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ABSTRACT
In display advertising, a publisher targets a specific audi-
ence by displaying ads on content web pages. Because the
publisher has little control over the supply of display oppor-
tunities, the actual supply of ads that it can sell is stochastic.
We consider the problem of optimal ad delivery, where an
advertiser requests a certain number of impressions to be dis-
played by the publisher over a certain time horizon. Time is
divided into periods, and in the beginning of each period the
publisher chooses a fraction of the still unrealized supply to
allocate towards fulfilling the advertiser’s demand. The goal
is to be able to fulfill the demand at the end of the horizon
with minimal costs incurred from penalties associated with
shortage or over-delivery of ads. We describe optimal poli-
cies that are both simple in structure and easy to implement
for several variations of this problem.

1. INTRODUCTION
Display advertising has become one of the most profitable ar-
eas of online services, responsible for approximately $24 bil-
lion in business [5]. Unlike sponsored search, where textual
ads are displayed along the results of a keyword search, dis-
play advertising targets specific audiences by showing graph-
ical banner ads on regular content pages. Targeting can be
specific by focusing on certain demographics, so that for ex-
ample, an ad is only shown to people from a certain age
group living in a particular geographic location. Typically,
display advertising is handled through direct contracts be-
tween the publisher and the advertiser. These contracts are
characterized by the publisher committing to the delivery of
a pre-specified number of ads to the target audience during
a certain time period (also known as guaranteed delivery).
Because the supply of display opportunities is uncertain, it is
possible that the publisher is unable to fully meet the adver-
tiser’s demand, in which case the advertiser is compensated
via a penalty (per undelivered impression, for example). Ad-
ditionally, over-delivering, or providing an advertiser with
more impressions than their requested demand can be costly
for a variety of reasons. For example, there maybe an op-

portunity cost associated with giving the ad away instead
of selling it to another advertiser. It is also possible that
the advertiser’s infrastructure can only handle so many vis-
its from people who see the ad and click on it before that
infrastructure breaks down, and so a cap is placed on the
number of ads that the advertiser wants displayed during
a period of time. The tension between the under and over
delivery costs in addition to the stochasticity of the supply
is what makes the publisher’s problem difficult.

Typically, ads are assigned to advertisers through the use
of auctions. Because of the intricacies and complexities of
these auctions and the overhead required by the advertisers
to handle them, many advertisers simply opt to let the pub-
lisher manage their campaigns and do their bidding on their
behalf. As in [4], the advertiser indicates a maximum price
that it is willing to pay per impression in its contract with
the publisher, and the publisher uses this constraint when
bidding on impressions for the advertiser. With the volume
of traffic generated over the internet, these auctions take
place at an incredibly fast rate. It would thus be inefficient,
if not completely impossible, to adjust the advertiser’s bid
after every single auction. Therefore, the advertiser’s bid,
placed by the publisher, remains effective for a certain pe-
riod of time until it is re-adjusted for the next time period.
By having a constant bid placed over all the auctions taking
place in a time period, one can expect to win a fraction of
these auctions. We will make use of this correspondence be-
tween bids and fractions in our formulation by thinking of
our decision variables as fractions of the (uncertain) supply
instead of bid values for each time period. This has been
the standard approach in recent work on the problem (e.g.
[2] and [5]). Like these papers, we think of the supply of ads
as a ’channel’ with an uncertain capacity. However, unlike
the area of literature that focuses on selecting the optimal
set of guaranteed contracts (for example, [1],[3], and [4]) to
maximize revenue in such a setting, we take the contract as
input and focus on how to optimally fulfill the demand under
supply uncertainty. We assume that the only control that
a publisher exerts over the supply is to decide on a fraction
of the channel to allocate towards fulfilling an advertiser’s
demand before the actual supply is realized for that period.
Instead of formulating the problem as that of profit max-
imization –by fulfilling as much as possible of the demand
for the negotiated price per impression– we think of it as a
cost minimization problem, where we try to minimize the
number of ads not served (equivalent to lost revenue in the
maximization model) in addition to the overdelivery penalty
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discussed earlier. The basic question we deal with in this pa-
per is the following: Given an advertiser’s demand, a finite
planning horizon, and a time-variable supply distribution,
how do we choose the fraction of the channel to assign to
an advertiser in each period so that our cost at the end of
the horizon is minimized under the various penalties? This
is similar to some of the questions asked in [2]. In their
work, they aimed to give a very general, all-encompassing
framework to the problem at the expense of giving solutions
that provide no performance guarantees. In contrast to their
work, we focus on the specific problem described above and
we are able to completely characterize the optimal policy
under reasonable assumptions. We also show that while we
cannot obtain such a solution for the general case, we can
get arbitrarily close to the optimal solution.

Our understanding of online advertising has evolved from
looking at the problem as a sequence of seemingly unrelated
single-round auctions to become more of a carefully planned
campaign that admits more expressive requests from the ad-
vertiser’s side. For example, as noted earlier, advertisers can
be very specific in defining their target groups. In addition,
there can be other side constraints or terms added to the
publisher’s contract. As an example, a contract can specify
that, in addition to requiring a certain number of impres-
sions to be delivered over a period of thirty days, the deliv-
ery should also be spread as evenly as possible, so that if
the demand is, say, 300,000 impressions, then the advertiser
would ideally prefer to display 10,000 impressions every day
for the duration of the contract. This way the advertiser gets
a more steady exposure instead of a possible burst in deliv-
ery followed by no advertising that the earlier setting allows
(for example, by delivering all ads on the first day and then
doing nothing for the rest of the planning horizon). One can
easily imagine many ways in which the advertiser can amend
their contract to include constraints like the above example.
We will give a sufficient condition under which the methods
in this paper extend to more expressive contracts.

There is a strong connection between our problem and prob-
lems from the theory of stochastic inventory control. The lit-
erature in this area is vast, with a standard model of stochas-
tic demand [10] but scattered and problem-specific models
for random yield and stochastic supply [9]. Until recently,
the focus of this literature has been on identifying the struc-
ture of the optimal policies for these problems without much
regard to the feasibility of actually computing such policies.
Most of these policies were based on dynamic programming
formulations and solving the dynamic program was costly
and in many cases impossible. Later work was successful in
finding approximate policies that either do not rely on dy-
namic programming [7] or that exploits the structure of the
dynamic program to provide near-optimal solutions without
the computational burden [6].

The rest of the paper is organized as follows. Section 2 gives
a formal definition of the problem, while Section 3 derives
the optimal policy to the single advertiser case. Section 4
shows how to extend the solution to the general case with
multiple advertisers as well as extensions to more expres-
sive contracts. Section 5 concludes the paper and suggests
possible extensions to our work.

2. MODEL AND NOTATION
We will highlight some of the methods used throughout the
paper by focusing on the single advertiser case for most of
this abstract, and so we present the model for this case first.
The extension to multiple advertisers is straightforward and
will be given in Section 4. We first consider the demand
side of the problem. An advertiser requests a number of
ads that it would like displayed over a certain time horizon.
Time is discrete and is divided into periods, with the plan-
ning horizon consisting of T periods. The advertiser wishes
to have a total of D impressions delivered over the entire
horizon. Later on we will discuss the case when the ad-
vertiser can also specify additional requirements, like even
spacing of impressions over time, etc.

The supply is stochastic and time-variable. In each time pe-
riod t, t = 1, ..., T , the publisher gets a random number Xt of
display opportunities that are related to the advertiser’s tar-
get group. Here, Xt is a random variable that is distributed
according to a known distribution Ft(x), with density ft(x).
We assume that the supply distributions across periods are
independent, but not necessarily identically distributed. In
each period t and before Xt is realized, the publisher de-
cides on a fraction αt, 0 ≤ αt ≤ 1, to be taken out from the
random supply Xt in order to fulfill part of the demand D.
As discussed earlier, this fraction is equivalent to selecting
a bid that ultimately awards the advertiser a fraction of the
supply at the end of the period. At the end of the plan-
ning horizon, the publisher incurs a penalty per undelivered
impression, denoted by p1. There is also a penalty per over-
delivered impression, which can be thought of as the cost of
giving away an impression for free instead of selling it. We
will denote this penalty by p2. At time T = 0, the expected
cost over the planning horizon can be expressed as

E

24p1

 
D −

TX
t=1

αtXt

!+

+ p2

 
TX
t=1

αtXt −D

!+
35 ,

where (y−a)+ = max (y − a, 0). The publisher’s problem is
to select the fractions α1, ..., αT such that this expected cost
is minimized. Put differently, the publisher wants to find a
policy whereby given the number of remaining impressions
at the beginning of period t, it sets the fraction αt such that
the optimal expected cost is achieved, assuming that optimal
decisions will be made in periods t + 1, ..., T . Note that,
perhaps contrary to one’s initial intuition, a greedy policy
that assigns high fractions to the advertiser in earlier periods
is not necessarily optimal since the supply distributions are
time variant. In fact, we can show that the following result
is true of any myopic policy (which includes the class of all
greedy policies).

Lemma 2.1. Any myopic policy for the single advertiser
ad delivery problem can perform arbitrarily badly compared
to the optimal solution.

A myopic policy by definition does not take the future into
account and tries to provide a solution as if the current pe-
riod is the last or only period in the problem. The following
simple example shows that the preceding lemma is true.
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Example 2.2. An advertiser has a demand of 40 ads, to
be delivered over two periods. The cost of overdelivery is 1
and the shortage cost is 2. In the first period, the supply of
ads is a Bernoulli random variable, taking a value of either
50 or 100 with equal probability. The supply in the second
period is again a Bernoulli random variable, taking the value
50 with probability ε and 100 with probability 1− ε. Denote
by α1 and α2 the fraction of supply assigned to the advertiser
in periods 1 and 2, respectively, and let the cost of the my-
opic policy be Costmyopic and the cost of the optimal policy
be Costopt. Any myopic policy will set α1 > 0 as it tries to
fulfill some of the demand in period 1, and therefore incurs
positive expected cost (in fact, for this example a myopic pol-
icy that tries to optimally balance overdelivery and shortage
costs in the first period sets α1 = 0.645 and incurs an ex-
pected cost of 13 in the first period alone). As ε goes to zero
however, the optimal solution sets α∗1 = 0 and α∗2 = 0.4, and

the optimal cost approaches zero, making
Costmyopic
Costopt

→∞

Obviously, as soon as overdelivery occurs in one period and
the associated costs are incurred, there is no reason to as-
sign any future supply to the advertiser. One can think of
fulfilling the demand over multiple periods as a chance to
avoid overdelivery in any one particular period by spreading
the delivery over the entire horizon.

Unsurprisingly, the sequential nature of the problem lends
itself to a dynamic programming framework. Let the state
variable at time t be dt, the number of remaining impressions
to be displayed over the rest of the planning horizon. The
sequence of events in period t is as follows. dt is observed and
the fraction αt, is set to some value. The supply Xt is then
realized and the yield αtXt goes towards fulfilling part or all
of the advertiser’s demand. The state variable for the next
period, dt+1, is set equal to (dt − αtXt)+. We will denote
by gt(dt) the optimal expected cost-to-go function; that is,
gt(dt) is the optimal expected cost at time t when there
are dt remaining impressions, and assuming that optimal
decisions will be made in periods t through T .

3. SINGLE ADVERTISER
We will start the analysis by focusing on the case of a single
advertiser. It is worth nothing that, in addition to the bene-
fits of illustrating the structure of the solution in a simplified
context, this case is also of relevant practical interest. In
the multiple advertisers case, the advertisers’ problems are
linked through the constraint that the sum of the fractions
of supply assigned to them is at most one. Since in some
scenarios it is not uncommon for the publisher to have more
supply than the aggregate demand, this constraint becomes
non-binding, and the problem can be decoupled into sepa-
rate single advertiser problems. Taking this view further,
we formalize the preceding point in the assumption that fol-
lows. Let the optimal fraction in period t, t = 1, ..., T be
denoted by α∗t and consider

Assumption 3.1. In the optimal solution to the single
advertiser delivery problem, α∗t < 1 for all t.

As mentioned, one can easily think of scenarios where this
assumption would be valid. Indeed, there will be specific

target groups and/or various criteria for which it is proba-
bly never the case that the publisher assigns all the display
opportunities it gets to a single advertiser, since the ad-
vertiser’s demand is considerably smaller than the available
supply, and hence the optimal fraction of ads assigned to
that advertiser will always be strictly less than one (as a
trivial example, think of an advertiser that wants to display
ads to males in the age bracket of 20 to 40 – a very large
target audience). On the other hand, one can construct ex-
amples where the optimal solution gives the advertiser every
single display opportunity that the publisher gets. This may
happen if the advertiser is interested in a very unique set of
target demographics, such that the supply of the display
opportunities for the specified criteria is scarce and barely
enough to fulfill the demand. Another possibility is that the
cost per undelivered impression is extremely high compared
to the per-impression overdelivery cost, resulting in a very
conservative policy that aims to avoid shortage by setting
α to its maximum possible value. For the purposes of this
section though, and assuming that the above assumption
holds, we can derive a simple closed-form for the optimal
policy that is summarized in the following theorem. Al-
though we will not prove it here, it is worth mentioning that
the optimal policy derived herein is also the unique optimal
policy for the problem. This contrasts with many inven-
tory management problems, where sometimes it can even
be computationally difficult to count the number of optimal
solutions [6].

Theorem 3.2. Let dt be the number of remaining impres-
sions at the beginning of period t. There exists nonnegative
numbers k1, k2, ..., kT , such that in the ad delivery problem,
the optimal policy in period t is to set α∗t = dt/kt. Further-
more, computing the values kt for t = 1, ...T can be done
efficiently in an offline (i.e. before the first period begins)
manner.

Proof. We start by solving a single period problem and
then extend the solution to its multi-period counterpart.
Consider a single period problem with demand D and ran-
dom supply X. A fraction α∗ is chosen before X is realized
such that α∗ is the solution to the following problem

min
α
E[p1(D − αX)+ + p2(αX −D)+] (1)

This expectation can also be written as

p1

Z D/α

0

(D − αx) dF (x) + p2

Z ∞
D/α

(αx−D) dF (x) (2)

which can be verified to be a convex function of α. The first
derivative of (2) with respect to α is given by

−p1

Z D/α

0

xf(x)dx+ p2

Z ∞
D/α

xf(x)dx (3)

Because x is a nonnegative random variable, the integralR b
a
xf(x)dx is equal to the integral

R b
a

(1− F (x))dx. The
second derivative, again with respect to α is then equal to

p1D

α2

Z D/α

0

xf(x)dx+
p2D

α2

Z ∞
D/α

xf(x)dx

This expression is greater than zero for any nontrivial speci-
fication of the problem (i.e. a specification with p1 > 0, p2 >
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0, D > 0, and a distribution F (x) that does not put all the
weight on zero). Hence the function is convex in α and the
first order condition for minimization obtained from setting
(3) equal to zero tells us that α∗, the fraction for which the
expectation in (1) is minimized, satisfies

α∗ = sup
α

(R D/α
0

1− F (x)dxR∞
D/α

1− F (x)dx

)
≥ p2

p1

where the inequality, instead of equality, accounts for dis-

crete distributions. Recalling that the integral
R b
a

(1− F (x))dx
for a nonnegative random variable X gives the expectation
of X over the interval (a, b), the optimality condition can be
interpreted as finding the fraction α∗ that divides the sup-
port of X into two intervals, [0, D/α∗] and (D/α∗,∞), such
that the ratio of the contribution of these two intervals to
the expectation of X is equal to the ratio p2/p1. In the case
of a discrete distribution, D/α∗ would be the first point in
the support of X that makes this ratio equal to or bigger
than p2/p1. If no such point exists, then α∗ is set to its max-
imum value of one, a possibility that we will ignore when we
move to the multi-period version under Assumption 3.1.

It is not difficult to see that, for values p1 and p2 and a cer-
tain distribution F (x), there is only one point in the domain
of X, call it k, that would satisfy this ratio condition, i.e.
there is a unique value k that solves

k = inf
t

( R t
0
xf(x)dxR∞

t
xf(x)dx

)
≥ p2

p1
(4)

Furthermore, computing this point k requires only knowl-
edge of p1, p2, and F (x) – it is independent of D and α.
This implies that we can pre-compute k before D is known
and before the problem commences (i.e. we can compute k
offline before the period begins). We then use this computed
value for k along with the input D to compute α∗ = D/k.
Thus the optimal solution to the one period problem can be
written as

α∗ =


D/k, 0 ≤ D/k < 1;
1, D/k ≥ 1.

(5)

Using Assumption 3.1, we write the optimal cost-to-go func-
tion, substituting the value of α∗ from (5) into (2)

g(D) = p1

Z k

0

d(1− x

k
) dF (x) + p2

Z ∞
k

d(
x

k
− 1) dF (x)

Note that in this expression, the only variable is d, by rewrit-
ing as

g(D) = d

„
p1

Z k

0

(1− x

k
) dF (x) + p2

Z ∞
k

(
x

k
− 1) dF (x)

«
we can see that g(D) is a linear function of the form g(d) =
uD, where u is a nonnegative constant that is equal to

p1

R k
0

(1− x
k

) dF (x) + p2

R∞
k

(x
k
− 1) dF (x).

Having solved the single period problem, we extend the solu-
tion to its multi-period counterpart. Denote the remaining
impressions at the beginning of period T by dT . Since the
problem in period T is identical to the single period problem
we just solved, we can find the values kT and uT and write
gT (dT ) = uT dT . Then, moving backwards in time to period

T − 1 and writing the optimal cost-to-go function for that
period, we have

gT−1(dT−1) = min
αT−1

E[p2(αT−1XT−1 − dT−1)+

+gT (dT−1 − αT−1XT−1)+]

substituting for gT (dT ) by uT dT , this expression becomes

gT−1(dT−1) = min
αT−1

E[p2(αT−1XT−1 − dT−1)+

+uT (dT−1 − αT−1XT−1)+]

which is of the same form as (1), with p1 replaced by uT .
We can then solve for the optimal α∗T−1 in the exact same
way as before, by finding kT−1. The optimal policy in period
T−1 is then similar to that of a single period problem: if the
number of remaining impressions at the beginning of period
T − 1 is dT−1, then the optimal solution is to set α∗T−1 to
dT−1/kT−1 and the optimal cost-to-go in that period can be
written as gT−1(dT−1) = uT−1dT−1. Inductively, we deduce
that there are values kT−2, ..., k1 which can all be computed
in the same way as in the single period problem, with the
optimal policy in any period given as in the statement of the
theorem. Thus the problem reduces to solving a sequence
of T single period problems. Again, since the values kt and
ut depend only on p1 p2, and F (xt), they can be computed
offline.

It remains to show that kt and ut can be computed effi-
ciently. Indeed, finding kt amounts to solving an equation
in a single variable in the continuous case and is only slightly
more difficult than calculating the expectation of a random
variable in the discrete case. For the latter, assume that
the maximum number of values the random variable Xt can
take is m, and that the probability of Xt = x is given by
p(x), then finding kt involves nothing more than perform-
ing binary search on those m values, where at each step
of the search the current value mi is taken as a candidate
for kt and the summation

Pmi
i=0 xip(xi) is evaluated and di-

vided by E(x)−
Pmi
i=0 xip(xi) and then compared to p2

p1
. A

straightforward, naive implementation of this method will
take time O(m logm), which is already fast enough for all
practical purposes. Computing ut takes O(m) time and is
dominated by the time it takes to find kt. Repeating the
entire procedure for each period, we end up with an overall
running time of O(Tm logm).

This result makes intuitive sense, and reinforces the discus-
sion we had after Assumption 3.1. For the one period prob-
lem, as k increases with increasing p2 or decreasing p1, α∗

decreases in order to try and protect against overdelivery,
which becomes a more costly penalty. Similarly, imagine
that p1 is very high compared to p2, then k takes on smaller
values, pushing α∗ towards one in order to protect against
the high cost of under-delivery even when D is not very
large.

The multi-period solution gives a nice insight into the struc-
ture of the problem. The constant ut for period t can be
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written as

ut = ut+1

Z kt

0

(1− xt
kt

)dF (xt) + p2

Z ∞
kt

(
xt
kt
− 1)dF (xt)

where uT+1 = p1. From this expression, we can see that
ut ≥ ut+1 for all t. One can interpret ut as the cost of
waiting to fulfill an impression in the next period instead of
the current period. Since ut increases as t decreases, there
is a tendency to not wait until the end of the horizon to
deliver impressions. Of course, this is not necessarily true
for all scenarios as it also depends on the supply distributions
throughout the horizon. Consider the case where supply is
IID across periods. Obviously, dt ≥ dt+1 for all t, and since
kt varies inversely with ut (recall that ut is analogous to p1

in (4)), kt decreases as t decreases and ut increases, so that
kt ≤ kt+1 for all t. This implies that α∗t = dt

kt
starts at

some value in the first period and then keeps decreasing as
t increases, so that in the optimal policy there is a tendency
to deliver the majority of impressions early on to protect
against under-delivery, and use the later periods mainly to
fill in shortages from earlier periods. Given that the solution
can be computed knowing only the costs p1 and p2 and the
demand distributions, the publisher can use this information
about the optimal cost to adjust and negotiate the penalties
p1 and p2 so that the resulting contract has the minimum
possible cost given the demands and requirements of the
advertiser.

When Assumption 3.1 is violated, the policy in Theorem 3.2
is no longer optimal. The reason for this is that the depen-
dence of the optimal cost-to-go on d is no longer linear but
convex, indicating that we need to evaluate gt for all values
of dt to apply backwards induction. When this is the case,
the problem has a pseudopolynomial time algorithm with a
running time O(TD). The direct dependence on D makes
the problem intractable. However, we can still develop a
fully polynomial time approximation scheme for the prob-
lem. This means that for any given ε, we can find a solution
that is within ε from the optimal solution and that requires
time polynomial in the input size and 1/ε to compute. The
proof of this result is quite involved, and can be found in [8].

4. EXTENSIONS
4.1 Multiple Advertisers
We will slightly revise the structure of the costs before we
extend the results to multiple advertisers. Throughout the
preceding discussion, we have interpreted the penalty p2 as
the opportunity cost of giving away an impression for free
instead of selling it to another advertiser. When we consider
the multiple advertisers case under this interpretation, there
is no reason to keep the overdelivery costs, since the case
where advertiser i is allocated more impressions than their
demand only impacts the solution if this overdelivery results
in shortage for other advertisers, and hence the penalty p2

can be implicitly incorporated into the shortage costs of ad-
vertisers other than i. We will discuss the case when the
advertiser also wishes to not receive extra impressions over
their demand in the next subsection. For this section, we
assume that there are m advertisers and that advertiser i’s
shortage cost is given by pi. The decision vector in period
t is αt = (αt1, ..., α

t
m), where αti is the fraction assigned to

advertiser i in period t. The problem then is the same as
before: we are interested in choosing αt, t = 1, ..., T in order

to minimize the shortage costs at the end of the horizon.
One difference is that all cost is evaluated at the last pe-
riod, since there is no longer an overdelivery cost in any one
period. Formally,

minαt E
hP

i pi
`
di −

P
t α

t
ix
t
´+i

s.t.
P
i α

t
i ≤ 1 t = 1, ..., T

0 ≤ αti ≤ 1 t = 1, ..., T.

We will assume that the constraints
P
i α

t
i ≤ 1 are binding.

This is without loss of generality, since one can introduce
a dummy advertiser that gets assigned any leftover impres-
sions in a period if the constraint has some slack. Further-

more, if in the optimal solution we have
P
i α
∗t
i < 1 for all t,

then the problem can simply be decoupled into m separate
problems that are then solved as in the previous section.
Starting again from the one period problem, we can verify
convexity in α as in the single advertiser case. The con-
straints are linear in α1, ..., αm and the Hessian matrix of
the objective is positive definite.

Under the binding constraints assumption, advertiser m is
assigned a fraction 1−

P
i 6=m αi, so that setting the fractions

for all but the last advertiser automatically determines the
fraction that the last advertiser gets. Rewriting the single-
period objective in the form of (2), we get

p1

Z d1/α1

0

(d1 − α1x) dF (x) + ...

+pm

Z dm
1−

P
i6=m αi

0

(dm − (1−
X
i 6=m

αi)x) dF (x)

Notice that when minimizing (6), we end up with a system of
m−1 equations, corresponding to them−1 decision variables
α1, ...αm−1. Since each equation is the partial derivative
of (6) with respect to one of the variables, it has exactly
two terms: the derivative of the integral that contains that
variable as well as the derivative of the last integral, which is
expressed in terms of the first m− 1 variables. Specifically,
the derivative of (6) with respect to αi is given by

−pi
Z di/αi

0

xf(x) + pm

Z di
1−

P
i6=mαi

0

xf(x)

Note that in particular, the second term is common to all
equations. Writing this out for all the m − 1 variables and
equating each derivative to zero to obtain the conditions for
minimization, we find that, for any two advertisers i and j,
the following holds at the optimal solution

pi

Z di/αi

0

xf(x) = pj

Z dj/αj

0

xf(x) (6)

Like before, we will let ki = di
αi

. The optimal solution to the

problem then involves finding k1, ..., km−1 such that Condi-
tion (6) is satisfied for all i and j. In addition, since deter-
mining ki, i = 1, ...,m− 1 determines αi, i = 1, ...,m− 1, it
also determines αm through the relation αm = 1−

P
i6=m αi.

The resulting αm should satisfy Condition (6). Without
loss of generality, let the costs pi be arranged such that
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p1 ≥ p2 ≥ ... ≥ pm. If we follow the approach from the
previous section, we can try to find values of ki such that
the following holds for all i and jR ki

0
xf(x)R kj

0
xf(x)

=
pj
pi

(7)

A set of values for ki, i = 1, ...m that solves (7) and leads to
a vector α with

P
i αi = 1 gives a solution to the problem.

From (7) and the fact that X is a nonnegative random vari-
able, we can see that advertisers with low index have lower k
values. The immediate implication is that these advertisers
get more share of the supply if the demands of all advertisers
are the same or comparable (since low k values correspond
to high values for α when the demands are the same). This
agrees with intuition and suggests that the optimal single
period policy has a greedy flavor, allocating more shares to
those advertisers that have higher penalties. In fact, it is
possible that advertisers with high indexes (low pi) get as-
signed zero impressions, since the only way the condition is
satisfied is if their corresponding values of ki are set to infin-
ity. Of course, since the conditions above also depend on di,
it is not always the case that high index advertisers receive
less impressions – the important thing is that the optimality
conditions are satisfied.

When we consider the multiple period problem, applying the
same policy in a myopic fashion turns out to be optimal:
at the beginning of each period, we solve the problem as
if it is simply a single period problem, and assign to each
advertiser the fraction they would get if this was the only
period left. While this may seem initially surprising given
that we have seen that myopic policies can be arbitrarily
bad in Example 2.2, the reason it works in this setting is the
removal of the overdelivery cost, which alters the problem
and therefore the structure of the optimal policy. A proof
for the optimality of the policy above can be found in [8],
but the informal reasoning is as follows. Let us think about
two advertisers with penalties p1 and p2 with p1 > p2 and
two periods. Because the myopic policy is greedy by nature,
the only way applying it can hurt the publisher is when
the optimal solution assigns a bigger share to the second
advertiser in the first period than the myopic policy does.
But this would only happen when the supply in the second
period allows the publisher to reduce the optimal one-period
share for the first advertiser in the first period, knowing that
it will be able to fulfill the shortage in the second period,
but if that is the case then the publisher can just as well use
the second period to fulfill the second advertiser’s left-over
demand instead of taking it out of the (more costly) first
advertiser’s share in the first period.

4.2 Additional Delivery Constraints
Let us return to the single advertiser case. So far, the pub-
lisher’s problem has been of the form

min
0≤αt≤1

X
t

h(dt, Ft(x), αt)

with h(d, F (x), α) taking the form of the function in (1). We
want to consider allowing the advertiser to have more input
into the structure of the delivery process, specifically, the
advertiser can choose a function l(dt, Ft(x), αt) such that

the publisher’s objective becomes

min
0≤αt≤1

X
t

h(dt, Ft(x), αt) + l(dt, Ft(x), αt)

Let us illustrate this in the context of the example used at
the beginning of the paper, where in addition to the guar-
anteed delivery requirement, the advertiser would like its
ads to be evenly spaced over time. An advertiser with to-
tal demand D over a horizon of length T can then choose
l(dt, Ft(x), αt) = q|αtxt − D

T
|, so that there is a penalty q

associated with delivering more or less than D/T impres-
sions in each period (of course, the advertiser can specify
any other value than D/T , or different values for different
periods). For simplicity, let us roll the costs p1 and p2 into
a single cost p. The publisher’s problem then becomes

min
0≤αt≤1

E

"
p

˛̨̨̨
˛D −

TX
t=1

αtXt

˛̨̨̨
˛+ q

˛̨̨̨
˛
TX
t=1

αtXt −
D

T

˛̨̨̨
˛
#

This problem closely follows the framework outlined above,
both for the special case under Assumption 3.1 and the gen-
eral case (depending on the relationship between p and q,
it may be necessary to set α equal to 1 in some scenarios).
Just to illustrate, under Assumption 3.1 the optimal α in a
single period problem satisfies

α∗ = sup
α

R∞
Dα
T
xf(x)dx−

R Dα
T

0
xf(x)dxR D

α
0
xf(x)dx−

R∞
D
α
xf(x)dx

As one can tell from this expression, the criteria for opti-
mality looks more complex as one adds more requirements.
Nevertheless, the structure of the solution (finding intervals
that divide the domain of the distribution in a certain way)
remains intact. It turns out that a sufficient condition to
add more expressiveness while maintaining the general fla-
vor of the solution is the requirement that l(dt, Ft(x), αt) be
convex, which makes the publisher’s overall objective convex
in αt and dt. If l(dt, Ft(x), αt) is chosen such that, for ex-
ample, there is a bonus paid to the publisher once a certain
target z < D is fulfilled, then the objective displays a kink
and convexity is destroyed. In such scenario, the methods
outlined in this paper may fail to be optimal.

5. CONCLUSIONS
We have given optimal policies to some variants of the guar-
anteed ad delivery problem in display advertising. We have
seen that when the advertiser’s demand is low compared to
the overall supply, the problem can be solved to optimality
and the optimal policy has a nice and simple characteriza-
tion. Because the publisher is able to calculate its expected
cost as a function of the demand D and costs p1 and p2,
it can use this information in deciding on prices to charge
the advertiser for service, as well as negotiate the shortage
penalty p1. The case for multiple advertisers maintains the
same spirit of the solution, namely, dividing the support of
the distribution into intervals from which the optimal frac-
tions can be calculated. While figuring out the fractions for
the single period multiple advertisers case is not as straight-
forward as the single advertiser one, the difficulty turns out
to be balanced by the fact that a myopic policy is optimal
for the multiple advertisers case. If instead of the modifi-
cation we introduced in the multiple advertiser scenario we
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had each advertiser still maintain under and over delivery
penalties then a myopic policy is no longer optimal and the
problem becomes quite difficult even to approximate.

There are many variations on the theme of this problem. We
have already discussed a sufficient condition under which the
methods presented here extend to more expressive contracts,
namely, the convexity of the publisher’s objective function.
It would be interesting to identify the correspondence be-
tween bids and fractions: we know what fraction the pub-
lisher should set in the optimal solution to the problem, but
in reality, and as mentioned in the introduction, the pub-
lisher places a bid in an auction for a period of time, not
a fraction. The interaction between maximum prices that
advertisers are willing to pay per impression and the bids
placed by the publisher affects the fractions that the adver-
tiser can select and therefore the structure of the optimal
delivery policies. It would therefore be instructive to under-
stand how the two separate processes of selecting optimal
contracts and fulfilling these contracts interact so that in-
stead of designing each in isolation one can develop a more
integrated approach that accounts for the issues addressed
by each.
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