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Abstract 

The unique crystal structure of BaBiTe3 containing Te···Te resonant bonds and its narrow band 

gap motivated the systematic study of the thermoelectric transport properties of BaBiTe3-xSex (x = 

0, 0.05 and 0.1) presented here. This study gives insight in the chemical bonding and 

thermoelectric transport properties of BaBiTe3. The study shows that the presence of Te···Te 

resonant bonds in BaBiTe3 is best described as a linear combination of interdigitating (Te1-)2  side 

groups and infinite Ten chains. Rietveld X-ray structure refinements and extrinsic defect 

calculations reveal that the substitution of Te by Se occurs preferentially on the Te4 and Te5 

sites, which are not involved in Te···Te bonding. This work strongly suggests that both, 

multiband effects and native defects play an important role in the transport properties of BaBiTe3-

xSex (x = 0, 0.05 and 0.1). The carrier concentration of BaBiTe3 can be tuned via Se substitution 

(BaBiTe3-xSex with x = 0, 0.05 and 0.1) to values near those needed to optimize the 

thermoelectric performance. The thermal conductivity of BaBiTe3-xSex (x = 0, 0.05 and 0.1) is 

found to be remarkably low (ca. 0.4 Wm-1K-1 at 600 K), reaching values close to the glass limit of 

BaBiSe3 (0.34 Wm-1K-1) and BaBiTe3 (0.28 Wm-1K-1). Calculations of the defect formation 

energies in BaBiTe3 suggest the presence of native BiBa
+1 and TeBi

+1 antisite defects, which are 

low in energy and likely responsible for the native n-type conduction and the high carrier 

concentration (ca. 1020 cm-3) found for all samples. The analyses of the electronic structure of 

BaBiTe3 and of the optical absorption spectra of BaBiTe3-xSex (x = 0, 0.05, 0.1 and 3) strongly 

suggest the presence of multiple electron pockets in the conduction band (CB) in all samples. 

These analyses also provide a possible explanation for the two optical transitions observed for 

BaBiTe3. High-temperature optical absorption measurements and thermoelectric transport 

analyses indicate that bands higher in the conduction band converge with the conduction band 

minimum (CBM) with increasing temperature and contribute to the thermoelectric transport 
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properties of BaBiTe3 and BaBiTe2.95Se0.05. This multiband contribution can account for the 

~50 % higher zTmax of BaBiTe3 and BaBiTe2.95Se0.05 (~0.4 at 617 K) compared to BaBiTe2.9Se0.1 

(~0.2 at 617 K), for which no such contribution was found. The increase in the band offset 

between the CBM and bands higher in the conduction band with respect to the selenium content 

is one possible explanation for the absence of multiband effects in the thermoelectric transport 

properties of BaBiTe2.9Se0.1.  

 

Introduction 

Polychalcogenides exhibit a strikingly diverse crystal chemistry due to the formation of 

homonuclear and often resonant or hypervalent bonds between negatively charged chalcogen 

atoms (Q). This highly diverse anion chemistry led to the discovery of a vast number of new 

compounds with interesting physical properties over the past decades.1-6 Within the family of 

polychalcogenides there are several examples with promising thermoelectric properties such as 

HfTe5
7, Ba3Cu14-δTe12

8 and BaCu5.7Se0.6Te6.4
9 and A2BaCu8Te10 (A = K, Rb, Cs).10 Many of them 

possess low thermal conductivities, which can be well explained by their complex crystal 

structures, while their overall electronic transport properties are often poorly understood. Since it 

was realized that multi-valley bands11,12 and band convergence13,14 of multiple valence or 

conduction bands can result in high thermoelectric efficiencies, it is of interest to look deeper into 

the thermoelectric transport properties of polychalcogenides with complex crystal structures since 

many of them possess complex electronic structures and inherently low thermal conductivities.  
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4 

 

The polytelluride compound BaBiTe3, isostructural to BaBiSe3
15 and BaSbTe3

15, was first 

discovered by Chung et al.16 and its thermoelectric transport properties were measured on single 

crystals. The unique part of the crystal structure of BaBiTe3 is the parallel stripes of weak Te···Te 

bonding, the nature of which is still not entirely understood. BaBiTe3 is an ideal candidate for 

fulfilling the requirements of a phonon glass and an electron crystal, which according to Slack 

results in both a low thermal and a high electrical conductivity needed for thermoelectrics.17 The 

rigid, one-dimensional [Bi4Te10]∞ rods in the structure allow facile electronic conduction, while 

the heavy Ba atoms and weak Te···Te bonding result in a low thermal conductivity similar to 

previously studied compounds containing Ba or Tl.18-23 In addition, the electrostatic repulsion 

between the lone pairs of Bi and the neighboring Te atoms can lead to strong anharmonicities in 

the lattice vibrations and hence low phononic thermal conductivities (κph) close to the amorphous 

limit.24-27 Low-temperature thermoelectric measurements of both p- and n-type single crystalline 

BaBiTe3
16, electronic band structure calculations28 gave a first impression of its promising 

thermoelectric properties. A pressure dependent study of the thermoelectric properties of p-type 

BaBiTe3 single crystals29 and a recent study of K and La substituted variants of BaBiTe3
30 

showed it was of further interest. 

Here we study the Te···Te bonding in BaBiTe3 and the origin of the two, previously 

observed16 optical transitions in order to understand the electronic and thermoelectric transport 

properties and the intrinsic defect chemistry of BaBiTe3. Understanding the chemical bonding is 

crucial since the type of bonding (metallic, covalent, ionic) can significantly affect the physical 

properties by controlling the degree of electron delocalization. The main objectives for alloying 

BaBiTe3 with Se were to reduce its thermal conductivity, determine the minimum thermal 

conductivity, and to optimize its carrier concentration.  
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Experimental and computational details 

Synthesis 

An amount of 10 g of fine polycrystalline powders of BaBiTe3-xSex (x = 0, 0.05, 0.1 and 3) were 

obtained by ball milling (700 rpm, 15 milling cycles with a milling time of 2 min per cycle) 

starting from a stoichiometric mixture of Ba pieces (Alfa Aesar, 99+%), Bi powder (Alfa Aesar, 

99.99 %) Se powder (Alfa Aesar, 99.999%) and Te powder (Alfa Aesar, 99.999+ %). All 

elements were stored under inert atmosphere and Se shots and Te lumps were freshly powdered 

before each reaction. A planetary micro mill Pulverisette7 (Fritsch, Germany), tungsten carbide 

reaction containers (20 ml) and seven 10 mm tungsten carbide balls were used for all syntheses.  

 

Spark plasma sintering and shaping 

An amount of 5 g of ball milled powder was densified by spark plasma sintering (HP D 25/1, 

FCT, Germany) using high density graphite dies (Carbon-Lorraine, France) resulting in 

cylindrical samples with a diameter and thickness of 15 mm and 5 mm respectively. A 

mechanical pressure of 45 MPa was applied and the densification was conducted for 30 min at 

500 °C with a heating rate of 23 °Cmin-1 up to 250 °C and 6 °Cmin-1 between 250 °C and 500 °C 

and a cooling rate of 16 °Cmin-1. During cooling the pressure was decreased to 32 MPa. Densities 

of 6.44 g/cm3(96 % of ρcalc), 6.14 g/cm3(91% of ρcalc), 5.6 g/cm3 (84% of ρcalc) and 6.37 g/cm3 

(99.5 % of ρcalc) were obtained for x = 0, 0.05, 0.1 and 3, respectively. Disc shaped samples were 

obtained by cutting slices of 1 mm thickness perpendicular to the pressing direction. 

 

 

 

 

Page 5 of 49

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 

 

 

Powder X-ray diffraction (PXRD) and Rietveld refinements 

PXRD patterns were recorded before and after spark plasma sintering in order to confirm the 

average crystal structure. PXRD data of all samples was collected in 2h within a 2θ range of 5°-

120° using a X’Pert Pro MPD diffractometer (PANalytical, Netherlands) and Cu-Kα1/2 radiation 

(λ1/2 = 1.54060/1.54439 Å). Rietveld refinements on PXRD patterns after spark plasma sintering 

were performed using the software FULLPROF.31 The pseudo-Voigt function pV(x) = ηL(x) + 

(1-η)G(x) was used to model the peak shape with L(x) and G(x) representing the corresponding 

Lorentzian and Gaussian contributions. Further refined parameters are the FWHM parameters, 

the scale factor, zero shift, lattice parameters, isotropic displacement parameters, the preferred 

orientation parameter Pref1, background parameters and the site occupancy factors (s.o.f.). The 

modified March’s function was used to treat preferred orientation.  

 

Thermoelectric characterization 

The thermal conductivities were calculated from the experimental densities, heat capacity (cp), 

and the measured thermal diffusivities (Dth) using a LFA457 MicroFlash (Netzsch, Germany) 

laser flash system. The heat capacity was assumed to be Cp = 3kb/atom according to the Dulong-

Petit approximation. All measured thermal diffusivities are provided as supplementary 

information.  

Electrical resistivity (ρ), hall carrier concentration (n) and mobility (µ) were measured on an in-

house built measurement system32 using the van der Pauw method and pressure-assisted Mo 

contacts. A magnetic field of 2T was applied during the hall measurements. The Seebeck 

coefficient was measured using a home-built measurement system33 and Chromel-Nb 

thermocouples.  
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7 

 

 

 

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) 

To analyze microstructure and chemical composition (by energy dispersive X-ray spectroscopy, 

EDS), a scanning electron microscope (Hitachi S-3400N-II: Variable-pressure tungsten filament 

SEM equipped with Oxford INCAx-act SDD EDS system) was used. The analyses were 

performed on polished surfaces after having measured the thermoelectric properties.  

 

Optical absorption measurements 

Mid-Infrared (~ 0.08 – 0.7 eV) diffuse reflectance (R) spectra of BaBiTe3-xSex (x = 0, 0.05 and 

0.1) were collected under Argon atmosphere in the temperature range 300 – 500 K with a Nicolet 

6700 FTIR Spectrometer equipped with a Praying Mantis attachment and a high-temperature 

stage from Harric Scientific Instruments. A KBr standard was used as reference. The room 

temperature diffuse reflectance of BaBiSe3 was recorded with a Shimadzu UV-3101 PC double-

beam, double-monochromator spectrophotometer operating from 200 nm to 2500 nm using 

BaSO4 as a non-absorbing reflectance reference. The absorption spectra (α/s) were obtained using 

the Kubelka-Munk function, which gives a relationship between R and the absorption coefficient 

(α) and scattering coefficient (s) through 

���� =
(��	)�
�	      (1) 
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8 

 

 

Speed of sound measurements and evaluation of Cahill’s glass limit of the thermal conductivity 

(κglass) and the Debye temperature (θD) of BaBiTe3 and BaBiSe3 

The longitudinal and transversal components of the speed of sound (vL and vT) were measured 

applying the pulse-echo method. A piezoelectric transducer coupled to the sample first sends the 

initial pulse, and then acts as a receiver measuring the echoed reflections (for details see 

supplementary information).34 The speed of sound (vs) was calculated from the longitudinal and 

transversal components vL and vT as follows:  

� = ��� �
�
���
+ �

���
��
��/�

    (2) 

From the speed of sound the Debye temperature (θD) and Cahill’s glass limit of the thermal 

conductivity35 (κglass) were calculated as follows: 

������ = �
� �

�
��

�
� � !�

�
�(2# + $)  (3) 

%& = ℏ()
*+

     (4) 

where ωD is the Debye frequency: 

,& = � 	���
�

. �
�/�

   (5) 

and where V corresponds to the unit cell volume per atom. The corresponding values of vs, vT, vL, 

θD and ωD can be found in the supplementary information. 
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9 

 

Electronic structure, defect and COHP calculations 

All density functional theory computations were performed using the Vienna ab initio software 

package (VASP)36-39, PAW pseudopotentials40, the generalized gradient approximation as 

implemented by Perdew, Burke and Ernzerhoff (PBE)41 and a kinetic energy cutoff of 520 eV. A 

scissor (operator) shift was applied to the DFT band structure to correct the band gap and 

facilitate the comparison with experimental results. This correction is based on the 

empirical band gap obtained from optical absorption measurements (0.26 eV) and is consistent 

with the Goldsmid-Sharp band gap (Eg = 2eSmaxTmax) of ca. 0.23 eV. For bulk calculations, the 

Brillouin zone was sampled by a 6×2×2 k-point mesh, while for the defect calculations a k-point 

mesh of 2×2×2 and a 3×1×1 supercell were used. A force convergence criterion of 0.005 eV/Å 

was adopted for all structural relaxations. The Crystal Orbital Hamilton population (COHP) 

curves were calculated using the LOBSTER42 software. The defect formation energy D in a 

charge state q was calculated according to43 

 

/01234 = /1234 + /56771234 − /19:;�4 − ∑ =>?>	
> + @(A. B + ∆D) + ∆	AE      (6) 

 

E[Dq] and E[bulk] represent the total energy of the supercell with defects D in the charge state q 

and without any defects, respectively. ni is the number of removed (ni<0) or added (ni>0) i-type 

atoms, and µi is the chemical potential. εVBM is the energy of the valence band maximum (VBM), 

and ∆εF is the Fermi energy (chemical potential) of the electrons relative to εVBM. Ecorr[D
q] and ∆ν 

are correction terms for the spurious image-image interaction and potential alignment.44 
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The chemical potential of the elements was obtained from a stable region of the Ba-Bi-Te phase 

diagram supported by all corresponding compounds present in the Materials Project database45 

using the pymatgen package.46 The localized defect states with the charge q were corrected using 

the extended Freysoldt (Kumagai) scheme47,48, while for delocalized defects, only a potential 

alignment between the bulk and neutral state was included. No band gap corrections have been 

applied on the defect computations. 

 

Calculations of the optical absorption coefficient 

The optical absorption coefficient (α) of BaBiTe3 was calculated as a function of energy using the 

DFT (PBE) method and the random phase approximation approach (RPA). We neglect excitonic 

effects which we expect to be small in this material. A scissor (operator) shift was applied to the 

DFT band structure to correct the band gap and setting it consistently to the experimental value. 

A very dense k-point mesh of 34x9x9 corresponding to 450 k-points in the irreducible Brillouin 

zone is utilized to compute α. It is worth noting that only direct (i.e. no change in k-space) 

transitions are considered. Details concerning this type of calculations can be found in the 

supporting information of Ref. 49. 

 

Results and Discussion 

BaBiTe3: Crystal structure and Te···Te bonding  

The crystal structure of BaBiTe3 (cf. Fig. 1) was first determined by Chung et al.16 and the 

authors discussed two alternative Te···Te bonding situations, which can both describe the 

chemical bonding in the crystal structure.  
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Fig. 1 Crystal structure of BaBiTe3 (black: Ba, light grey: Bi, dark grey: Te) 

 

Their discussion is based on the Te···Te contacts (Te2-Te6: 3.098(2) Å and Te2···Te2: 

3.170(2) Å) found between the rod-shaped columnar [Bi4Te10]∞ segments, which are built up by 

edge-sharing BiTe6 octahedra. These Te···Te distances are larger compared to those found for 

normal covalent Te···Te single bonds (2.69-2.80 Å)50, but well below typical Van der Waals 

interactions (4.0 Å - 4.2 Å)51 so that Te2-Te2 and Te2-Te6 bonding interactions have to be taken 

into account. The first description rationalizes the structure as columnar [Bi4Te10]∞ segments 

alternating with infinite Ten chains with Te···Te bonds only between the Te2 atoms, i.e. the Ten 

chains are separated from the [Bi4Te10]∞ segments (cf. Fig. 2a).  

 

 

Fig. 2 Previously described Te···Te bonding situations: a) Ten chains and b) interdigitating (Te1-)2  side groups; c) 

electron localization function of Te2 and Te6 (left)  and -pCOHP curves of the Te2-Te2 and Te2-Te6 pairs (right) 

showing bonding interactions between Te2-Te2 and Te2-Te6; d) Te···Te resonant bonding, which can be understood 

as a linear combination between a) and b) and which involves three-center-four-electron (3c-4e) bonds; the bonding 

situation in d) is based on results from –pCOHP and ELF calculations shown in c); this new Te···Te bonding 

situation represents an electron delocalization over the Te2 and Te6 atoms, which reduces electrostatic repulsion 

between the Te2 and the Te6 atoms by minimizing their negative charge.  

The second description rationalizes the structure as [Bi4Te10(Te2)]	FGF� “herring-bone” shaped 

segments with interdigitating (Te-1)2 side groups (cf. Fig. 2b). According to this description there 

are no bonds between the Te2 atoms and hence no infinite Ten chains in the structure. Chung et 

al. found negative overlap populations from their extended Hückel calculations and concluded, 

based on these findings, that the crystal structure is better described as [Bi4Te10(Te2)]	FGF� rods 

with (Te1-)2 side groups and that there are no Ten chains in the BaBiTe3 crystal structure.  
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 Our bonding analysis (cf. Fig. 2c) focuses on the bonding between Te2 and Te6. It is 

based on the evaluation of the Electron Localization Function (ELF) and the Crystal Orbital 

Hamilton Population (COHP) from density functional theory (DFT) in the generalized gradient 

approximation (GGA) computations. It unambiguously shows Te2-Te2 and Te2-Te6 bonding 

interactions consistent with the similar interatomic Te2-Te2 and Te2-Te6 distances. This new 

bonding situation is shown in Fig. 2d and can be rationalized as a linear combination of the two 

previous descriptions of the crystal structure given by Chung et al. in 1997 and it can be 

understood as a delocalization of electrons over the Te2 and Te6 atoms through the formation of 

three-center-four-electron (3c-4e) bonds. Such kind of resonant bonding can also explain the 

slightly longer bond lengths compared to classical Te···Te single bonds. The amount of occupied 

antibonding Te···Te p-states is slightly larger for the Te2···Te6 interactions compared to those 

between the Te2 atoms. Hence, the former are slightly weaker and the part of the BaBiTe3 crystal 

structure that is dominated by Te···Te bonding is significantly strained due to the population of 

antibonding Te p-states. 

 

Preferential site substitution of Se on the Te4 and Te5 sites 

The crystal structure of BaBiTe3-xSex (x = 0, 0.05 and 0.1) was confirmed by PXRD and 

subsequent Rietveld refinements (cf. Fig. 3) based on the structural model obtained from a 

previous single crystal structure analysis of BaBiTe3.
16 
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Fig. 3 Rietveld refinements of experimental diffraction patterns (black) of a) BaBiTe3, b) BaBiTe2.95Se0.05 and c) 

BaBiTe2.9Se0.1 recorded after spark plasma sintering. Calculated diffraction patterns, difference plots and reflection 

positions are depicted in red, blue and green, respectively; all experimental diffraction patterns were recorded after 

spark plasma sintering. 

 

The site occupancy factors (s.o.f.) were refined for the Se substituted variants and we find that for 

x = 0.05 Se substitutes Te on the Te5 site (s.o.f. on Te5: 0.96/0.04 Te/Se), while Se substitutes Te 

on the Te4 and Te5 sites for x = 0.1 with a slight preference towards Te5 (s.o.f. on Te4: 0.9/0.1 

Te/Se and s.o.f. on Te5: 0.78/0.22 Te/Se) and all other sites are fully occupied by Te. The 

corresponding results of the refinements are summarized in Table1 and the refined site occupancy 

factors are visualized exemplary for x = 0.1 in Fig. 4.  

 

Table 1  

Rietveld X-ray refinement results for BaBiTe3-xSex (x = 0, 0.05, 0.1). 

Nominal composition BaBiTe3 BaBiTe2.95Se0.05 BaBiTe2.9Se0.1 

Space group P212121 (No. 19) P212121 (No. 19) P212121 (No. 19) 

Z 8 8 8 

a (Å) 4.6147(1) 4.6103(1) 4.6056(1) 

b (Å) 17.0365(4) 17.0287(4) 17.0171(5) 

c (Å) 18.2990(4) 18.2785(4) 18.2503(5) 

V (Å3) 1439 1435 1430 

ρcalc (gcm–3) 6.733 6.746 6.702 

Radiation Cu-Kα1/2, λ1/2 = 1.54060/1.54439 Å 

2θ limits (°)  5.01-119.99 5.01-119.99 5.01-119.99 

Rf 0.041 0.030 0.0401 

Rbragg 0.048 0.036 0.0464 

χ2 1.48 1.62 1.64 
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Fig. 4 Parts of the BaBiTe2.9Se0.1 crystal structure with refined site occupancy factors (black: Se; grey: Te) 

illustrating the preferential site substitution of Te4 and Te5 by Se. 

 

The clear changes in the lattice parameters (cf. Table 1) provide proof for a successful 

substitution of Te by Se, which can be confirmed by complementary EDS analyses. The 

elemental compositions extracted from EDS analyses are provided in Table 2 and the 

corresponding EDS spectra can be found in the supplementary information. 

 

Table 2 

Experimental compositions obtained from EDS analyses after thermoelectric characterization. 

nominal composition Ba (at. %) Bi (at. %) Te (at. %) Se (at. %) exp. composition  

BaBiTe3 20.18 20.86 58.96 - Ba1.03Bi1.06Te3 

BaBiTe2.95Se0.05 19.99 21.03 58.12 0.86 Ba1.01Bi1.06Te2.95Se0.04 

BaBiTe2..90Se0.10  19.86 21.11 57.16 1.87 Ba1.01Bi1.07Te2.90Se0.09 

 

 

Since there is a preferential site substitution on the Te sites that are not involved in Te···Te 

bonding it can be concluded that a Se substitution of Te2 and/or Te6 atoms would destabilize the 

crystal structure and is therefore energetically not favorable. This is in good agreement with the 

extrinsic defect calculations (cf. supplementary information), which are further discussed in the 

section Defect chemistry of BaBiTe3 and its Se substituted variants. 
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Multiple electron pockets in the conduction band of BaBiTe3 and orbital character of the 

conduction and valence band edges 

The electronic structure of BaBiTe3 was calculated and described previously.16,28 Both studies 

could not entirely clarify the nature of the two transitions at ~ 0.28 eV (transition 1) and ~0.42 eV 

(transition 2) observed by diffuse reflectance (DR) measurements. This inspired us to recalculate 

the electronic structure in order to better understand the thermoelectric transport properties of 

BaBiTe3 and the unusual shape of its experimental optical absorption spectrum, which is 

discussed in the section Band convergence and an explanation for the two optical transitions. It 

is important to note that spin-orbit coupling (SOC) does not significantly affect the overall band 

structure of BaBiTe3 (cf. Fig. S3 in the supplementary information).28  

It does, however significantly decrease the band gap. For narrow band gap materials it is difficult 

to obtain accurate band gaps from DFT-PBE calculations, which is why a scissor (operator) shift 

was applied to correct the band gap to the empirical value of 0.26 eV based on the optical band 

gap (experimental). This value is also consistent with calculations including SOC (cf. Fig. S3 in 

the supplementary information) and the Goldsmid-Sharp band gap (ca. 0.23 eV), which is 

discussed in the section Thermoelectric transport properties of BaBiTe3-xSex (x = 0, 0.05, 0.1). 

 

Fig. 5 a) Electronic structure of BaBiTe3 with three electron pockets (CB1, CB2 and CB3) and the atomic 

contributions to the conduction band minimum (CBM) and valence band maximum (the Fermi level is set to 0 eV); 

b) and c) correspond to the charge density distribution of the CBM and the valence band maximum (VBM) showing 

the strongest atomic contributions to the CBM and VBM; all calculations were performed using DFT-PBE. 
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Our results (cf. Fig. 5a) show three electron pockets (CB1, CB2 and CB3) that lie close in energy 

in a range of only 100 meV and which are also present in Se substituted variants of BaBiTe3 (cf. 

supplementary information). CB1 and CB3 are located along the ΓZ and ΓX directions, allowing 

nearly direct transitions from the VBM, while CB2 is located along the SY direction allowing 

indirect transitions from the VBM.  

The three electron pockets signify a material system with multiple valleys, which is an important 

feature since complex band structures with multi-valley bands (i.e. a large valley degeneracy Nv) 

and contributions of multiple conduction and/or valence bands can lead to high-efficiency 

thermoelectric materials as it was demonstrated for SnSe52, CoSb3
53 and PbTe1-xSex.

13  

Knowing the atomic and orbital contributions to the band edges is important in order to 

understand which part of the crystal structure governs the electronic transport. This is especially 

true in compounds where ionic and covalent bonding coexists and where it is often assumed that 

the covalent part of the structure dominates the electronic transport. The band edges in BaBiTe3 

are dominated by Bi and Te states (cf. Fig. 5a). The strongest contribution to the valence band 

edge comes from the Bi6p-Te5p and Te5p-Te5p bonding states, while their corresponding 

antibonding states are the main contributors to the conduction band edge (cf. Fig.6). These Bi6p-

Te5p and Te5p-Te5p contributions are also visualized in Fig. 5 (other contributions are not 

shown for clarity reasons). Fig.5 b) and c) show the charge density distribution of the CBM and 

the VBM containing only the Bi6p-Te5p and Te5p-Te5p contributions. This representation 

allows visualizing the orbital contributions of each atom to the CBM and VBM and hence 

provides a more detailed description of the band edges.  

The main Bi6p and Te5p contributions to the CBM come from the Te2 and Bi2 atoms and those 

contributing to the VBM come from the Te3, Te4 and Te5 atoms. The Bi6s and Te5s states (cf. 

Fig. 6) are also important to obtain a more complete picture.  
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Fig. 6 COHP curves of BaBiTe3 containing a) Bi-Te interactions and b) Te-Te interactions; c) shows a MO diagram 

reflecting the COHP analysis. 

These mix with the Te5p states leading to significant contributions of Bi6s-Te5p antibonding 

states to the valence band edge. The conduction band edge also shows significant contributions of 

antibonding Bi6p-Te5s states. Our COHP analysis and the MO diagram (cf. Fig. 6) provide a 

comprehensive picture of all covalent bonding interactions in BaBiTe3 and they show to which 

extent the different orbitals contribute to the electronic transport. However, Fig. 6 entirely 

neglects the ionic part of the crystal structure, which is not shown for clarity reasons. A detailed 

COHP analysis of the ionic part of the crystal structure can be found in the supplementary 

information and it shows significant contributions of the Ba6s-Te5p bonding states and Ba5p-

Te5p antibonding states to the valence band edge.  

Hence, a complete COHP analysis reveals that both the covalently and the ironically bonded parts 

as well as the Bi lone pairs of the crystal structure are expected to play a role in the electronic 

transport of BaBiTe3. 

Multiple electron pockets in the conduction band of Se substituted variants of BaBiTe3 

Optical absorption measurements of polycrystalline BaBiTe3 (cf. Fig. 7a) confirm the 

results obtained for single crystalline BaBiTe3 in 1997, which made it possible to use this 

compound as a standard for further optical absorption measurements of BaBiTe2.95Te0.05, 

BaBiTe2.9Se0.1 and BaBiSe3 (cf. Fig. 7a).  

 

Fig. 7 a) experimental band gaps of BaBiTe3-xSex (x = 0, 0.05, 0.1 and 3) determined by diffuse reflectance 

measurements; b) enlargement of the optical absorption of BaBiTe2.95Se0.05 emphasizing the two transitions 

corresponding to transitions from the VBM to CB1 and from CB1 to CB2; c) energy of the two transitions as a 

function of the Se content; d) tauc plots for x = 0.05 showing that transition 2 can be considered direct. 
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These show that the optical band gap does not change significantly for compositions up to 

x = 0.1, while BaBiSe3 has only one transition at ~0.90 eV (cf. Fig. 7a), which corresponds to an 

optical band gap significantly larger compared to those of BaBiTe3-xSex (x = 0, 0.05 and 0.1). The 

two optical transitions observed for BaBiTe3 are also found for the Se substituted variants with 

x = 0.05 and 0.1 as it is illustrated in Fig. 7b for x = 0.05 and the energies of the two transitions 

are shown as a function of Se content in Fig. 7c.  

Band convergence and an explanation for the two optical transitions 

Up to now we provided a comprehensive picture of the bonding interactions in BaBiTe3, its 

electronic structure including orbital contributions and we showed that BaBiTe3-xSex (x = 0, 0.05 

and 0.1) are multiband systems. Now, we will relate the experimentally observed optical 

transitions to the electronic structure in order to explain the two optical transitions observed 

experimentally. These results are then used to demonstrate that band convergence occurs in 

BaBiTe2.95Se0.05.  

Analyzing transition 2 of BaBiTe2.95Se0.05 by the Tauc method (cf. Fig. 7d) revealed that 

this transition is direct, which excludes the possibility of indirect VBM-CB2 and VBM-CB3 

transitions being associated to transition 2. Fig. 8a shows the electronic structure and density of 

states (DOS) of BaBiTe3 including two transitions, which can qualitatively explain the shape of 

the experimental absorption spectra shown in Fig. 7a and b.  

 

Fig. 8 a) Electronic band structure and density of states (DOS) of BaBiTe3 showing the two optical transitions taken 

into account for calculating the optical absorption spectrum; b) calculated joint density of states (joint DOS) and c) 

optical absorption coefficient as a function of energy. All these calculations were performed using DFT-PBE. The 

abbreviations T-1 and T-2 refer to transition 1 and transition 2. 
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This is also quantitatively validated in Fig. 8b and c presenting the calculated joint density of 

states and optical absorption spectrum of BaBiTe3, respectively. These calculations were 

performed assuming that BaBiTe3 is undoped (or has a very low carrier concentration). From 

these calculations we can conclude that transition 1 and 2 correspond to transitions from the 

VBM to CB1 and to bands higher in the conduction band next to CB2. These bands are located 

along the ΓY direction between CB1 and CB2 (cf. Fig. 8a).  

Transition 2 is direct, which is consistent with the Tauc analysis shown in Fig. 7d. This transition 

is significantly stronger than transition 1 in terms of intensity. This can be explained by the lower 

dispersion of the bands higher in the conduction band compared to those at CB1. A lower 

dispersion (i.e. when the bands are more flat) results in a larger density of states (cf. Fig. 8a). This 

is why the number of optical transitions at 0.26 eV (transition 1) is smaller than at 0.5 eV 

(transition 2). This is reflected in the joint density of states (cf. Fig. 8b), which are a measure for 

the amount of states in the valence and conduction band available for a photon of a given energy 

hν to interact with. The larger the available states, the higher is the transition rate and the larger is 

the intensity of the transition. Transition 2 is more intense than transition 1 since more states are 

available in the conduction band compared to transition 1. 

High-temperature optical absorption measurements of BaBiTe2.95Se0.05 (cf. Fig. 9a) show 

that transition 2 moves to lower energies with respect to temperature, while the energy of 

transition 1 stays constant (cf. Fig. 9b).  

 

 

 

 

Page 19 of 49

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20 

 

Fig. 9 a) optical absorption spectra of BaBiTe2.95Se0.05 as a function of temperature b) changes in energy of transition 

1 and 2 as a function of temperature; CB1 and bands higher in the conduction band are converging with temperature; 

c) band offset as a function of Se content. This image shows that there is band convergence in BaBiTe2.95Se0.05 and 

that the band offset increases with the Se content. 

 

Hence, the bands higher in the conduction band move towards lower energies. At ca. 830 K these 

bands can be considered as being fully converged with CB1. Fig. 9c shows that the band offset 

between CB1 and the bands higher in the conduction band (located along the ΓY direction 

between CB1 and CB2) slightly increases with the Se content. The band offset was extracted from 

the optical absorption measurements (cf. Fig. 7c). 

 

Thermoelectric transport properties of BaBiTe3-xSex (x = 0, 0.05, 0.1) 

 The efficiency of a thermoelectric material is defined by the thermoelectric figure of merit 

(zT).  

HI = 	 J
�

KL I     (7) 

The thermal conductivity (κ) contains the phononic (κph), electronic (κe) and bipolar (κb) 

contribution. Seebeck coefficient (S), electrical resistivity (ρ) and the electronic and bipolar 

contribution of κ are interdependent, while κph is mostly independent of the other quantities. The 

thermoelectric properties of polycrystalline BaBiTe3-xSex (x = 0, 0.05 and 0.1) are summarized in 

Fig. 10.  

 

Fig. 10 Thermoelectric properties of BaBiTe3-xSex (x = 0, 0.05, 0.1): a) Seebeck coefficient (the dotted lines 

represent interpolated data), b) electrical resistivity, c) thermal conductivity and minimum thermal conductivity of 

BaBiTe3 and BaBiSe3 according to Cahill and d) thermoelectric figure of merit (zT). 
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Seebeck coefficient and thermal conductivity were measured out of plane, while the electrical 

resistivity was measured in plane. The Seebeck coefficient (cf. Fig. 10a) of all compounds 

increases up to ca. 550 K and shows a “roll-over” between 550 K and 600 K due to the activation 

of minority charge carriers. The maximum of the Seebeck coefficient (Smax) at the temperature 

Tmax is almost independent of the Se content, which is consistent with the optical absorption 

spectra showing no significant changes in the optical band gap up to x = 0.1.  

The Goldsmid-Sharp band gap (Eg = 2eSmaxTmax) of all compounds measures ca. 0.23-0.25 eV, 

which agrees well with the optical band gap (0.26 eV). 

Increasing the Se content leads to higher Seebeck coefficients, which is consistent with the 

increase in resistivity (cf. Fig. 10b). BaBiTe3, BaBiTe2.95Se0.05 and BaBiTe2.9Se0.1 show a small 

reduction in thermal conductivity (cf. Fig. 10c) with an increasing Se content as expected from 

point defect scattering. This effect could also be due to the slightly different densities of the 

samples. However, because of the complex low symmetry structure (few acoustic phonons) and 

large anharmonicity the lattice thermal conductivity is already low (0.41(2) Wm-1K-1 at 600K). 

The thermal conductivity (not the diffusivity) of pristine BaBiTe3 was previously measured on 

single crystals using a modified pulse technique originally developed by Maldonado.16,54 The 

values we obtain for BaBiTe3 using the Dulong Petit approximation compare well with the results 

published by Chung et al. (κ = 0.4 Wm-1K-1 for temperatures below ca. 150 K, where radiation 

effects due to insufficient heat dissipation can be neglected). It is therefore justifiable to use the 

Dulong-Petit approximation. All the title compounds possess remarkably low thermal 

conductivities close to the glass limit (cf. Fig. 10c) of BaBiSe3 (0.34 Wm-1K-1) and BaBiTe3 (0.28 

Wm-1K-1). The glass limit is slightly higher for BaBiSe3 since both, the longitudinal and 

transversal components of the speed of sound are larger for BaBiSe3 (vT = 1535 m/s, vL = 

2863 m/s) compared to BaBiTe3 (vT = 1462 m/s, vL = 2536 m/s), which can be attributed to the 
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lower mass of Se compared to Te and to softer bonds in BaBiSe3. Hence, BaBiSe3 can be 

expected to be more anharmonic compared to BaBiTe3. Fig. 11 shows the measured Hall 

mobility (µ) and charge carrier concentration (n) of BaBiTe3-xSex (x = 0, 0.05 and 0.1). The 

electron mobility (ranging from 2-5 cm2V-1s-1) generally decreases temperature as expected from 

phonon scattering but may show grain boundary scattering at low temperature. 

 

Fig.11 a) Hall mobility and b) hall charge carrier concentration of BaBiTe3-xSex (x = 0, 0.05, 0.1) as a function of 

temperature; c) calculated zT as a function of hall carrier concentration: lines and symbols correspond to effective 

band models and experimental data points, respectively; d) “Seebeck effective mass” (m*) as a function of 

temperature (line and symbols represent calculated m* obtained from interpolated and experimental Seebeck data, 

respectively). b)-d) show the contribution of CB2 for BaBiTe3-xSex (x = 0, 0.05) in form of an increase in carrier 

concentration and m* with temperature. 

 

The carrier concentration of BaBiTe3 is almost constant with temperature up to ca. 370 K and 

increases significantly between 370 K and 600 K like one might see from the formation of 

charged defects. A similar trend can be observed for BaBiTe2.95Se0.05. The increase in carrier 

concentration, however, is less pronounced and is only significant for temperatures above ca. 

500 K.  

Increasing the Se content further, results in an almost temperature independent carrier 

concentration for BaBiTe2.9Se0.1. The substitution of Te by Se does not affect the electron 

mobility in a systematic or significant way, but results in a clear reduction in charge carrier 

concentration. This decrease in carrier concentration with Se content explains the increase in 

resistivity. The possible origin for such high carrier concentrations will be discussed in the 

section: Defect chemistry of BaBiTe3 and its Se substituted variants. The overall thermoelectric 

properties of BaBiTe3 and BaBiTe2.95Se0.05 are fairly promising with zTmax (cf. Fig. 10d) of ~0.4. 
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Multiband effects in the thermoelectric transport properties of BaBiTe3 and BaBiTe2.95Se0.05 

 

Ab initio calculations of the electronic structure and optical absorption coefficient as well 

as optical absorption measurements clearly point towards a contribution of multiple electron 

pockets to the thermoelectric transport properties of BaBiTe3-xSex, especially at higher 

temperatures where band convergence effects play a role (cf. Fig. 9). A comparison of this study 

to those of SnSe52 and CoSb3
53, where multiband effects also play a role, support this conclusion. 

We indeed find a multiband contribution to the thermoelectric transport data of BaBiTe3 and 

BaBiTe2.95Se0.05. It is visible in the increase of the “Seebeck effective mass” (m*)53 with 

temperature (cf. Fig. 11c), as obtained by fitting an effective band model to the experimental data 

(cf. Fig. 11d), where Seebeck coefficient and resistivity show the typical trends of degenerate 

semiconductors. Details concerning modeling of high-temperature thermoelectric properties can 

be found elsewhere.55 The main signature of multiband effects in the transport data is an increase 

in effective mass with decreasing Se content (cf. Fig. 11c), while the hall mobility remains almost 

unchanged. Another signature of multiband effects in the thermoelectric transport data is the 

lower effective mass of Se-alloyed BaBiTe2.95Se0.1 compared to BaBiTe3. This suggests that for 

BaBiTe2.9Se0.1 only CB1 contributes to the thermoelectric transport, while the bands along the ΓY 

direction between CB1 and CB2 contribute in the case of BaBiTe3 since the “Seebeck effective 

mass” is an estimate for the effective density of states. The previously discussed convergence of 

bands in the conduction band on the other hand can explain the increase in effective mass with 

temperature, which is only observed for x = 0 and 0.05. One possible explanation for not 

observing any effect of band convergence on the thermoelectric transport properties of 

BaBiTe2.9Se0.1 is the increase in band offset with x, which could also explain the weaker increase 
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in effective mass for x=0.05 compared to x = 0 and the absence of the low-energy optical 

transition in BaBiSe3 (cf. Fig. 7a). Our combined analyses of the electronic structure, optical 

properties and thermoelectric transport properties strongly suggest that the larger quality factor 

(B) and zTmax of x = 0 and 0.05 compared to BaBiTe2.9Se0.1 (cf. Fig. 11d) are a result of the 

multiband and band convergence effects. B was calculated according to (8), where me and κph are 

the electron mass and phononic contribution to the thermal conductivity.  

M = 4.3223 ∗ 10��	μU �V
∗

VW
�
�/� #X/�

LYZ
  (8) 

The intrinsic mobility (µ0) and effective mass (m*) were obtained from the effective band model. 

Fitting such a model to the thermoelectric transport data also shows that the carrier concentration 

of all title compounds is close to optimized (cf. Fig. 11d). 

 

Defect chemistry of BaBiTe3 and its Se substituted variants 

The main reason for studying the defect chemistry of BaBiTe3-xSex is the large charge carrier 

concentration observed, which points towards unintentional doping through native defects. The 

closely related to Bi2Te3, Bi2Se3 and their solid solutions also have native defects that play an 

important role in their thermoelectric transport properties.56-61 Insights in the defect chemistry can 

help to explain, why BaBiTe3 and its Se substituted variants are all n-type semiconductors and 

possibly predict whether intrinsic p-type samples can be obtained. We calculated the formation 

energies (Ef [D
q]) of intrinsic defects in BaBiTe3 in three different regions of the Ba-Bi-Te phase 

diagram (cf. Fig. 12).  
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Fig. 12 Formation energies of intrinsic defects in BaBiTe3 calculated in three different regions of the Ba-Bi-Te phase 

diagram: a) region 1: BaTe-Bi2Te3-BaBiTe3, b) region 2: BaTe-Te-BaBiTe3 and c) region 3: Bi2Te3-Te-BaBiTe3; the 

numbers in each graph correspond to the charge q of the each type of defect. These calculations reveal native BiBa
+1 

defects with negative defect formation energies close to the valence band edge in all three regions of the phase 

diagram. These defects are competing with native TeBi
+1 defects in the region 2 (b) of the phase diagram for energies 

close to the valence band edge; these calculations were performed using DFT-PBE. 

 

The values of allowed chemical potential are determined by the three regions BaTe-Bi2Te3-

BaBiTe3, BaTe-Te-BaBiTe3 and Bi2Te3-Te-BaBiTe3, which will be referred to as region (a), (b), 

and (c). These different regions correspond to different thermodynamic conditions in which 

BaBiTe3 is stable and are related to different synthesis conditions.62 Figure 12 plots the defect 

formation energy depending on the Fermi level for a series of intrinsic defects in different regions 

of chemical potential. In all conditions, there are BiBa
+1 and TeBi

+1 defects with negative 

formation energies close to the valence band maximum. These defects are electron donors 

compensating any attempt to dope the material p-type in equilibrium conditions. On the other 

hand, no negative formation energy defects are present close to the conduction band minimum 

indicating that the material has no electron killers. We conclude that BaBiTe3 is 

thermodynamically favoring n-type conductivity and that any attempt to dope this material p-type 

will be challenging. This is in agreement with the n-type nature of the experimentally realized 

materials. Moreover, our work identifies the potential majority defects, BiBa
+1, which are the 

lowest energy electron donors in all regions, probably leading to the observed n-type conduction.  

In BaBiTe3 a second cation (Ba2+) is present, which is lacking in Bi2Te3 and which 

fundamentally changes the defect chemistry since antisite defects form more easily between two 

cations than between a cation and an anion. This is evident from the low formation energy of the 

BiBa
+1 antisite defects in BaBiTe3. In n-type Bi2Te3 and Bi2Se3 TeBi

+1, SeBi
+1 (under Se-rich 
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conditions) and VSe
2+ (under Bi-rich conditions) defects have the lowest formation energies and 

are responsible for the observed n-type conduction in these compounds.56 The vacancies of Te 

and Se are also low in energy in Bi2Te3, while being much higher in energy than BiBa
+1 in 

BaBiTe3. Interestingly, Bi2Te3 can easily be doped p- and n-type, while p-type doping of BaBiTe3 

is challenging due to the low formation energies of the BiBa
+1 antisite defects.  

Our defect calculations show that the defect chemistry of BaBiTe3 differs significantly from the 

one in Bi2Te3 and the reason for the difference is the presence of Ba2+ as a second cation. The 

preferential site substitution of Se on the Te4 and Te5 sites presented above (cf. section: 

Preferential site substitution of Se on the Te4 and Te5 sites) motivated us to study the defect 

chemistry of Se substituted variants of BaBiTe3 in order to explain this preference from an 

energetic point of view. Results of our extrinsic defect calculations can be found in the 

supplementary information and they revealed equally low formation energies close to zero for 

SeTe4 and SeTe5 defects, which explain the preferential site substitution on the Te4 and Te5 sites. 

 

Conclusion 

The presence of Te···Te resonant bonds in BaBiTe3 is best described as a linear combination of 

interdigitating (Te1-)2  side groups and infinite Ten chains. Complementary Rietveld refinements 

and extrinsic defect calculations show that the Se substitution preferentially occurs on the Te4 

and Te5 sites, which are not involved in Te···Te bonding. Ab initio calculations of the electronic 

structure, optical absorption measurements and an effective band model analysis of the 

thermoelectric transport properties of BaBiTe3-xSex (x = 0, 0.05 and 0.1) strongly suggest the 

presence of multiple conduction bands. These analyses also provide an explanation for the two 

optical transitions observed experimentally. Bands higher in the conduction band converge with 

the conduction band minimum with increasing temperature and contribute to the thermoelectric 
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transport properties of BaBiTe3 and BaBiTe2.95Se0.05. This multiband contribution can be 

considered as the reason for the ~50 % higher zT at 617 K compared to BaBiTe2.9Se0.1, for which 

no such contribution was found. The increase in the band offset between the CBM and bands 

higher in the conduction band with respect to the selenium content is one possible explanation for 

the absence of multiband effects in the thermoelectric transport properties of BaBiTe2.9Se0.1.  

A detailed analysis of the defect chemistry of BaBiTe3 suggests the presence of native BiBa
+1 and 

TeBi
+1 defects at 0 K and these are probably responsible for the observed n-type conduction. 

BaBiTe3 is the first example of a mixed-valent chalcogenide with Te···Te resonant bonds, where 

its thermoelectric properties benefit from the contribution of multiple conduction bands. Hence, 

chalcogenides with resonant bonds are promising for continued investigations as new 

thermoelectric materials.  
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Crystal structure of BaBiTe3 (black: Ba, light grey: Bi, dark grey: Te)  
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Previously described Te···Te bonding situations: a) Ten chains and b) interdigitating (Te1-)2  side groups; 
c) electron localization function of Te2 and Te6 (left)  and -pCOHP curves of the Te2-Te2 and Te2-Te6 pairs 

(right) showing bonding interactions between Te2-Te2 and Te2-Te6; d) resonant Te···Te bonding, which can 

be understood as a linear combination between a) and b) and which involves three-center-four-electron (3c-
4e) bonds; the bonding situation in d) is based on results from –pCOHP and ELF calculations shown in c); 

this new Te···Te bonding situation represents an electron delocalization over the Te2 and Te6 atoms, which 
reduces electrostatic repulsion between the Te2 and the Te6 atoms by minimizing their negative charge.  
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Rietveld refinements of experimental diffraction patterns (black) of a) BaBiTe3, b) BaBiTe2.95Se0.05 and c) 
BaBiTe2.9Se0.1 recorded after spark plasma sintering. Calculated diffraction patterns, difference plots and 
reflection positions are depicted in red, blue and green, respectively; all experimental diffraction patterns 

were recorded after spark plasma sintering.  
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Parts of the BaBiTe2.9Se0.1 crystal structure with refined site occupancy factors (black: Se; grey: Te) 
illustrating the preferential site substitution of Te4 and Te5 by Se.  
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a) Electronic structure of BaBiTe3 with three electron pockets (CB1, CB2 and CB3) and the atomic 
contributions to the conduction band minimum (CBM) and valence band maximum (the Fermi level is set to 
0 eV); b) and c) correspond to the charge density distribution of the CBM and the valence band maximum 

(VBM) showing the strongest atomic contributions to the CBM and VBM; all calculations were performed 
using DFT-PBE.  
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COHP curves of BaBiTe3 containing a) Bi-Te interactions and b) Te-Te interactions; c) shows a MO diagram 
reflecting the COHP analysis.  
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a) experimental band gaps of BaBiTe3-xSex (x = 0, 0.05, 0.1 and 3) determined by diffuse reflectance 
measurements; b) enlargement of the optical absorption of BaBiTe2.95Se0.05 emphasizing the two 

transitions corresponding to transitions from the VBM to CB1 and from CB1 to CB2; c) energy of the two 

transitions as a function of the Se content; d) tauc plots for x = 0.05 showing that transition 2 can be 
considered direct.  
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a) Electronic band structure and density of states (DOS) of BaBiTe3 showing the two optical transitions 
taken into account for calculating the optical absorption spectrum; b) calculated joint density of states (joint 

DOS) and c) optical absorption coefficient as a function of energy. All these calculations were performed 

using DFT-PBE. The abbreviations T-1 and T-2 refer to transition 1 and transition 2.  
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a) optical absorption spectra of BaBiTe2.95Se0.05 as a function of temperature b) changes in energy of 
transition 1 and 2 as a function of temperature; CB1 and bands higher in the conduction band are 

converging with temperature; c) band offset as a function of Se content. This image shows that there is 

band convergence in BaBiTe2.95Se0.05 and that the band offset increases with the Se content.  
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Thermoelectric properties of BaBiTe3-xSex (x = 0, 0.05, 0.1): a) Seebeck coefficient (the dotted lines 
represent interpolated data), b) electrical resistivity, c) thermal conductivity and minimum thermal 
conductivity of BaBiTe3 and BaBiSe3 according to Cahill and d) thermoelectric figure of merit (zT).  
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a) Hall mobility and b) hall charge carrier concentration of BaBiTe3-xSex (x = 0, 0.05, 0.1) as a function of 
temperature; c) calculated zT as a function of hall carrier concentration: lines and symbols correspond to 
effective band models and experimental data points, respectively; d) “Seebeck effective mass” (m*) as a 

function of temperature (line and symbols represent calculated m* obtained from interpolated and 
experimental Seebeck data, respectively). b)-d) show the contribution of CB2 for BaBiTe3-xSex (x = 0, 

0.05) in form of an increase in carrier concentration and m* with temperature.  
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Formation energies of intrinsic defects in BaBiTe3 calculated in three different regions of the Ba-Bi-Te phase 
diagram: a) region 1: BaTe-Bi2Te3-BaBiTe3, b) region 2: BaTe-Te-BaBiTe3 and c) region 3: Bi2Te3-Te-

BaBiTe3; the numbers in each graph correspond to the charge q of the each type of defect. These 

calculations reveal native BiBa+1 defects with negative defect formation energies close to the valence band 
edge in all three regions of the phase diagram. These defects are competing with native TeBi+1 defects in 
the region 2 (b) of the phase diagram for energies close to the valence band edge; these calculations were 

performed using DFT-PBE.  
 

254x190mm (300 x 300 DPI)  

 
 

Page 49 of 49

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


