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Introduction 
The recent development of microscopes 

that allow for the examination of defects at 
the atomic scale has made possible a more 
direct connection between the defects and 
the macroscopic response they engender 
(see, e.g., the December 1999 issue of MRS 
Bulletin1). Techniques ranging from high­
resolution electron microscopy, which 
makes possible the determination of the 
atomic-level structure of dislocation cores 
and grain boundaries, to the atomic force 
microscopes that enhance our understand­
ing of nanoindentation phenomena, all 
pose deep challenges for the modeling of 
the mechanics of materials. Each of these 
experiments calls for renewed efforts to 
strengthen the connection between defect 
mechanics and macroscopic constitutive 
descriptions. However, the link between 
the defects themselves and the observed 
macroscopic behavior is often a difficult 
one to forge theoretically and remains an 
active area of research. 

Many of the fundamental mechanisms 
underlying the inelastic behavior of mate­
rials are mediated by crystal-lattice defects 
and are, therefore, accessible to direct atom­
istic simulation, either by means of empiri-
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cal potentials or through ab initio quantum 
mechanical calculations. However, the rele­
vance of atomistic calculations to the study 
of the macroscopic behavior of materials 
is often overstated. To be sure, there are 
macroscopic phenomena that can be di­
rectly elucidated at the atomic scale. A 
notable example is furnished by first­
principles calculations of the equation of 
state and elastic moduli of bee metals up 
to high pressures and temperatures.2- 6 

However, atomic-scale mechanisms are in 
general separated from the macroscopic 
behavior they engender by a vast array of 
intervening continuum scales. These meso­
scopic scales both filter (average) and 
modulate (set the boundary conditions or 
driving forces for) the atomic-scale phe­
nomena and are an essential part of the 
constitution of materials. 

Conversely, continuum theories rest on 
the assumption that the relevant fields 
that describe the state of the material vary 
slowly on the atomic scale. Therefore, con­
tinuum theories a fortiori break down in 
the vicinity of lattice defects or any other 
entity possessing structure on the atomic 
scale. Continuum theories can be" enriched" 

in an attempt to incorporate additional 
atomistic information and avert this break­
down. The notorious core cutoff radius 
of the elastic theory of dislocations is a 
case in point. Another notable example 
is furnished by Mura' s theory of eigen­
distortions,7 which allows an otherwise 
linear-elastic material or a harmonic lattice 
to undergo crystallographic slip in discrete 
Burgers vector quanta, thus substantially 
extending the scope of linear elasticity. 
Ultimately, however, a complete under­
standing of these phenomena, as well as 
the computation of the relevant material 
constants, requires atomistic modeling. 

It is clear, therefore, that atomistic and 
continuum theories need and reinforce each 
other. This atomistic-continuum connec­
tion or "handshake" is most effectively 
achieved within the framework of multi­
scale modeling. Multiscale modeling is a 
"divide-and-conquer" modeling paradigm. 
First, the entire range of material behav­
iors is divided into a hierarchy of length 
scales. Second, the relevant "unit proc­
esses"* are identified (physical processes 
that are irreducible and operate independ­
ently at a given length scale). The unit 
processes at one scale represent averages 
of unit processes operating at the immedi­
ately lower length scale. This relation in­
troduces a partial ordering of processes. In 
addition, the unit processes should oper­
ate roughly independently: two processes 
that are tightly coupled should be consid­
ered as a single unit process. 

In systems for which these relations are 
well defined, the modeling effort reduces 
to the analysis of each unit mechanism in 
turn and the computation of averages, 
eventually leading to a full description of 
the macroscopic behavior of the material. 
This is an inductive process that must be 
given appropriate initial conditions. In 
many cases, such initial conditions take 
the form of unit mechanisms operating at 
the atomic scale and therefore are acces­
sible to atomistic modeling. In this man­
ner, atomistics informs material modeling 
at higher continuum length scales and 
transcends its own size strictures. 

Unfortunately, the multiscale paradigm 
is more easily stated than carried out in 
practice. At present, the analysis of the 
unit mechanisms and the characterization 
of effective behavior rely either on numeri-

*This temrinology is borrowed from the Verifica­
tion and Validation 01 & V) literature, for example, 
A1AA Guide for the Verification and Validation 
of Computational Fluid Dynamics Simulations, 
AIAA Publication G-077-1998 (American Insti­
tute of Aeronautics and Astronautics, Reston, 
VA, 1998). 
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cal schemes or an unrelated assortment of 
analytical tools such as mean-field theories, 
statistical mechanics, transition-state the­
ory, direct methods of the calculus of varia­
tions, and homogenization. Because of the 
broad scope of the field and its present state 
of development, multiscale modeling in 
general, and mixed atomistic-continuum 
modeling in particular, cannot be readily 
reduced to a self-contained and unified 
formal theory; it remains an art as well as 
a science. In this article, we illustrate the 
atomistic-continuum connection by way 
of a few selected examples. More exten­
sive discussions and overviews pertaining 
to micromechanics and multiscale model­
ing of materials may be found elsewhere 
(e.g., see References 8-18). 

The Theory of the 
Quasi-Continuum 

The theory of the quasi-continuum of 
Tadmor et al.19,20 furnishes a computa­
tional scheme for seamlessly bridging the 
atomistic and continuum realms. The chief 
objective of the theory is to systematically 
coarsen an atomistic description by-and 
only by-the judicious introduction of 
kinematic constraints. These kinematic con­
straints are selected and designed so as 
to preserve full atomistic resolution where 
required-for example, in the vicinity of 
lattice defects-and to treat collectively 
large numbers of atoms in regions where 
the deformation field varies slowly on the 
scale of the lattice. Thus, in its purest form, 
all input into the theory concerning mate­
rial behavior is atomistic, and all approxi­
mations are strictly kinematic in nature. 

Variants of the theory have been devel­
oped and documented over a series of pub­
lications, 19-29 where numerous examples of 
applications have also been presented. De­
tails of implementation notwithstanding, 
the essential building blocks of the static 
theory are: (1) the constrained minimiza­
tion of the atomistic energy of the solid, 
(2) the use of summation rules to compute 
the effective equilibrium equations, and 
(3) the use of adaption criteria in order to 
tailor the computational mesh to the struc­
ture of the deformation field. An extension 
of the method to finite temperatures has 
been proposed by Shenoy et al.30 

The theory starts from an underlying 
conventional atomistic model, which de­
livers the energy of the crystal as a function 
of the atomic positions. The configuration 
space of the crystal is then reduced by 
identifying a subset of "representative 
atoms," which henceforth become the sole 
independent degrees of freedom of the 
crystal. The positions of the remaining 
atoms are obtained by piecewise linear 
interpolation of the representative atom 
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coordinates, much in the same manner as 
displacement fields are constructed in the 
finite element method. The effective equi­
librium equations are then obtained by 
minimizing the potential energy of the 
crystal over the reduced configuration 
space. The number of equilibrium equa­
tions thus obtained is commensurate with 
the number of representative atoms. How­
ever, a direct calculation of the effective 
force field in principle requires the evalua­
tion of sums that are extended over the 
full collection of atoms. Full sums may be 
avoided by the introduction of approxi­
mate summation rules,19,w,25,29 whereupon 
the complexity of the calculation of the 
effective force field becomes of the order 
of the reduced model. 

The selection of the representative atoms 
may be based on the local variation of the 
deformation field.19,20,29 For instance, the 
mesh may be adapted so that the variation 
of the displacement field over each element 
of the triangulation does not exceed a frac­
tion of the Burgers vector.29 This ensures 
that full atomistic resolution is attained, 
for example, near dislocation cores and on 
planes undergoing crystallographic slip. 
By contrast, far away from defects or other 
highly stressed regions, the density of rep­
resentative atoms rapidly decreases, and 
the collective motion of very large numbers 
of atoms is dictated, without appreciable 
loss of accuracy, by a small number of de­
grees of freedom. In these coarse regions, 
the behavior of the model is ostensibly in­
distinguishable from that of a continuum. 

The quasi-continuum method permits 
direct simulation of systems demanding 
the application of remote boundary condi­
tions, similar to traditional continuum 
mechanics modeling. It provides atomistic 
resolution at defect cores without the 
stringent size limitations of straight atom­
istics. The method has been applied to a 
wide array of problems in the mechanics 
of materials to date. By way of example, 
Miller et al.23 applied the quasi-continuum 
method to the study of the interaction be­
tween an atomistically sharp crack and 
grain boundaries in aluminum. The geome­
try was chosen so that the bicrystal under­
goes a generalized plane deformation. In 
this manner, the analysis can be restricted 
to a slab of material, with periodic bound­
ary conditions imposed in the direction 
of the crack front. The computational 
mesh used in calculations contained of the 
order of 15,000 representative atoms, far 
smaller than the total number of atoms 
(-8,000,000). The mesh was designed so 
as to provide full atomistic resolution in 
the vicinity of the crack tip. As a concrete 
example of the degree-of-freedom reduc­
tion implied by the use of the quasi-

continuum method, it is interesting to 
note that a straight atomistic calculation 
would have demanded of the order of 
8,000,000 atoms. 

Two different tilt boundaries, 221(421) 
and 25(l20), were considered. The 
embedded-atom method (EAM) poten­
tial, as fitted by Ercolessi and Adams31 to 
the results of their first-principles calcEla­
tions, was used in the analysis. The 25(120) 
boundary is distinguished by the absence 
of any available slip planes that could sup­
port the nucleation of dislocations. A se­
ries of "snapshots" from each deformation 
history is contrasted in Figure 1. As the 
crack opens under loading, a number of 
dislocations are emitted by the 221(421) 
grain boundary fort= 4(Figure1), where 
t represents relative units of time. In addi­
tion, the crack eventually advances toward 
the grain boundary and blunts. This has 
the effect of partially relieving stresses near 
the crack tip and diminishing the driving 
force on the dislocations, which recede and 
are reabsorbed by the grain boundary. The 
bowing out of the grain boundary was 
analyzed by Miller et al.23 from the per­
spective of both the continuum theory of 
energetic forces on interfaces and disloca­
tion theory; they found that the bowed-out 
geometry can be rationalized as a natural 
outcome of the large crack-tip stresses. By 
way of contrast, the 25(120) boundary 
geometry is relatively inactive, except for 
the motion of the crack tip itself, which 
advances by cleavage, impinges on the 
awaiting grain boundary, and ultimately 
branches along it. 

Another natural area for applying the 
quasi-continuum method is nanoinden­
tation.19,2o,25.26,29 The calculations to date 
have been motivated by a host of recent 
experiments in which load-displacement 
curves and subsurface dislocations have 
been measured.32-35 One of the critical 
questions that arises in this setting con­
cerns the conditions attendant to disloca­
tion nucleation. Upon indentation, and 
after a preliminary elastic stage, the onset 
of permanent deformation is mediated by 
the nucleation and propagation of disloca­
tions. The dislocation nucleation event and 
the early stages of growth of the nascent 
dislocation loops are amenable to effective 
atomistic simulation.36,37 However, in this 
type of analysis, the indenter sizes that 
may be considered are often considerably 
smaller than experimentally employed 
values, which may in turn cause premature 
dislocation nucleation relative to observa­
tion. Likewise, the size of the computa­
tional domain is necessarily limited and 
the dislocations soon run up against artifi­
cial boundaries. In addition, within a strict 
atomistic simulation, it is difficult to ac-
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Figure 1. Detail of fully resolved atomistic region in the quasi-continuum analysis of crack-grain boundary interaction in aluminum. Different 
"snapshots" co"espond to different, increasing load levels.22 (a)-( d) Ductile case, crack I21 ( 421 ): A number of dislocations are emitted by the 
grain boundary (t = 4). The crack eventually advances to meet the grain boundary and blunts. This blunting partially relieves stresses near the 
crack tip and diminishes the driving force on the dislocations, which recede and are reabsorbed by the grain boundary. (e)-(h) Brittle case, crack 
I5(i20): The crack advances by cleavage and impinges upon (and branches along) the grain boundary without intervening dislocation activity. 

count for the effect of long-range elastic 
stresses such as might be present, for ex­
ample, in a thin-film/ substrate system. 

A full three-dimensional quasi­
continuum analysis of the early stages of 
nanoindentation in gold thin films has 
been carried out by Knap and Ortiz. The 
surface of the film is a (001) plane, and 
the material obeys Johnson's EAM poten­
tial.38,39 The calculations are based on a 
model of a spherical indenter proposed by 
Kelchner et al.37 In this model, the inden­
ter is regarded as an additional external 
potential interacting with atoms in the 
film. The computational domain is 2 µm X 

MRS BULLETIN/MARCH 2001 

2 µ,m X 1 µmin size and encompasses the 
full thickness of the film. The number of 
representative atoms in the initial mesh is 
1853, or a reduction of 8 orders of mag­
nitude from the total number of atoms 
(2.4 X 1011) in the sample. We may note in 
passing that hundred-billion-atom samples 
are well outside the scope of straight 
atomistic methods at present. 

The computational mesh for an indenter 
radius of 70 nm at an indentation depth of 
4.5 A is shown in Figure 2. As may be seen 
in the figure, the displacement-variation 
adaption criterion causes the mesh to be 
refined under the indenter, with the result 

that the zone of full atomistic resolution 
grows steadily, as required. The mesh con­
tains 90 ,272 representative atoms. Titls prob­
lem size is still modest compared with 
that demanded by straight atomistics. 
However, the adaptive character of the 
method ensures that a sufficiently large, 
fully-resolved atomistic region lies beneath 
the indenter at all times for dislocations to 
nucleate and grow into. The dislocation 
pattern predicted by the analysis, shown 
in Figure 2, is initially symmetric and in­
volves slip on four {111) planes. The sym­
metry of this pattern is eventually broken, 
and elongated dislocation loops propagate 
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Figure 2. Quasi-continuum calculation of a 2 µm x 2 µm x 1 µm Au(001) thin film under a 
70-nm spherical indenter. The total number of atoms in the sample is 2.4 x 1011

• (a) Detail 
of computational mesh at 4.5 A containing 90,272 representative atoms (initial mesh 
contains only 1853 representative atoms). (b) View of the dislocation pattern. The color 
coding shown in the figure identifies partial-dislocation core atoms (red), stacking-fault 
atoms (yellow), and surface atoms (blue). 

on selected {111) planes. Away from the 
indenter, the behavior of the crystal is 
ostensibly linear-elastic and captures the 
long-range elastic field of the indenter. 
It should be carefully noted that even in 
this region, all material behavior-for ex­
ample, the effective anisotropic elasticities 
of the crystal-emanates directly from the 
interatomic potential, and the transition 
from fully resolved atomistics to contin­
uum behavior is entirely seamless. 

Atomistically Informed 
Continuum Models 

Another important way in which atom­
istiGs and continua communicate at the 
nanoscale is through first-principles calcu­
lations of material parameters pertaining 
to continuum theories. In this scenario, 
the mesoscopic model sets the functional 
form of the response functions, (e.g., 
an Arrhenius transition probability), and 
the atomistic models dictate the relevant 
material-specific parameters of the meso­
scopic theory, such as energy barriers and 
attempt frequencies. 

A case in point is polycrystalline plastic­
ity. The main length scales that may be 
identified in this case are the nanoscale, in 
which unit processes represent the pos­
sible behaviors of single-crystal defects 
such as individual dislocations or vacancies; 
the mesoscale, characterized by the collec­
tive behavior of large numbers of defects, 
as in dislocation dynamics; the subgrain 
scale, characterized by the formation and 
evolution of subgrain dislocation struc­
tures; and the polycrystalline scale, charac­
terized by the collective behavior of large 
numbers of grains. Some of the unit proc­
esses that characterize the nanoscale in bee 
crystals are double-kink formation and 
the thermally activated motion of kinks; 
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the dose-range interactions between pri­
mary and forest (secondary) dislocations, 
and the subsequent formation of jogs and 
junctions; cross-slip; and dislocation pair­
annihilation. Mechanisms that play an 
important role at the mesoscale include 
the motion of large dislocation ensembles 
through forest dislocations and the elastic 
interactions between dislocations, the for­
mation of lamellar dislocation structures 
at the subgrain scale, and texture evolu­
tion at the polycrystalline scale. 

Atomistic calculations yield a wealth of 
data that can be used to inform models of 
the mechanisms just described.16 For in­
stance, it is well known that at sufficiently 
high temperatures a double kink may be 
nucleated in bee screws with the assistance 
of thermal activation. The subsequent mo­
tion of the kinks causes the screw segment 
to effectively move forward and controls 
dislocation mobility in bee crystals.40•41 For 
Mo at zero stress, Xu and Moriarty42 have 
found formation energies of the order of 
1 e V for kinks separated by a distance 
greater than 15b,where bis the magnitude 
of the Burgers vector. The core structure, 
gamma surfaces, Peierls stress, and kink­
pair formation energies associated with 
the motion of a/2(111) screw dislocations 
in Ta and Mo have also been calculated by 
Moriarty et al.16 Calculations by Wang 
et al.43•44 for Ta have yielded kink forma­
tion energies and lengths in good agree­
ment with those calculated by Moriarty 
et al.16

•
42 

In the forest-dislocation theory of harden­
ing, the motion of dislocations, which are 
the agents of plastic deformation in crys­
tals, is impeded by secondary, or "forest," 
dislocations crossing the slip plane. As the 
moving and forest dislocations intersect, a 
variety of reaction products may result, 

including jogs and junctions.15.24,41,45-50 

Cuitifio et al.51 have noted that the complex 
dislocation patterns that develop during 
this process, the intricate interactions be­
tween dislocations and obstacles, and the 
resulting kinetics, are amenable to an effi­
cient phase-field representation. In essence, 
the value of the phase field at a point on a 
slip plane is the number of dislocations 
that have passed over the point. In this 
representation, the individual dislocation 
lines are identified with the level contours 
of the phase field at integral values. 

An example of the dislocation-pattern 
evolution predicted by the theory under 
cyclic single slip and the resulting stress­
strain and dislocation-density curves are 
shown in Figure 3, The phase-field repre­
sentation enables the tracking of complex 
geometrical and topological transitions 
in the dislocation ensemble, including 
dislocation-loop nucleation, bow-out, 
pinching, and the formation of Orowan 
loops. The theory also predicts a range of 
behaviors that are in qualitative agreement 
with observation, including hardening and 
dislocation multiplication in single slip 
under monotonic loading; Taylor scaling, 
both under monotonic loading and, in an 
appropriate rate form, under cyclic load­
ing; the Bauschinger effect under reverse 
loading; the fading-memory effect, whereby 
reverse yielding gradually eliminates the 
influence of previous loading; the evolution 
of the dislocation density under cycling 
loading, leading to characteristic "butter­
fly" curves; and others. 

By way of specific example, Figure 3e 
shows the effective cyclic response pre­
dicted by the theory in single slip. The 
overall trends are in good agreement with 
the experimental cyclic stress-strain data 
for structural steels reported in Refer­
ence 52, which were obtained from tests 
specially designed to exhibit the fading­
memory effect caused by reversed loading. 
The evolution of the dislocation density 
during a loading cycle is of considerable 
interest (Figure 3f). Upon unloading, the 
dislocation density decreases as a result of 
the elastic relaxation of the dislocation lines. 
The dislocation density bottoms out-but 
does not vanish entirely-upon the re­
moval of the applied stress, (point b), as 
some dislocations remained locked within 
the system in the residual state. The dis­
location density increases again during re­
verse loading (segment b-c), and the cycle 
is repeated during reloading (segment c-a), 
giving rise to a dislocation density versus 
slip strain curve in the form of a "butter­
fly." This type of behavior is indeed 
observed experimentally (Morrow, un­
published test results); it also arises in 
models of the stored energy of cold work53 
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Figure 3. Phase-field simulation of a dislocation ensemble moving through a random array 
of point obstacles under the action of cyclic loads.51 The value of the phase field, which 
counts the number of dislocations with Burgers vectors b that have passed over a given 
point, is shown in color. Negative values indicate dislocations with opposite Burgers 
vectors. The dislocation lines are identified with the level contours of the phase field. 
(a)-(d) Dislocation patterns at different loading stages. Subsequent images show the 
evolution of the dislocation patterns, after monotonic loading of a virgin material (a), 
during unloading (a)-(b), reverse loading (b)-(c), unloading from the reverse maximum 
load (c)-(d), and reloading (d)-(a). (e) Applied resolved shear stress (rh0) versus average 
slip. (f) Evolution of dislocation density (p!Po) average slip. 
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and is analogous to the hysteretic loops 
exhibited by magnetic systems.54•55 

Key inputs into this and similar theories 
that may be gleaned from atomistics are dis­
location energies as a function of segment 
orientation, Peierls stresses, and the strength 
of dislocation-dislocation reaction prod­
ucts. The core structure and energetics of 
screw dislocation segments in bee crystals 
have been extensively investigated;16·43·56

•
57 

bee edges have been investigated by Wang 
et al.43·44 For instance, for Ta they have cal­
culated a ratio of edge to screw energies of 
1.77. Olmsted and Phillips58 have used the 
EAM potential, as fitted by Ercolessi and 
Adams31 to the results of their first­
principles calculations, to map out the 
entire range of energies of dissociated dis­
location cores in aluminum. Their results 
demonstrate that the energies computed 
from atornistics can be reproduced almost 
exactly using linear-elasticity theory, pro­
vided that dissociation into partials is 
accounted for and an appropriate stacking­
fault energy is used, which again attests to 
the predictive ability of informed contin­
uum models. Duesbery and Xu59 have cal­
culated the Peierls stress for a rigid screw 
dislocation in Mo to be 0.022 µ., where µ.is 
the (111) shear modulus, whereas the cor­
responding Peierls stress for a rigid edge 
dislocation is 0.006 µ., or about one-fourth 
of the screw value. Wang et al.43·44 have 
calculated a value of 0.03 µ. for the Peierls 
stress of screws in Ta, which is in the ex­
pected range. 

The strength of dislocation jogs and 
junctions has recently been computed 
using atomistic and c_ontinuum mod­
els.15:-24.43-45.49 Thus, for mstance, Rodney 
and Phillips24 used the quasi-continuum 
method to simulate three-dimensional 
Lomer-Cottrell junctions and determined 
that this type of junction may be unzipped 
under stress. Interestingly, Shenoy et al.49 

subsequently showed that essentially 
identical results may be obtained with an 
anisotropic elastic model, provided that 
dislocation dissociation into partials is ac­
counted for, which attests to the predictive 
power of informed continuum models. 
Shenoy et al. 49 went on to map out the 
complete stress-strength diagram for junc­
tions, that is, the locus of points in stress 
space corresponding to the dissolution of 
the junction. Likewise, Wang et al.43·44 

have exhaustively cataloged the jogs and 
kinks of bee crystals and computed their 
structures and energies. 

Other similar studies, too numerous to 
cite here, are available in the literature. 
The substantial body of data that these 
studies yield may be used to inform con­
tinuum models-for example, as material 
constants or interaction rules in disloca-
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tion dynamics codes (see References, 12, 
40, 41, 50, and 51). 

Concluding Remarks 
The emerging synergism between the 

atomistic and continuum views of mate­
rial behavior demonstrates how the link­
ing of these perspectives often results in 
more theoretical power than either offers 
alone. In closing, it is worth noting how 
the present emphasis on multiscale mod­
eling of materials has brought together 
disciplinary groups which have tradi­
tionally operated largely in isolation of 
each other, including chemists, applied 
physicists, materials scientists, applied 
mathematicians, computer scientists, and 
continuum mechanicians. 
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