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Universal binding-energy relation for crystals that accounts for surface relaxation
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We present a universal relation for crack surface cohesion including surface relaxation. Specifically, we
analyze how N atomic planes respond to an opening displacement at its boundary, producing structurally
relaxed surfaces. Via density-functional theory, we verify universality for metals~Al !, ceramics (a-Al2O3),
and semiconductors~Si!. When the energy and opening displacement are scaled appropriately with respect to
N, the uniaxial elastic constant, the relaxed surface energy, and the equilibrium interlayer spacing, all energy-
displacement curves collapse onto a single universal curve.
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Macroscopic cohesive theories of fracture often invo
empirical postulates on the shape and form of the cohe
law.1–3 While first principles simulations might be prefe
able, the typical size of engineering finite element mod
prohibits their direct application. In order to obtain co
verged finite element results, the cohesive zone size mus
resolved by the mesh; for brittle materials, the cohesive z
size is atomistic, making the calculation prohibitive
expensive.4 Nanometer scale quantum mechanical calcu
tions have provided insight into cracking at the atom
level,5–8 but their extrapolation to the macroscopic scale
fraught with difficulty. Indeed, orders-of-magnitude mi
match exist between atomistic predictions of cohes
strengths and critical opening displacements9–11 and mea-
surements of tensile strength in brittle materials obtain
from spallation tests,12 the latter of which are often employe
in engineering simulations. The widely used universal bin
ing energy relation~UBER! of Roseet al.13 describes cohe
sion between rigid surfaces based on atomic scale calc
tions, but application of the UBER to crack propagati
simulations is hampered by its inability to capture the sh
and absolute energies of cohesive laws for structurally
laxed surfaces.6,14–16 Here, we address these difficulties b
deriving a coarse-grained cohesive energy relation that
counts for structural relaxation of surfaces and exhibit
material-independent universal form.

Nguyen and Ortiz recently suggested rescaling interla
potentials to yield macroscopic cohesive laws.17 Here we
extend their work to account for surface relaxation and
construction. Specifically, we consider a perfect crystal ac
upon by tensile stresses normal to a cleavage plane.
length scales under consideration range from mesosc
~the dislocation free zone of a metal18! to possibly macro-
scopic ~brittle materials!; we conservatively denote bot
scales as mesoscopic. We assume that atomic layers re
planar after deformation, so that the relative displacemen
crystallographic layeri can be described byd i ~the interlayer
spacing minus the equilibrium interlayer spacing,d! and that
the crystal is periodic with a unit cell containingN atomic
layers. We express the total energy per unit area of cleav
plane as

Etot5f~d1 ,...,dN!5(
i 51

N

f0~d i !1f1~d1 ,...,dN! ~1!
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subject to the total displacementd̄5( i 51
N d i . Here f0(d)

5(1/N)f(d,...,d) is the local energy per layer of a un
formly expanded crystal andf1 accounts for nonlocal effect
across all layers. We hypothesize thatf0 dominates bulk
crystal behavior, whereasf1 primarily affects surface relax
ation at free surfaces.

Assuming the cohesive energy densityf0(d) between
two layers is convex in the interval 0<d,d0 , has an inflec-
tion point atd0 , is concave ford.d0 ~i.e., the typical struc-
ture of an interatomic potential!, and asymptotically ap-
proaches twice theunrelaxedsurface energy, 2g0 ~Fig. 1!,
Nguyen and Ortiz17 derived the asymptotic limit of the mini
mized energyf̄0( d̄), the critical opening displacementd̄0 ,
the cohesive law for the tractiont̄ 0( d̄), and the peak traction
s̄0 , for the mesoscopiclocal ~brittle, defect-free! crystal
with structurally unrelaxed free surfaces.

FIG. 1. Generic local interlayer potential and the correspond
traction for separation of rigid surfaces. The critical displaceme
d0 , and the critical traction,s0 , predict the onset of brittle crack
formation.
©2004 The American Physical Society04-1
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Here, we consider amatched asymptotic expansion,19 in
which the local energy,f0 , determines theouter solution,
and the nonlocal energy,f1 , introduces a singular perturba
tion and determines the structure of theinner solutionwithin
narrow boundary layers adjacent to the decohered layer
the local solution. The effect of these boundary layers is
relax the decohered layers and endow them with mate
specific structure. The determination of this structure
quires consideration of the full energetics of the crystal. F
tunately, in the asymptotic limit, it suffices to assume that
boundary layers surrounding the decohered layers do
overlap, whereupon the previous analysis17 remains valid
with g0 replaced by the energy of the structurally relax
surface,g r . The asymptotic cohesive energy density no
becomes

f̄~ d̄ !5minH C

2N
d̄2,2g r J 5H ~C/2N!d̄2, if d̄, d̄ r ,

2g r , otherwise,
~2!

where

d̄ r52Ag rN/C ~3!

is the critical opening displacement of the structurally
laxed surface andC is the uniaxial elastic constant. The co
responding mesoscopic cohesive law for the relaxed sur
is

t̄ r~ d̄ !5H ~C/N!d̄, if d̄, d̄ r ,

0, otherwise,
~4!

and the corresponding peak traction is

s̄ r5~C/N!d̄ r52ACg r /N. ~5!

This analysis can be extended to complex Bravais latt
and constrained tangential deformations, if these proce
reach equilibrium on the time frame of the crack formatio
For example, leth i be the coordinates of a Bravais sublatti
17210
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and letD i be the tangential displacement within an atom
layer, constrained to( i 51

N D i50 so that the unit cell opens in
mode I on average. Then, the extra degrees of freedomh i
and D i) can be relaxed and the resulting cohesive ene
density,f(d1 ,...,dN), can be minimized as before.

Equation~2! bears a resemblance both to Griffith’s crit
rion for crack propagation and to the expression for the
ergy release rate of a semi-infinite crack in an elastic strip20

however Eq.~2! is derived in a completely different manne
Here our analysis is based on atomistic interplanar poten
without invoking the assumptions of linear elasticity. Th
preceding analysis shows that the mesoscopic cohesive
ergy density of a large but finite layer of atomic planes ha
universal, material-independent, asymptotic structure, E
~2!, regardless of the specific form of the atomistic bindi
law. Furthermore,d̄ r and s̄ r scale asAN and 1/AN, respec-
tively, potentially bringing the failure criteria (d̄ r ,s̄ r) in line
with experimental values with increasing sample thickne
When plotted in terms of the normalized variables,

d̄* 5 d̄/~2Ag rN/C! ~6!

and

f̄* 5f̄/2g r , ~7!

the theory predicts that for largeN, all mesoscopic energy
density vs surface separation laws should fall on a sin
universal curve, namely, a parabolic arc joining the poin
~0,0! and ~1,1! followed by a horizontal asymptote at
@black line in Fig. 2~b!#.

To test our theory, we use quantum mechanical calcu
tions @density functional theory~DFT!# to examine three ma
terials exhibiting starkly contrasting behavior. Namely, w
consider cleavage along the~111! surfaces of fcc Al, the
~0001! surfaces ofa-Al2O3 , and the~100! surfaces of cubic
diamond Si. Al is a ductile metal whose~111! surface re-
mains almost bulk-terminated except for a 1% outward
TABLE I. Experimental and DFT material parameters.~Experimental values are in@ #.!

d
@Å#a

C
@GPa/Å#b

g r

@J/m2#c
d0(d r)
@Å#d

s0(s̄ r)
@MPa#e

~111! fcc Al 2.332 35.3 0.79 0.54~196! 10900~161!
@2.328# @52.0# @1.18#

(0001)a-Al2O3 2.189 180.8 1.49 0.55~123! 47100~486!
@2.165# @231.4# @0.93#

~100! cubic diamond Si 1.365 101.5 1.32 0.57~195! 28200~270!
@1.357# @123.5# @1.36#

aInterlayer separation: Experimental values for Al and Al2O3 at 0 K, Si at 77 K~Ref. 32!.
bUniaxial moduli: Experimental values calculated withC5(1/d) ci jkl mimjmkml , m unit normal to cleavage
plane~Ref. 17!. Expt. ci jkl for Al and Al2O3 at 0 K, Si at 77 K~Ref. 32!.

cRelaxed surface energy:Wad52g r . Experimental Al extrapolated to 0 K~Ref. 25!, Al2O3 empirically
extrapolated to 0 K from highT, so likely underestimated~Ref. 24!, 231 Si from void at 973 K~Ref. 33!.

dCritical displacement from traditional UBER for unrelaxed surfaces. Values in~ ! from this work, Eq.~3!
assuming a 10mm single crystal.

eCritical stress from traditional UBER for unrelaxed surfaces. Values in~ ! from this work, Eq.~5! assuming
a 10mm single crystal.
4-2
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pansion. When cleaved, the~0001! surface of the brittle ce-
ramic, a-Al2O3 , undergoes severe inward relaxation of t
Al ions by ;0.7 Å relative to the bulk termination.21 The
exposed~100! semiconductor Si surface also relaxes inwa
by 2% relative to the bulk termination, but more important
the surface undergoes a 231 reconstruction resulting in
rows of dimers.22

We use 3D periodic generalized gradient approximat
~PW91! DFT calculations implemented within the VAS
code.23 Careful convergence tests using ultrasoft pseudo
tentials established kinetic energy cutoffs of 337.8 eV, 33
eV, and 200 eV, augmentation charge cutoffs of 553.7
553.7 eV, and 241.9 eV and Monkhorst-Pack kpoint grids
1131133, 33331, and 43831 for Al, a-Al2O3 , and Si,
respectively. An energy convergence criterion of 1
31025 eV was used for Al and Al2O3 while a more strict
atomic force criterion of 5 meV/Å was employed for Si. T
test the theory, a large number of layers would be adva
geous, but the calculations quickly become prohibitive. A
compromise, 12, 6, and 12 layers of Al, Al2O3 , and Si were
used.

The DFT data points for thef̄* vs d̄* curve were gener-
ated by introducing a separation of sized̄* between two
bulk-terminated atomic layers, fixing the unit cell, and allo
ing all the ionic positions to relax to their minimum energ
configuration. Conceptually, this is equivalent to healing
crack belowd̄ r or forming relaxed surfaces beyondd̄ r . To
explore differences arising from the reconstructed surface
second series of Si calculations sequentially decreased
introduced separation, using the relaxed configuration fr
the previous step as the initial configuration. The lowest D
energy for eachd̄* was used in the subsequent analysis of
The unique material renormalization parameters,g r and C,
were directly extracted from DFT calculations. The relax
surface energy is given byg r5„f̄(`)2f̄(0)…/2A, where
f̄(`) is the energy of the relaxed ionic positions correspo
ing to the largest introduced separation andA is the surface
area.C was extracted from a series of single point ene
calculations using the same unit cells as the relaxed sur
case, but uniformly expanding the layers in the surface n
mal direction. Those points in the elastic regime were fit
Eq. ~2!.

Table I lists calculated parameters and directly com
rable experimental values. The interlayer spacings from D
are reasonable. DFT underestimatesC, but obtains the cor-
rect ordering. DFT predictions ofg r , and consequently the
work of adhesion (52g r), are the correct order of magn
tude. The deviations ing r are likely due to empirical ex-
trapolation from highT to 0 K;24,25 experimental surface en
ergies are notoriously difficult to measure.d0 ands0 are the
critical separation and stress for the traditional UBER mo
~rigid surfaces, no renormalization!; these values are order
of magnitude too small and too large, respectively. For co
parison, we also give renormalized, structurally relaxedd̄ r
and s̄ r in parentheses, assuming a 10mm thick crystal.
These values are more in line with expected values from
appropriate experiment; note the orders of magnitu
17210
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changes. The ideal experimental comparison ford̄ r and s̄ r

would involve defect-free, brittle, single crystals subject to
uniaxial tensile load on a specific surface orientation c
ducted near 0 K. Such measurements have not, indeed
haps cannot, be performed. It is well known that intern
flaws and surface cracks in samples produce large variat
in fracture strength.26 Typical experimental tensiles̄ r values
for room temperature specimens of unknown grain size
orientation are 40–50 MPa, 150–500 MPa, and 200–7
MPa for Al,27 Al2O3 ,28,29 and Si,30,31 respectively. Since Al
is ductile, we expect poor agreement. Only when the val
are renormalized as we have outlined do they fall in
experimentally observed range.

Figure 2 shows absolute and renormalized DFT energ
of the relaxed surfaces compared to the proposed unive

FIG. 2. ~Color! The absolute~a! and renormalized~b! energy-
displacement DFT data, with the latter collapsing to a univer
curve. ~111! fcc Al ~l!, ~0001! a-Al2O3 ~j!, and ~100! cubic
diamond Si~m! are the DFT data. For filled symbols, the cra
heals; for open symbols, the crack remains.~b! The universal curve
predicted by Eq.~2! ~black line! and the DFT data are renormalize

by f̄* 5f̄/2g r and d̄* 5 d̄/(2Ag rN/C). The inset of rigidly sepa-
rated Si shows the electron density slice through the surface S

introduced cracks leading to crack healing (d̄* ,1) and crack for-

mation (d̄* .1) upon relaxation. Only when the initial electro
density bridges the crack does it heal.6 Yellow ~blue! signifies high
~low! electron density.
4-3
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scaling law for relaxed surfaces. Figure 2~a! illustrates the
disparity in intrinsic properties of metal vs ceramic vs sem
conductor, while Fig. 2~b! shows that except for the regio
near ~1,1!, all the renormalized DFT data for these thre
distinctly different materials fall on the same universal curv.
That all the complexities of quantum mechanics, includ
the long-range interactions between the atoms, should re
to this simple universal law is truly remarkable. At a fund
mental level, we conclude thatall sufficiently large en-
sembles of planes of atoms subject to a prescribed ope
displacement at its boundary behave the same, regardles
material type: in the absence of dislocations, they uniform
expand elastically until they form two structurally relaxe
surfaces. In practice, approximately 10 atomic planes a
usually sufficient to reach the asymptotic limit.

This universal law provides a general analytic form f
efficiently representing the results from first principles calc
lations of cohesive behavior. Indeed, it suggests that o
three parameters~d, C, and2g r) need be calculated, from
which the entire cohesive behavior can be reconstructed,
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