution of each of the controlling unit processes:Ekink, Lkink, UedgeUscrew, and
E jog. In this section we briefly describe the computation of them using a First Principles-based
Force Field with Molecular Dynamics.

Quantum mechanics (QM) describes the atomic interactions from first principles, i.e. using no
empirical input. Unfortunately QM methods are computationaly intensive and thus only applicable
to small systems (hundreds of atoms) and short times (picoseconds). The study of most of the unit
processes that govern the plasticity of materials (such as dislocation mobility, kink energies, etc.)
involve many atoms and long simulation times. Such problemsrequire the use of Force Fields,
where the total energy of the system is given by a potential energy function of the atomic positions
and does not involve the solution of Shrodinger’s equation.The drawback of using potentials to
describe the atomic interactions is that some accuracy is lost; it is thus of great importance to use
accurate force fields to describe the atomic interactions.

We developed a many body Force Field for Tantalum based on accurate QM calculations [44]
which can be used with Molecular Dynamics (MD) to simulate systems containing millions of
atoms. We fitted an Embedded Atom Model type Force Field (named qEAM FF) to a variety of ab
initio calculations, including the zero temperature Equation of State (EOS) for bcc, fcc, and A15
phases of Ta in a wide pressure range, elastic constants, vacancy formation energy and energetics
of a shear transformation in the twinning direction [44]. Tais a bcc metal and no phase transition
to other crustalline phase is known, but using QM we can calculate the EOS of thermodynamicaly
unstable or metastable phases (such as A15, fcc, hcp, etc.).Including data about these high energy
phases, with different coordination numbers, in the Force Field training set is important to correctly
describe the atomic interactions near defects such as dislocations, grain boundaries, etc.

We have used the qEAM with MD to study a variety of materials properties such as the melting
temperature of Ta as a function of pressure [44], dislocation properties [14], and spall failure [45].

In subsection 3.1 we show the calculation of the core energy of edge and screw dislocations in
Ta and in Subsection 3.2 we calculate the double kink formation energy and nucleation length.
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Figure 7: Differential displacement map of a relaxed quadrupole of screw dislocation in Ta.

3.1 Core energy of the1/2a < 111 > screw and edge dislocations

In order to study static properties of the 1/2a< 111 > screw dislocation in Ta such us core struc-
ture and energy we use a dislocation quadrupole in a simulation cell with periodic boundary con-
ditions. Two of the dislocations have Burgers vector b=1/2a< 111 > and the other two have
b=-1/2a< −1−1−1 >. Such an arrangement of dislocations minimizes the misfit ofatoms on the
periodic boundary due to the effects of periodic images. We build the dislocations using the atomic
displacements obtained from elasticity theory and then we relax the atomic coordinates using the
qEAM FF. In the bcc structure, there are two kinds of dislocation core configurations (easy core
and hard core) that can be transformed to each other by reversing the Burgers vector [11]. In this
work we focus on the lower energy easy cores. In Figure 7 we show the differential displacement
map (DDM) of our relaxed quadrupolar system. In the DDM atomsare represented by circles and
projected on a (111) plane. The arrows represent the relative displacement in [111] direction of
neighboring atoms due to the dislocation. We can see from Figure 7 that the equilibrium dislo-
cation core obtained using qEAM FF has three-fold symmetry and spreads out in three< 112 >
directions on 110 planes.

Lets define strain energy as the total energy of our system once the perfect crystal energy is
subtracted. The total strain energy can be divided in two terms: core energy (Ec) and elastic
energy (Ee). The latter contains the self-energy of each dislocation and their interactions and can
be calculated using linear elasticity theory. The core energy is the energy contained close to the
dislocation line (closer than some distancerc called core radius) where, due to the large strain,
elasticity theory is not valid and the details of the interatomic interactions are important. For our
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number of atoms in each simulation is shown. The dashed line is the linear fit to our atomistic data.

quadrupole system the total strain energy takes the form [13]:

E = Ec(rc) = Kb3
[

ln
d1
rc

+ A

(

d1
d2

)]

, (14)

where K depends on the elastic constants,d1 andd2 are the nearest separation of dislocations along
< 11− 2 > and< 1− 10 > directions andA(d1/d2) is a geometric factor which comes from the
dislocation interactions.

We studied quadrupolar dislocation cells of different sizes. In Figure (8) we show the mini-
mized energy as a function ofln d1/rc + A(d1/d2) for the different simulation cells; in order to
compare with previous calculations [11, 13] we tookrc = 2b. We can see that the total energies fol-
low a straight line as predicted by elasticity theory (Eq. 14), showing that the value chosen for the
core radius is large enough to take account for the non elastic region near the dislocation line. From
a linear fit to our data we determine the core energyEc = 1.30 eV/b andK = 3.33× 10−2eV/A3.
The value of K can also be computed from the elastic constantsgiving 3.33 × 10−2eV/A3 in ex-
cellent agreement with the one obtained from the fit. Recent ab initio calculations of core energy
(using periodic cells containing 90 atoms) give 0.86 eV/b, lower than the value obtained with
qEAM FF and the dislocation cores are compact and symmetric [13].

Using the qEAM we can calculate the strain energy associatedwith each atom. In Figure (9)
we show the atomic energy distribution (number of atoms per dislocation per Burgers vector as a
function of their strain energy) for a system containing 5670 atoms in the periodic cell. We can
see that there are 6 atoms with atomic strain energy higher than 0.15 eV and another 6 atoms with
energy in the range 0.06-0.08 eV. They correspond to the 12 atoms per dislocation per Burgers
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Figure 9: Histogram of atomistic strain energy distribution for the quadrupolar arrangement of
screw dislocations. The cell contains 5670 atoms and is 7 Burgers vectors long.

vector closer to the dislocation line and their total energyis 1.35eV/b, very similar the core energy
obtained from Eq. 14. The rest of the atoms have lower strain energy and can be cosidered as the
elastic part of the system. We can then define the dislocationcore as formed by the 12 atoms per
Burgers vector with higher energy.

We have also calculated the core energy of the edge dislocation with b = 1/2a < 111 > on a
(110) plane. We build a simulation cell with axis oriented along< 112 > (x axis),< 110 > (y
axis), and1/2a < 111 > (z axis); this cell contains 6 atoms. We then replicate the cell 3 times
along x, 16 times along y, and 20 times along z; the number of atoms in the cell is then N=5760.
We then remove 108 atoms to form a dipole of edge dislocations. Once the system is relaxed (both
atoms and cell parameters) we have a24.3967Å×75.1824Å×56.632 Åcell. Figure (10) shows a
snapshot of the atoms projected on a< 112 > plane.

In Figure 11 we show the energy distribution for the edge dislocation (number of atoms per
dislocation and pera < 112 > length as a function of their energy). Figure 11 shows that the core
of the edge dislocation contains atoms with higher energiesand a broader distribution of energies
as compared with the screw case [Figure (9)]. Taking into accound Figure 11 we define the core of
the edge dislocation as formed by those atoms with strain energy higher that 0.1 eV. This definition
leads to 36 atoms pera < 112 > or ∼ 4.42 atoms perÅ and to a core energy ofEedge

core = 0.827
eV/Å(in the case of the screw we had 12 atoms/b or∼ 4.17 atoms perÅ). The ratio between the
core energy of the edge and that of the screw is:Eedge

core /E
screw
core ∼ 1.77. It is important to mention

that changing the number of atoms considered to belong to thecore changes the core energy, but
the difference is minor. Had we taken the 34 atoms pera < 112 > with higher energy as the core
(leading to∼ 4.18 atoms /̊A, a density very similar to the one obtained in the screw dislocation)
we get a very similar core energy:Eedge

core = 0.80 eV/Å.

14



Figure 10: Snapshot of the relaxed edge dipole configuration. The cell contains 5652 atoms.

Figure 11: Histogram of atomistic strain energy distribution for the dipole of edge dislocations.
The number of atoms is given per dislocation and per1/2a < 112 > length.
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3.2 Kink pair energy and nucleation lenght

As already explained the kink pair mechanism controls the mobility of screw dislocations in bcc
metals and atomistic simulations can provide the details ofthis mechanism.

As we can see from Figure (7) the core of the screw dislocationspreads in three< 112 > direc-
tions, this leads to two distint, but energetically equilavent, core configurations; we will name them
positive (P) and negative (N) cores [46]. The shorter (and lower energy) kinks possible involves the
displacement of the position of the dislocation line in the (111) plane from one equilibrium posi-
tion to a nearest neighbor equilibrium position; the displacement involved is1/3a < 112 >. There
are six possible< 112 > directions but only two need to be considered by symmetry, this leads to
two kink directions which we will call left (L) and right (R).The two dislocation cores (N and P)
and two directions (L and R) lead to 8 different single kinks:NRP, NRN, PRP, PRN, NLP, NLN,
PLP and PLN. We have studied all of them in detail [46], here wewill concentrate on the single
kinks that lead to the lowest energy kink pair. We calculatedthe formation energy and length of the
various kinks using quadrupolar arrangements of dislocations as explained in subsection 3.1. The
simulation cell lengths are40.7 Å in the [11-2] direction,42.3 Å in [1-10] and431.8 Å in [111]
containing 40500 atoms; the details of these calculations can be found in [46]. We calculate the
kink energy as the difference of strain energy between the quadrupolar systems containing kinks
and that corresponding to perfect straight dislocations. This energy difference is divided by four
to get the energy per kink. Using the qEAM FF we find that the lowest energy kink pair is formed
combining the PLN and NRP kinks. We define the kink pair nucleation energy as the sum of the
formation energy of the two songle kinks leading toEkink = 0.725 eV. The nucleation energy
calculated in this way does not take into account the attractive interaction between the two kinks
which lowerers the nucleation energy. This interation energy is very small for separation larger
than∼ 15 b [11, 20].

As explained above, a critical parameter for the micro-mechanical modeling of plasticity is,
apart from the kink pair energy, its nucleation lengthLkink. We studied both the energetics and
structure of the variuos kinks along the dislocation line. Figure 12 shows the extent of the kinks
both from structural and energetic points of view. We show the position of the dislocation in the
direction of the kink along the dislocation line for a PLN kink [Figure 12(a)] and NRP kink [Figure
12(c)]. We also show the total energy of the quadrupolar system along the dislocation line for the
PLN [Figure 12(b)] and NRP [Figure 12(d)] kinks. This is calculated by dividing the system in
the [111] direction in regions of width equal to the Burgers vector and calculating the total energy
in each slice. The structural length of the PLN kinks isLPLN

str = 8 b [Figure 12 (a)]; while its
“energetic extent” isLPLN

ene = 14 b [Figure 12 (b)]. For NRP kinks we obtain:LNRP
str = 8 b [Figure

12 (c)] andLNRP
ene = 20 b [Figure 12 (d)].

Going back to the definitions of the paramenters entering theequation that governs the dislo-
cation mobility [Equations (1) and (2)]; the effective Peierls stress (τ0), Equation (2), is defined as
the applied stress for which the nucleation free energy for akink pair (∆G) is zero.∆G is given
by:

∆G = Ekink ± τlP bL
kink, (15)

whereLkink is the effective kink pair nucleation length andlP is distance advanced by the disloca-
tions; in the kinks studied herelP = |1/3a < 112 > |. The second term in the right hand side of
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Figure 12: PLN and NRP kinks in Ta using the qEAM FF. (Top Left)PLN kink: Dislocation
position in the [11-2] direction along the dislocation line; we can see the dislocation moves from
one equilibrium position to the next in a distance of 10 Burgers vectors. (Top Right) PLN kink:
total energy in the quadrupolar system with four PLN kinks along the dislocation line. The system
is divided in slices with thickness equal to b and the energy in each region is calculated. (Bottom
Left) NRP kink: Dislocation position in the [11-2] direction along the dislocation line; we can see
the dislocation moves from one equilibrium position to the next in a distance of 10 Burgers vectors.
(Bottom Right) NRP kink: total energy in the quadrupolar system with four PLN kinks along the
dislocation line.
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Figure 13: Schematic diagram of a kink pair formed by a NRP andPLN single kinks. The four
terms entering in the work expresion (Equation 16) are shownin the Figure.

Equation 15 is the work done by the external stress when the kink is nucleated. Figure 13 shows a
schematic diagram of a PLN-NRP kink pair. We can see that the work done by the external stress
to nucleate the kink pair can be divided in four terms:

τblPL
kink = τblP

(

LPLN
str

2
+

LPLN
ene − LPLN

str

2
+

LNRP
ene − LNRP

str

2
+

LNRP
str

2

)

(16)

whereLkink is the effective kink pair length. In Figure 13 we show the four terms in the right hand
side of Equation (16). Note that Equation 16 assumes that thekinks are straight lines connecting
the two equilibrium positions of the dislocation. In this way we obtain the effective kink pair
nucleation lengthLkink = 17 b.

The remaining materials parameter is the nucleation energyof a jogE jog. In this work we take
E jog as the PLN-NRP kink pair nucleation energy.

4 Experiment, Validation and Prediction

To test the predictive capabilities of the multiscale approach we first select a set of material parame-
ters to best fit the experimental results, then we compare these parameters against the atomistically
computed ones and finally wepredict the macroscopic response using the atomistics parameters.
As we shall see, the agreement between thefittedandcomputed by atomisticsmaterial parameters
is remarkable, and the macroscopic predicted response retains most of the experimental features.
These facts provide confidence in the multiscale modeling approach, indicating that even in the
case that experimental data would not have been available, still the macroscopic behavior could
have been predicted based only on atomistic calculations.

The experiment data correspond to uniaxial tests on Ta single crystals of Mitchell and Spitzig
[47]. In these tests, 99.97%-pure Ta specimens were loaded in tension along the[213] crystallo-
graphic axis, at various combinations of temperature and strain rate. In particular we considered
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Table 2: Material parameters for Tantalum

Parameter Fitted set Atomistic set Units

Ekink 0.70 0.725 [eV]

Lkink/b 13 17

Uedge/µb2 (∗) 0.2 0.216

Uedge/Uscrew 1.77∗∗ 1.77

l̄/b 5 5

Ljunct/b 20 20

Ecross 0.67 .725 [eV]

λFR 2.3 4.5∗∗∗

κc/b 1250 500∗∗∗

∗ µ = 3
5
C44 +

1
5
(C11 − C12).

∗∗ Taken from the atomistic simulations.
∗∗∗ Not computed by atomistics.

temperatures ranging from296 K to 573 K, and strain rates ranging from10−1 s−1 to 10−5 s−1.
The numerical procedure employed for the integration of theconstitutive equations has been de-
scribed elsewhere [48]. The constitutive update is fully implicit, with the active systems determined
iteratively so as to minimize an incremental work function.All stress-strain curves are reported in
terms of nominal stress and engineering strain.

Two different sets of material properties were used for the numerical simulations. The first set
was obtained by fitting the simulation results to the experimental results. Table 2 identifies the sub-
set of parameters which are also amenable to direct calculation by atomistic based methods. The
table lists the parameter values obtained by these methods,as described in the previous sections,
in parallel with the values obtained by the fitting approach.Thus, in the second set of properties
which was used for numerical simulations, atomistic-basedvalues replace fit-based values, when
available. This is the case for the edge and screw dislocation self-energies, as well as the kink-pair
formation energy and length. Clearly, those two sets don’t differ by much, which strongly support
the validity of the advertised multiscale paradigm. For a complete list of parameters for the model,
the reader should refer to [7].

Figs. 14 and 15 show the predicted and measured stress-strain curves for a[213] Ta crystal over
a range of temperatures and strain rates. One can compare, from top to bottom: the experimental
results, the results obtained after fitting the parameters,and the results obtained with atomistic-
based parameters. It is evident from these figures that the model, with both sets of parameters,
captures salient features of the behavior of Ta crystals such as: the dependence of the initial yield
point on temperature and strain rate; the presence of a marked stage I of easy glide, specially at
low temperature and high strain rates; the sharp onset of stage II hardening and its tendency to
shift towards lower strains, and eventually disappear, as the temperature increases or the strain rate
increases; the parabolic stage II hardening at low strain rates or high temperatures; the stage II
softening at high strain rates or low temperatures; the trend towards saturation at high strains; and
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Figure 14: Temperature dependence of stress-strain curvesfor [213] Ta single crystal (̇ǫ = 10−3
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the temperature and strain-rate dependence of the saturation stress. Thus, the predictive approach
based on atomistic methods clearly shows its capacity to produce results matching the experimental
evidence.

The theory reveals useful insights into the mechanisms underlying these behaviors. For in-
stance, since during state I the crystal deforms in single slip and the secondary dislocation densities
are low, the Peierls resistance dominates and the temperature and strain-rate dependency of yield
owes mainly to the thermally activated formation of kinks and crossing of forest dislocations. It is
interesting to note that during this stage the effect of increasing (decreasing) temperature is similar
to the effect of decreasing (increasing) strain rate, as noted by Tanget al. [24]. The onset of stage
II is due to the activation of secondary systems. The rate at which these secondary systems harden
during stage I depends on the rate of dislocation multiplication in the primary system. This rate is
in turn sensitive to the saturation strainγsat, which increases with strain rate and decreases with
temperature. As a result, the length of the stage I of hardening is predicted to increase with strain
rate and decrease with temperature, as observed experimentally. Finally, the saturation stress is
mainly governed by the forest hardening mechanism and, in particular, by the strength of the forest
obstacles. This process is less thermally activated than the Peierls stress, since the corresponding
energy barriers are comparatively higher. Consequently, the stress-strain curves tend to converge
in this regime, in keeping with observation.

The apparent softening observed in simulation results at the lowest temperature (296 K) and
the highest strain rate (10−1 s−1) is actually an effect of the boundary conditions, allowingsome
level of rotation of the specimen. Since in those cases, the material hardening is relatively low
(stage I only), this geometrical softening dominates in theapparent macroscopic behavior. In the
other cases, the activation of several systems at high strains results in a more isotropic deformation,
in turn leading to limited rotations. In order to take the exact experimental boundary conditions
into account, a finite element model of the whole specimen should be used, allowing for a non-
homogeneous deformation field.
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