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SUPPLEMENTAL METHODS 

Stratigraphy and Sampling 

Shale samples were collected from outcrops that lack evidence for secondary 

mineralization from hydrothermal activity and weathered regions that may have experienced 

alteration were also avoided. Sample sets comprise several 100–200 g samples excavated 10–30 

cm from the outcrop surface to target fresh material. Samples were collected along strike from a 

narrow stratigraphic range (<10 cm), as well as from a vertical profile (up to 5 m). The most 

organic-rich and least visibly-weathered samples were then chosen for digestion and isotopic 

analysis.  

Arctic Bay Formation samples are from Shale Valley (N 72° 45’ 04.8” W 83° 50’ 39.2”), 

ca. 180 m above the base of section T1413 (Arctic Bay-Adams Sound formations contact not 

exposed in this locale) and ca. 170 m below the base of the Ikpiarjuk Formation (Angmaat 

Formation equivalent; Fig. 1). Victor Bay Formation samples are from sections G1431 at 

Angmaat Mountain (N 72° 09’ 25.9” W 79° 02’ 05.5”) and MB1501 at Pingo Valley (N 72° 53’ 

48.3” W 81° 24’ 45.02”). Both Victor Bay Formation sample sets are from within the same 

maximum flooding interval indicated by the finest-grained and most organic-rich horizon ca. 25 

m above the contact with the Angmaat Formation.  
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Re-Os Geochronology Methods 

Least-weathered samples from each sample set were selected and trimmed with a 

diamond-tipped lapidary saw blade to remove any weathered surfaces, then polished with a 

diamond pad to remove any metal contamination. After samples were dried at room temperature, 

30–50 g aliquots were crushed to a fine powder (ca. 30 µm) using a SPEX #8506 zirconia 

ceramic puck and grinding container in a SPEX 8500 shatterbox to homogenize each sample 

(Kendall et al., 2009a). Analyses of Re and Os isotopic abundances and compositions were 

performed at the University of Alberta’s Re-Os Crustal Geochronology Laboratory in the 

Department of Earth and Atmospheric Sciences following methodologies developed by Creaser 

et al. (2002), Selby and (2003), Kendall et al. (2004), and Cumming et al. (2013). 

Between 0.2 and 0.5 g of each sample was digested and equilibrated with 8 ml of CrVI-

H2SO4 along with a known quantity of mixed 185Re + 190Os tracer solution (spike) in Carius tubes 

at 220 °C for 48 hrs. Digestion with CrVI-H2SO4 is known to preferentially liberate hydrogenous 

rather than detrital Re and Os in shale samples, resulting in more accurate and precise isochrons 

(Selby and Creaser, 2003; Kendall et al., 2004; Rooney et al., 2011). Osmium was isolated and 

purified by CHCl3 solvent extraction and micro-distillation using HBr, and Re was purified using 

(CH3)2CO solvent extraction and anion chromatography following protocols outlined by Selby 

and Creaser (2003) and Cumming et al. (2013). These Re and Os fractions were then loaded onto 

Ni and Pt filaments, respectively (Selby and Creaser, 2003; Selby et al., 2007), for analysis with 

a ThermoScientific TRITON instrument using negative thermal ionization mass spectrometry 

(NTIMS; Creaser et al., 1991). Re was analyzed via static Faraday collection and Os utilizing 

ion-counting with a secondary electron multiplier in peak-hopping mode. 

Isochron ages were regressed using the Re and Os isotopic measurements, calculated 2σ 



	 	 	

uncertainties for 187Re/188Os and 187Os/188Os, and the associated error correlation function (rho) 

using Isoplot V. 4.15 (Ludwig, 1980; Ludwig, 2011) with a 187Re decay constant (λ) of 1.666 × 

10−11year−1 (Table DR1; Smoliar et al., 1996). A Re standard solution of normal isotopic 

composition was repeatedly analyzed to monitor long-term mass spectrometry reproducibility, 

using analysis amounts typical for shale samples (1–4 ng). For this solution, an average value for 

185Re/187Re of 0.5973 ± 0.0007 (n = 52; 1σ) was obtained over the period of analysis, which 

overlaps the value of 0.5974 (Gramlich et al., 1973). A Johnson–Matthey Os solution is used as 

an in-house standard for Os, which yielded an average 187Os/188Os ratio of 0.10683 ± 0.00010 (n 

= 186; 1σ) by pulse-counting SEM measurement over the period of analysis, which is identical to 

values reported elsewhere (Li et al., 2010). 

 

Sample Formation Re ±2s Os ±2s 187Re/188Os ±2s 187Os/188Os ±2s rho* Osi†

(ppb) (ppt)

T1413-181.1§ Arctic Bay 67.31 0.25 1247.38 8.16 757.68 3.48 14.80 0.06 0.54 1.42

T1413-181.8§ Arctic Bay 21.62 0.08 488.94 3.55 490.77 2.97 10.12 0.05 0.73 1.45

T1413-182.0§ Arctic Bay 22.10 0.09 524.52 4.69 445.38 2.98 9.28 0.07 0.62 1.41

T1413-182.6§ Arctic Bay 48.49 0.18 1082.97 7.36 501.16 2.37 10.27 0.05 0.48 1.41

T1413-184.0§ Arctic Bay 16.76 0.07 404.74 3.11 432.12 2.94 9.07 0.06 0.76 1.43

T1413-185.0 Arctic Bay 50.76 0.19 1145.79 8.71 485.80 2.41 9.91 0.05 0.48 1.33

G1431-26.0b§ Victor Bay 0.76 0.01 33.38 0.49 166.36 4.32 4.15 0.10 0.66 1.22

G1431-26.0d§ Victor Bay 0.72 0.01 24.25 0.39 246.74 7.93 5.61 0.16 0.84 1.27

G1431-28.1§ Victor Bay 0.94 0.01 32.57 0.48 236.08 5.78 5.46 0.12 0.79 1.31

G1431-28.2 Victor Bay 0.94 0.01 32.79 0.43 229.48 5.36 5.21 0.10 0.83 1.18

MB1501-51.6a§ Victor Bay 16.73 0.04 406.59 3.41 416.96 2.52 8.58 0.06 0.75 1.24

MB1501-51.6b§ Victor Bay 15.52 0.04 384.67 4.13 403.94 3.25 8.39 0.09 0.69 1.28

MB1501-51.7§ Victor Bay 7.04 0.02 187.46 1.58 355.79 2.82 7.54 0.06 0.86 1.28

MB1501-51.9 Victor Bay 12.89 0.03 316.92 2.33 404.81 2.12 8.29 0.05 0.78 1.17

and 1047 Ma for Victor Bay formations samples; Figure DR4). 

§Samples included in the isochrons that utilized a limited stratigraphic range (Fig. 2). 

†Osi = Initial 187Os/188Os isotope composition calculated from λ187Re and isochron ages that utilize all samples (1051 Ma for Arctic Bay samples 

TABLE DR1. Re AND Os ABUNDANCES AND ISOTOPIC COMPOSITIONS 

Note: Total procedural blanks analyzed during this study were 11 ± 3 pg Re and 0.25 ± 0.3 pg Os and 187Os/188Os of 1.3 ± 0.8 (1s, n=5). 

*Rho = associated error correlation (Ludwig, 1980).



	 	 	

Cross-Calibrated Molecular Clock (BEAST2) Methods 

In lieu of a complete fossil record, molecular clock analyses may be improved by 

increasing the amount of age data they incorporate. Cross-calibrated analyses leverage relative 

dating information using gene duplication events to increase the accuracy of divergence time 

estimates (Shih and Matzke, 2013). Molecular clock analyses were run on a concatenated dataset 

of proteins: AtpA, AtpB, AtpE, AtpF, AtpH, AtpI, Rpl2, Rpl16, Rps3, Rps12, and EfTu, as well 

as 16S rDNA. To generate the dataset, sequences were aligned using MAFFT (Katoh et al., 

2005), then partitioned into the concatenated protein sequences and 16S nucleotide sequences. 

The base set of age calibrations implemented are primarily from on the fossil records of plants 

and algae and the molecular clock analyses of Smith et al. (2010). A summary of the various 

constraints used can be found in Table DR2. A uniform prior of 2.4–3.8 billion years ago (Ga) 

was used as a constraint for the last common ancestor. The only constraint that differed between 

the three analyses was the prior set on the green-red divergence, representing the oldest possible 

node for which Bangiomorpha pubescens can provide a direct constraint based on its position 

either derived within the Bangiales or perhaps as a stem-group red alga (e.g., Butterfield, 2000; 

Yang et al., 2016). In these analyses (Table 1), three constraints were tested to compare their 

effect on different interpretations of plastid endosymbiosis: 1) no prior (Run T07; Fig. DR1), 2) a 

prior based on the previously reported age for Bangiomorpha pubescens of 1.198 Ga (Run T08; 

Fig. DR2; Butterfield, 2000), and 3) a prior based on our geochronology data of 1.045 Ga (Run 

T09; Fig. DR3). As previously described (Shih et al., 2017), molecular clock analyses were 

estimated with the program BEAST2 (Drummond and Rambaut, 2007) using the CIPRES 

Science Gateway server (Miller et al., 2010). The CpREV model and the GTR + G model were 

used as the substitution model for the protein and nucleotide datasets, respectively. A lognormal 



	 	 	

relaxed molecular clock model was implemented. For all analyses, three separate MCMC chains 

for 40–50 million generations were generated, sampling every 10,000 generations. The initial 20 

million generations were discarded as burn-in, and maximum clade credibility trees were 

generated using TreeAnnotator v1.7.5. The analyses and dates of interest are summarized in the 

main text and Table 1. 

 

Divergence event Type of Distribution Age Constraint 
(Ga)

Angiospermae Normal 0.217 ± 0.040 (1σ)
Land Plants Normal 0.477 ± 0.070 (1σ)
Bangiomorpha pubescens Uniform 1.174–1.222
“Rise of Oxygen” Uniform 2.400–3.000
Last Common Ancestor Uniform 2.400–3.800

TABLE DR2. SUMMARY OF CALIBRATION CONSTRAINTS USED IN THIS STUDY.

   Note: Angiospermae and land plant age constraints from Smith et al. (2010).



	 	 	

 

Figure DR1. Divergence time estimates from T07 cross-calibrated BEAST2 run. All land 

plant constraints were used; however, no Bangiomorpha pubescens constraint was utilized. 

Abbreviations are summarized in Table DR3. 



	 	 	

 

Figure DR2. Divergence time estimates from T08 cross-calibrated BEAST2 run. All land 

plant constraints were used. Bangiomorpha pubescens was constrained to the green-red 

divergence using the older and previously inferred age of 1.2 Ga. Abbreviations are summarized 

in Table DR3. 



	 	 	

 

Figure DR3. Divergence time estimates from T09 cross-calibrated BEAST2 run. All land 

plant constraints were used. Bangiomorpha pubescens was constrained to the green-red 

divergence using the younger, revised age of 1.045 Ga. Abbreviations are summarized in Table 

DR3. 



	 	 	

 



	 	 	

 

 



	 	 	

SUPPLEMENTAL TEXT 

Rhenium-Osmium Results 

Re and Os data from this study (see Table DR1) are within reported concentrations and 

isotopic ratios of other black shales and do not display evidence for post-depositional disturbance 

of the Re-Os system. Regression of Arctic Bay Formation samples excluding T1413-181.1 yields 

a nearly identical age of 1.054 ± 0.041 Ga and confirms that this sample does not 

disproportionally affect the isochron by “anchoring” its slope. Victor Bay Formation samples are 

from two correlative stratigraphic sections (G1431 and MB1501). Regression of G1431 Victor 

Bay Formation samples yield an imprecise Model 3 age of 1.077 ± 0.28 Ga due to an insufficient 

spread in initial 187Re/188Os and too much variation in initial 187Os/188Os values (see Table DR1) 

necessary to develop a precise isochron (Selby and Creaser, 2005; Kendall et al., 2009a). 

Therefore, samples from section MB1501 of the same maximum flooding interval in the lower 

Victor Bay Formation were also incorporated. Regression of MB1501 samples yielded an 

imprecise, but indistinguishable to G1431 (within uncertainty), Model 3 age of 0.995 ± 0.320 

Ga. A sharp transgressive surface directly above the basin-wide Angmaat-Victor Bay 

unconformity marks a regional flooding event in the Milne Inlet Graben, and offers an 

unequivocally synchronous datum (Sherman et al., 2001). Sample set G1431 was collected from 

26–28.1 m above this unconformity, and sample set MB1501 is from a slightly deeper-water, but 

time-correlative horizon 21.3–21.6 m above this unconformity. Robust stratigraphic evidence for 

depositional synchronicity and the similarity of their model ages enable regression of these 

samples as a combined data set to produce a significantly more precise age (Fig. DR4; Geboy et 

al., 2013). Combining these data sets is further supported by the relative precision and lower 

variance in the composite isochron, as well as its agreement with the Re-Os age for the Arctic 



	 	 	

Bay Formation reported herein (Fig. 2). 

Initial 187Os/188Os values for all Arctic Bay and Victor Bay samples range from 1.17–1.45 

(average modern continental runoff 187Os/188Os = 1.5; Levasseur et al., 1999), consistent with a 

highly radiogenic Os flux dominated by evolved, continentally derived sediment and waters (Xu 

et al., 2009; Cumming et al., 2012; Cumming et al., 2013; Rooney et al., 2014). These data 

demonstrate that the Borden Basin had minimal communication with the global ocean during 

deposition of the sampled black shale units from the middle Arctic Bay (Turner and Kamber, 

2012; Hahn et al., 2015) and lower Victor Bay formations and was strongly influenced 

chemically by runoff from the surrounding highly-evolved Archean to Paleoproterozoic 

orthogneiss and metasedimentary successions of the Rae Province (Crocker et al., 1993). 

However, abundant sulfate evaporite deposits, marine C, S, and Sr isotopic signatures, and 

evidence for tidal influence indicate that the Borden Basin was connected to a large ocean basin 

during deposition of the Angmaat Formation and other intervals of carbonate deposition (i.e. 

upper Victor Bay and Athole Point formations; Kah et al., 1999; Kah et al., 2001). Together 

these data demonstrate that the Borden Basin was periodically restricted from the open ocean and 

that the degree of restriction influenced sedimentation patterns, perhaps due to changes in the 

geochemical stratification of its basin waters. These interpretations may help characterize the 

environment in which Bangiomorpha pubescens evolved. 

Precise Re-Os isochrons require samples of the same (or similar) age and with similar 

initial 187Os/188Os (Cohen et al., 1999; Creaser et al., 2002; Cohen, 2004). Sediment in restricted 

basins are known to exhibit highly variable 187Os/188Os as they are sensitive to short-term 

variability in weathering sources and runoff (McArthur et al., 2008; Cumming et al., 2012; 

Cumming et al., 2013; Tripathy et al., 2015). Therefore, on the condition that a sufficient spread 



	 	 	

in 187Re/188Os is maintained, utilizing samples from a reduced stratigraphic interval, especially 

from restricted basins, can minimize age uncertainty by limiting the depositional timescale over 

which samples were deposited and thus stratigraphic variation in initial 187Os/188Os (Osi; Xu et 

al., 2009; Cumming et al., 2012; Xu et al., 2014). 

 

Figure DR4. Re-Os geochronological data and isochron diagrams for all Arctic Bay (A) and 

Victor Bay (B) formations samples. Mean square of weighted deviation (MSWD) values 

greater than unity (i.e., 1) indicate that geological factors rather than analytical error are 

responsible for scatter about the isochron (Mahon, 1996). Data-point error ellipses represent 2s 

uncertainty. Elemental abundances and isotopic compositions are presented in Table DR1. 
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Previous Geochronology from the Bylot Supergroup  

Pyrite Re-Os geochronology from the carbonate-hosted Nanisivik Pb-Zn deposit 

(Angmaat Formation equivalent; see Fig. 1) suggest approximately syn-depositional 

mineralization ca. 1.1 billion years ago (Ga), though the data span 1.151-1.013 Ga (Hnatyshin et 

al., 2016), which is broadly consistent with depositional ages presented from this study. Turner 

and Kamber (2012) conducted whole-rock U-Th-Pb analyses of Arctic Bay Formation black 

shales and calculated an age of 1.092 ± 0.059 Ga from the weighted mean of a 206Pb-207Pb 

isochron and 238U-206Pb and 232Th-208Pb errorchrons; however, a total of nine outlying samples 

were excluded in these calculations and stratigraphic heights are not reported.  

Unpublished whole-rock, carbonate Pb-Pb geochronology of Angmaat Formation 

samples were reported to produce an age of 1.199 ± 0.024 Ga, and combined data from 

Angmaat, Victor Bay, and Athole Point formations samples an age of 1.204 ± 0.022 Ga (Kah et 

al., 2001). While these dates were often cited as the age of Bangiomorpha pubescens (ca. 1.2 

Ga), they are older than and therefore incompatible with the calculated age of the underlying 

Arctic Bay Formation from Turner and Kamber (2012). Futhermore, Pb-Pb carbonate ages can 

overestimate depositional ages due to incorporation of basement-derived Pb during diagenesis 

(i.e., dolomitization), meteoric alteration, and metamorphism (e.g., Babinski et al., 2007). These 

incongruent ages highlight obstacles associated with the application of whole-rock U-Th-Pb and 

Pb-Pb geochronology to typical Precambrian samples. The utility of the black shale Re-Os 

geochronometer for yielding precise and accurate ages of Precambrian sedimentary successions, 

on the other hand, is corroborated by numerous recent studies (e.g., Selby and Creaser, 2003; 

Kendall et al., 2009b; Cumming et al., 2013; van Acken et al., 2013; Rooney et al., 2014; 

Rooney et al., 2015).  



	 	 	

Age of the Chitrakoot Taxa  

The Vindhyan Supergroup in central India has long been the center of debate regarding 

fossil discoveries and their ages (see Ray, 2006 for overview). This up-to 4-km-thick 

sedimentary succession primarily outcrops in the Son Valley and Rajasthan. The lower Vindhyan 

Semri Group has largely been studied in the Son Valley region where multiple interbedded 

volcanic tuffs offer robust U-Pb zircon depositional age constraints of ca. 1.6 Ga (Rasmussen et 

al., 2002; Ray et al., 2002; Bengtson et al., 2009). These ages are broadly consistent with the 

occurrence of microfossils such as Grypania (Kumar, 1995) which occur globally in strata of 

similar ages (Adams et al., 2017). 

The Chitrakoot Formation occurs as a stratigraphic outlier in the Jankikund-Chitrakoot 

region to the north of the Son Valley, and is interpreted to record deposition within an isolated 

sub-basin that was disconnected from the main Vindhyan basin (Bose et al., 2015); however, 

discontinuous lateral exposure renders robust correlations, even within the Chitrakoot region, 

tenuous. The Chitrakoot Formation has been dated using whole-rock geochronological 

techniques, with whole-rock Rb-Sr ages from lower glauconitic facies spanning ca. 1.5–1.4 Ga 

(Kumar et al., 2001), and a whole-rock Pb-Pb age of 1.65 ± 0.089 Ga from the uppermost 

phosphatic Tirohan Dolomite (Bengtson et al., 2009). While these dates broadly support 

correlation between the Tirohan Dolomite of the Chitrakoot Formation and the Rohtas Limestone 

of the Semri Group (Bengtson et al., 2017), robust stratigraphic correlations between the 

Chitrakoot outlier and principal Vindhyan sections in the Son Valley are complicated by 

inconclusive chemostratigraphic signatures (Ray et al., 2003) and significant lithological and 

thickness differences between these successions (Chakraborty, 2006). Alternately, if the Tirohan 

Dolomite is equivalent to the next younger unit that directly overlies the Rohtas Limestone, it 



	 	 	

would belong to the upper Vindhyan Kaimur Group which could be as young as ca. 1.07 Ga 

(Gregory et al., 2006)—similar to the age of the Angmaat Formation. Thus, the ca. 1.6 Ga age of 

the phosphatized fossils from the Tirohan Dolomite is primarily based on the internally 

inconsistent dates for the Chitrakoot Formation, and so further corroboration of the anomalously 

old age of these fossils requires the application of reliable, high precision geochronology to the 

Chitrakoot sections themselves.  
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